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Abstract

We investigate the Active Clustering Problem (ACP). A learner interacts with
an N -armed stochastic bandit with d-dimensional subGaussian feedback. There
exists a hidden partition of the arms into K groups, such that arms within the
same group, share the same mean vector. The learner’s task is to uncover this
hidden partition with the smallest budget - i.e., the least number of observation -
and with a probability of error smaller than a prescribed constant δ. In this paper,
(i) we derive a non asymptotic lower bound for the budget, and (ii) we introduce
the computationally efficient ACB algorithm, whose budget matches the lower
bound in most regimes. We improve on the performance of a uniform sampling
strategy. Importantly, contrary to the batch setting, we establish that there is no
computation-information gap in the active setting.

1 Introduction

We consider a sequential and active clustering problem, the Active Clustering Problem (ACP),
introduced for instance in [36]. In this setting, there are N items, represented by a d-dimensional
mean. At each time t, the learner chooses one of the items, and samples it - i.e., obtains a noisy
evaluation of the d-dimensional mean that characterizes it - until termination of the sampling process
at time τ , which we call the budget, and which is chosen by the learner. We assume that the items are
clustered into K unknown groups - and two items are in the same group if and only if their (unknown)
means are the same. For a prescribed confidence level δ, the aim of the learner is to recover perfectly
this clustering, on an event of probability larger than 1−δ, and with a final budget τ that is as small as
possible. Clustering problems are ubiquitous in modern data analysis, and ACP arises e.g., in digital
marketing, where accurate clustering of the customers is crucial for adapting recommendations to
specific groups of customers, and where repeated feedback can be collected online. Since feedback
collection is costly, the goal is to recover the clusters with a minimal number τ of feedback requests.
See [36] for further motivations.
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In the low-dimensional setting, where K, d are small, [36] proves that, when δ converges to 0, an
asymptotic expected budget for perfectly recovering the groups is at most of the order

σ2

∆2
∗
N log(1/δ) , (1)

where ∆∗ is the minimal Euclidean distance between the means, and σ2 is the variance of the
observations.

High-dimensional setting. We consider the high-dimensional setting, where K, d can be large,
possibly larger than 1/δ or N (for d). In the classical setting, where there is no repeated measurements
on each item, clustering in high-dimension can be nearly impossible in practice. Indeed, in high-
dimension, the best polynomial time algorithms require a very large separation of the means for
successful clustering with no repeated measurements. This requirement has two origins. First, it
is difficult to localize the means in high-dimension, making the clustering problem harder when d
becomes large compared to N/K. Second, a computation-information gap is conjectured (i) for
clustering [23, 12] when d is very large, and (ii) for estimation [10, 9] in some high-dimensional
non-isotropic setting.

For instance, when there is no repeated measurement, for clustering a mixture of N isotropic Gaussian
with covariance Id and balanced size of the groups, in the high-dimensional setting where d ≥ N and
K ≫ log(N), low-degree polynomial algorithms require a separation at least ∆2

∗ ≳ σ2
√

dK2/N

(Theorem 1 in [12]), while a separation ∆2
∗ ≳ σ2

√
dK log(N)/N is enough at the information level

(Theorem 4 in [12]). This is a strong evidence of a computation-information gap for the problem of
clustering isotropic Gaussian mixture in high dimension.

When repeated measurements are possible, let us consider the simple scheme where we sample T
times each item. This scheme corresponds to oracle-BOC sampling of [36], when the groups have
similar sizes, and the clusters are equidistant. Sampling T times each item is equivalent to shrinking
the variance from σ2 to σ2/T , so, applying standard polynomial time algorithms [15] to the average
values for each item, we can recover the clustering in polynomial time with confidence δ = 1/N

when T ≳ σ2

∆2
∗

√
dK2/N . The total number of requests of this simple batch algorithm is then

τ = NT ≳ N +
σ2

∆2
∗

√
dK2N. (2)

This set of results raises two fundamental questions:
1. Can we improve upon the number of requests of the simple batch algorithm, by implementing

a more careful sequential design strategy?
2. What is the minimal budget for perfect recovery in high-dimension, and is there a funda-

mental computation-information gap for clustering with repeated measurements?
Contributions. We provide an answer to these two fundamental questions.

1. First, we provide a polynomial-time algorithm that recovers exactly the clustering with
probability higher than 1− δ. In the balanced case (all groups have a similar size), it has an
expected budget of order

N +
σ2

∆2
∗

[
N log (N/δ) +

√
dKN log (N/δ)

]
, (3)

which outperforms the budget (2) required by the simple batch algorithm.
2. Second, we prove that the budget (3) is information-theoretical optimal, meaning that there

is no computation-information gap for active clustering in high-dimension, contrary to the
classical case with no repeated measurement.

Our results are non-asymptotic in N , K, d, and δ, in order to account for high-dimensional phe-
nomenon, and possible computational barriers –see the discussion for more details. Compared to
the asymptotic minimal budget (1) obtained in [36] for δ → 0, an additional term pops up in the
non-asymptotic minimal budget (3), which is dominant when dK > N log(N/δ). Our algorithm
is based on ideas related to sub-sampling, in order to localize in a more efficient way the mean of
each group. The possibility of performing sub-sampling enables us to bypass combinatorial problems
arising in clustering with no-repeated measurements. Our algorithm has a quasi-linear complexity,
and is also order-optimal for all δ, N , K, and d, for a broader family of problems defined below.

Related literature in clustering. The problem of clustering a mixture of subGaussian is a classical
problem, which has lead to a large literature both in statistics and in machine learning [8, 35, 23,
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26, 11, 29, 15, 13, 5, 21, 33, 31, 24, 9]. In low-dimension and for large values of N , state-of-the
art polynomial-time procedures for recovering the groups have been introduced by [24], and are
based on generalisation of higher moments methods – see also [11, 20]. In high-dimension, the best
known conditions for exact reconstruction in polynomial-time are based on an SDP relaxation of
K-means [28, 15]. For K = 2, a simple Lloyd algorithm achieves perfect recovery at the information
level [27], thereby establishing the absence of computation-information gap for K = 2. For larger
K, [23] conjectures a computation-information gap in high-dimension, and [12] exhibits a low-degree
computational barrier for the clustering of a mixture of isotropic Gaussians, when d ⩾ N . Some
computation-information gaps have also been shown for Statistical-Query algorithms for learning
mixture of non-isotropic Gaussian, with unknown covariance, in moderately high-dimension –see[10]
and [9]. In the sequel, we refer to clustering with no repeated measurements as batch clustering.

Sequential literature related to ACP. When turning to the sequential learning literature, the ACP
belongs to the family of pure exploration problems in the sequential active learning framework. An
iconic such problem is the best-arm identification problem – see [16] for a survey. In this stream of
literature, the Thresholding Bandit Problem (TBP) is quite related – see [3, 4, 25]. This is a specific
instance of our setting in dimension d = 1 and for two groups, i.e., K = 2. In this active binary
classification problem, the learner aims at finding the arms that have a mean larger than a given
threshold (here d = 1), and to divide them in K = 2 groups. Note that [18] propose a generalisation
of these ideas to multiple groups, albeit still in dimension 1. The optimal asymptotic budget τ for
perfect recovery in the TBP is ∆−2

∗ N log(1/δ) when δ goes to 0, and there are no computational
gaps, see [34] for state of the art results on TBP.

The ACP, first introduced in [36], can be seen as a generalisation of the TBP in dimension d. This
generalisation is highly non-trivial: subtle phenomenons make clustering problems with d ≥ 2 very
different from clustering in dimension 1.

[36] provides an algorithm called BOC, which perfectly recovers the groups with probability higher
than 1− δ, and which has an expected budget at most of the order (1) in the asymptotic regime where
δ goes to zero. Note that this rate is reminiscent of the TBP (where d = 1, K = 2). A closer look
at the proofs in [36] exhibits an exponential dependence of second-order terms (in δ) on K, d so
that BOC - or at least its current analysis - is effective only in the asymptotic regime, when K, d
are considered as being constants. In fact, since the oracle version of BOC samples equally all the
arms when the clusters are balanced and equidistant, the BOC budget in this case is at least (2) in
high-dimension [12], which is suboptimal. Our non-asymptotic analysis allows to recover the shape
of the optimal budget in the so-called high-dimensional regimes where d or K are not considered as
constants.

A somewhat related problem was studied in [37], in the Stochastic Block Model within the fixed-
budget setting. To extract hidden structure, the interaction between pairs of nodes can be sampled
several times, in an active manner. The setting is however quite distinct from our work, and is
also focusing on the asymptotic regime where δ goes to 0. In the paper [1], the related problem
of clustering items based on binary feedback is studied - but therein, the feedback corresponds to
a single coordinate of a chosen vector. In our work, we observe the full d-dimensional vector at
each time, so that the settings differ. Finally, it is worth mentioning that our problem should not be
confused with that of online clustering, for example studied in [7].

Outline. We formally introduce the ACP in Section 2. An information-theoretical lower bound on
the minimal budget for exact recovery is established in Section 3. We introduce and analyze our
procedure ACB in Section 4. Numerical experiments are provided in Section 5. All the results are
discussed in Section 6.

2 Setting and notation
The sequential and active setting. We consider a set of N arms, indexed by [N ]. Each arm a ∈ [N ]
is associated to an unknown probability distribution νa on Rd. At each time t, the learner chooses an
arm At ∈ [N ] based on the past observations. Conditionally on the chosen arm At, she receives from
the environment a random observation Xt ∈ Rd, distributed as νAt

.

For each arm a ∈ [N ], we write µa ∈ Rd for the mean of the distribution νa. Both in the context of
multi-armed bandits, and in the context of clustering, it is common to assume that the distributions
are subGaussian.
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Assumption 2.1 (σ-subGaussian arm observations). For any arm a ∈ [N ], we assume that there exists
a symmetric d×d matrix Σa such that, (i) maxa∈[N ] ∥Σa∥op ≤ σ2, where ∥.∥op is the operator norm;
(ii) the coordinates (Ei) of E = Σ

−1/2
a [X−µa] are independent and fulfills E[exp(tEi)] ≤ exp(t2/2)

for all t ∈ R.

Remark 2.2. This assumption encompasses the emblematic settings where the data are Gaussian, and
where the data are bounded. If the distributions (νa) are Gaussian, then Assumption 2.1 holds by
e.g., choosing Σa’s to be the covariance matrices, and associate σ. If the distributions (νa)a are such
that the coordinates are independent and lie in [0, 1], the collection (νa) is 1/4-subGaussian.

The Active Clustering Problem. As for the vanilla clustering problem, our objective is to partition
the set of arms into groups of arms that share the same expectation µa. For this purpose, we make the
following modeling assumption.

Assumption 2.3 (Hidden partition G∗ of the arms into K groups). Consider N ≥ K ≥ 1. We
assume that there exists a partition G∗ = {G∗

1, . . . , G
∗
K} of [N ] into K groups such that any two

arms a and b are in the same group if and only if they share the same expectation (µa = µb). For
notation purpose, we introduce the vectors µ(1), . . . , µ(K) ∈ Rp such µ(k) corresponds to the
common expectation in G∗

k. Henceforth, µ(k) is called the center of the group G∗
k.

In ACP, the goal of the learner is to uncover the true partition G∗ of the arms, while using as few
samples as possible. The learner samples arms sequentially and, when reaching some stopping time τ ,
she returns a partition Ĝ of [N ] into K groups, which should ideally be equal to G∗. More precisely,
let π be an algorithm for the active clustering problem, also called the strategy of the learner. We
write (Ft)t≥0 for the filtration Ft = σ(A1, X1, . . . , At, Xt). A strategy π consists on three rules:

• A selection rule that chooses the next arm At to sample, based on the previously sampled
arms and observations; At is Ft-measurable.

• A stopping rule that controls when the learner stops sampling the arms, and which quantifies
the budget of the strategy. This is modeled by a stopping time τ with respect to the filtration
(Ft)t≥0.

• A recommendation rule. Once the stopping time τ is reached, the learner outputs an
estimated partition of the arms Ĝ. This partition is Fτ -measurable.

For an environment ν and an algorithm π, we write Pπ,ν for the probability induced by the interaction
between the algorithm π and the environment.

In this paper, we aim at exactly recovering the partition G∗ in the fixed confidence setting. While
the partition G∗ is identifiable, the groups (G∗

k) and the means µ(k) are identifiable only up to
relabelling, i.e., up to a permutation of [K]. We denote by G ∼ G′ two equivalent partitions of [N ],
i.e., two partitions such that, for some permutation ρ of [K], Gk = G′

ρ(k) for all k ∈ [K]. For a fixed
confidence level δ ∈ (0, 1), and a given set of environments E , a strategy π = π(δ) fulfilling

Pπ,ν(Ĝ ∼ G∗) ⩾ 1− δ , (4)

is said to be δ-PAC (probably approximately correct) on E . We write Π(δ, E) for the family of such
δ-PAC strategies for the ACP on E . Our aim is to design a δ-PAC algorithm, whose budget τ is as
small as possible. For a family of environments E , the optimal worst case (average) budget T ∗(δ, E)
is defined as

T ∗(δ, E) = inf
π∈Π(δ,E)

sup
ν∈E

Eπ,ν [τ ] . (5)

In order to introduce relevant sets of environments E , we introduce two quantities that characterize the
difficulty of a clustering problem, let it be batch or active. First, we consider the minimal Euclidean
distance between two distinct group centers

∆∗ = ∆∗(ν) = min
k ̸=k′
∥µ(k)− µ(k′)∥ > 0 . (6)

Intuitively, the smaller ∆∗, the more difficult it is to distinguish the groups and to recover the partition
G∗. This quantity naturally appears in most clustering works in the batch setting [8, 35, 15]. Besides,
we denote θ∗ the balancedness of G∗, that is the proportion of arms in the smallest cluster

θ∗ = min
k∈[K]

|G∗
k|

N
∈
[
1

N
,
1

K

]
. (7)
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When θ∗ = 1/K, all the groups G∗
k share the same size, and the partition is balanced.

Consider ∆ > 0, and θ > 0, we define the set E(∆, θ, σ,N,K, d) as the family of environments
with N arms, divided into K groups as in Assumption 2.3, with a minimal gap ∆∗ at least ∆, a
balancedness θ∗ at least θ, and with d-dimensional observations that are σ-subGaussian – see As-
sumption 2.1. Our main aim is to craft polynomial-time algorithms that attain the optimal worst case
budget T ∗(δ, E(∆, θ, σ,N,K, d)), and to characterize this optimal worst-case budget.

3 Lower bound on the budget
We start by establishing a lower bound for the expected budget of any δ-PAC algorithm over
E(∆, θ, σ,N,K, d).
Theorem 3.1. There exists a numerical constant c > 0, such that we have for any σ > 0, any ∆ > 0,
any d ≥ 1, any θ > 0, any δ ∈ (0, 1/12), and any N ⩾ 2K ≥ 4 such that E(∆, θ, σ,N,K, d) ̸= ∅

T ∗(δ, E(∆, θ, σ,N,K, d)) ⩾ cN + c
σ2

∆2

[
N log

(
N

δ

)
+

√
dKN log

(
N

δ

)]
. (8)

The lower bound in (8) involves three different terms. As in any pure exploration problem, the first
term N is necessary because, when τ ⩽ N/2, then the label of at least one arm has to be guessed
randomly inducing a constant probability of error for the exact clustering. This term is only relevant
for very large ∆ and is not discussed further. The second term is the largest in the low-dimensional
regime where d ≤ N log(N/δ)/K, whereas the third one is the largest in the high-dimensional
regime where d ≥ N log(N/δ)/K. This dichotomy between low-dimensional and high-dimensional
clustering problems also occurs in the batch problem. Together with the results of the next section,
we will establish that it is intrinsic here –see the discussion and the proof sketch for further details.
Note that (8) does not depend on θ: we establish (8) for environments where θ∗ is close to 1/K, that
is for balanced partitions. In fact, the total budget of our procedures ACB and ACB∗ - see below
- do not depend on θ∗ except for extremely unbalanced partitions (very small θ∗) so that the lower
bound is tight even for mildly unbalanced partitions.

Sketch of proof of Theorem 3.1. The first two terms in the lower bound (8) – resp. σ2

∆2N log
(
N
δ

)
and

σ2

∆2

√
dKN log

(
N
δ

)
- are proved separately in Lemmas B.1 and B.2. Regarding the first term, we

first observe that it depends neither on d, nor on K, nor on θ. For the sake of this sketch, we can
therefore restrict ourselves to a one-dimensional (d = 1) multi-armed bandit setting where each arm
has a ∈ [N ] has either mean µa = 0 or µa = ∆, so that K = 2. For this simplified toy problem,
recovering the partition G∗ is equivalent to a Thresholding Bandit Problem (TBP), where the goal is
to find the set of arms whose mean is higher or equal to ∆. By building upon some ideas introduced
in [6], we establish the lower bound σ2

∆2N log
(
N
δ

)
. Note that one may easily interpret this quantity

using the fact that, for a specific arm, deciphering whether the mean of a specific arm is 0 or ∆ with
probability 1− δ/N , one needs to sample it at least σ2

∆2 log
(
N
δ

)
times.

The proof of the second term is both more challenging and more innovative. Again, for the purpose
of this sketch, let us assume that K = 2 and θ∗ = 1/2. We use a Bayesian approach by putting a
Gaussian prior distribution on µ(1) with variance d−1/2∆Id and by fixing µ(2) = −µ(1) so that,
with high probability, ∥µ(2)−µ(1)∥ ≥ ∆. Introducing this prior distribution on Rd is instrumental to
recover the dependency of the budget on the dimension d of the problem. First, we use the symmetry
of the problem to show that the optimal budget is achieved by a strategy π which, in expectation,
samples all the arms uniformly. Then, we use a series of reduction by first noting that identifying the
group of any node a is, in some sense, at least as difficult, as the supervised problem where we would
know the group of all the arms, except that of a. In turn, we show that tackling this active supervised
problem with a uniform strategy π is as difficult as tackling a batch supervised learning problem
where each arm is sampled τ/N times. Finally, we craft an impossibility result for the latter problem.
We emphasize that there is no computational restriction here, so that the lower bound for uniform
sampling strategies is (8), and not the rate (2) which relates to polynomial-time algorithms [12].

4 ACB and Upper bound on the budget
To introduce the main ideas underlying our active clustering algorithm, we first assume in the next
subsection that ∆, θ, σ, N , K and d are known quantities, and we construct an algorithm, ACB, that
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is δ-PAC for environments such that ∆∗ ⩽ ∆ and θ∗ ⩽ θ. We introduce our main algorithm, ACB∗,
adaptive to ∆∗ and θ∗ in Subsection 4.2.

4.1 Warm-up: optimal active clustering with known ∆, θ

The main recipe of ACB is to first identify a set Ŝ of K arms, which are representative of each group,
and then, to classify all the arms based on a precise estimation of the means of the K arms in Ŝ. The
ACB algorithm built then on two subroutines:
1- SRI (Sequential Representatives identification), which constructs a set Ŝ that contains, with high
probability, exactly one arm for each group, called the representatives of each group. To construct Ŝ,
we use a sequential elimination technique, combined with high-dimensional two-sample tests.
2- ADC (Active Distance-based classification), which computes precise estimates of the means
of the arms in Ŝ, and classifies the remaining arms based on minimum estimated distance to the
representatives.

Estimating distances. In order to detect whether two arms a and b are in the same group, a key
ingredient for both SRI and ADC is to get a good estimation of the square distance ∥µa − µb∥2
between the means. Computing the empirical means µ̂a and µ̂b of collected samples of a and b, we
can estimate ∥µa − µb∥2 by ∥µ̂a − µ̂b∥2. Yet, this simple estimator suffers from an unknown bias
depending on the noise covariance matrix. This issue can be circumvented in active sampling, by:
(i) computing independent empirical means µ̂a, µ̂′

a, and µ̂b, µ̂′
b for the arms a and b, based on repeated

measurements,
(ii) estimating ∥µa − µb∥2 with the unbiased estimator d̂2ab = ⟨µ̂a − µ̂b, µ̂

′
a − µ̂′

b⟩.
SRI subroutine (Sequential Representative Identification). The core idea underlying the SRI
subroutine is to start from a set S = {a0}made of a single arm, chosen uniformly at random, and then
to successively sample new arms a, and to add them to S, if they pass a sequence of tests ensuring that
a is not represented in S with high-probability. The sequence of tests checks if a is already represented
in S, i.e., if minb∈S ∥µa − µb∥2 = 0, by multiply checking if minb∈S d̂2ab ≤ ∆2/2, with a sequence
of estimators d̂2ab based on increasing sample sizes, ensuring increasing confidence. It is based on
the call of the REPRESENTEDTEST subroutine described below, where empirical_mean(a, n) refers
to the action of sampling n times the a-th arm, and computing the empirical mean of the collected
samples. This action is performed twice to compute µ̂a and µ̂′

a.

1: function REPRESENTEDTEST(a, (µ̄b, µ̄
′
b)b∈S ,∆, n) ▷ Test if a is represented in S

2: µ̂a, µ̂
′
a ← empirical_mean(a, n)

3: Return IS.TRUE
{
minb∈S⟨µ̂a − µ̂b, µ̂

′
a − µ̂′

b⟩ ≤ ∆2/2
}

More precisely, let us define

U :=
⌈
8θ−1 log (8K/δ)

⌉
; r := ⌈log2(log(4U/δ))⌉ ; (9)

ns :=

⌈
c1

σ2

∆2
(2s + log(12K)) ∨ c2

σ2

∆2

√
d(2s + log(6))

⌉
; (10)

s0 :=r ∧min{s ⩾ 1;ns ⩾ 2} ; nmax := nr ∨
⌈
c3

σ2

∆2

√
d log(2K)

⌉
, (11)

Tmax = 2K

(
nmax +

r∑
s=s0+1

ns

)
+ 2Uns0 + 2U

r∑
s=s0+1

ns

2s−4
, (12)

with c1, c2, c3 > 0 numerical constants, explicitly provided in the proof of Lemma C.2. The
SRI procedure successively samples candidate arms au at random, and performs a sequence of
REPRESENTEDTEST with (roughly) doubling sample size ns for s = s0, s0 + 1, . . ., until either a
REPRESENTEDTEST returns TRUE, in which case the arm au is rejected (Line 8); or all tests up
to s = r have answered FALSE, in which case the arm au is added to S (Line 10). The procedure
SRI stops when |S| = K, or when a maximal budget has been spent (Tmax is defined in (12)) and it
returns Ŝ = S. The minimal index s0 ensures that the sample sizes ns are not smaller than 2.
The sequence of tests is designed in order to use few samples to reject arms already represented in S,
while wrongly rejecting an unrepresented arm with probability less than 1/2. Indeed, the choice of
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1: procedure SRI(δ,∆, θ) ▷ Sequential Representative Identification
2: Compute U, r, s0, ns, nmax, Tmax according to (9)–(12) and sample a0 ∈ [N ]
3: Set S = {a0}; and µ̂a0

, µ̂′
a0
← empirical_mean(a0, nmax) ▷ Initialisation

4: for u = 1, . . . , U do
5: Sample au ∈ [N ].
6: for s = s0, . . . , r do
7: if REPRESENTEDTEST(au, (µ̂b, µ̂

′
b)b∈S ,∆, ns) then

8: BREAK ▷ reject au
9: if s = r then ▷ if au has passed all tests

10: S ← S ∪ {au} ▷ Add au to S
11: µ̂au , µ̂

′
au
← empirical_mean(au, nmax) ▷ Estimate µau

12: if |S| = K or budget > Tmax then
13: BREAK ▷ Terminate u loop
14: Return S ▷ Return a representative for each group

the sample sizes ns and nmax ensures that the probability to take a wrong decision at the s-th step is
smaller than 2−s−1. Hence, the probability that an arm already represented in S is rightly rejected
before step s is at least 1 − 2−s, leading to a quick rejection with high-probability. In addition,
the maximum sample size nr is chosen large enough, to ensure a vanishingly small probability of
(wrongly) not rejecting such an arm. As for unrepresented arms, the probability to wrongly reject an
arm au not already represented in S is smaller than

∑
s≥1 2

−s−1 = 1/2, so that, with probability at
least 1− δ/4, we need less than U candidate arms to identify one representative of each group.

ADC subroutine (Active Distance-based Classification). Once a set Ŝ = {b1, . . . , bK} of repre-
sentatives of each group has been successfully obtained with SRI, the mean of each group can be
precisely estimated, and remaining arms can be classified based on distance estimation d̂2ab to these
means. This classification is performed by the ADC subroutine.

Let us define

J :=

⌈
c4

σ2

∆2
L ∨ c5

σ2

∆2

√
dN

K
L

⌉
, I :=

⌈
c4

σ2

∆2
L ∨ c5

σ2

∆2

√
dK

N
L

⌉
, (13)

with L = log(6NK/δ), and c4, c5 two universal constants defined in the proof of Lemma C.3.
Assume, without loss of generality, that bj ∈ G∗

j for all j ∈ [K]. Then, ADC first computes two
precise estimations µ̂(j), µ̂′(j) of the mean of arms in G∗

j (Line 7), each based on J samples of arm
bj . As these mean estimations are the references for the classification, the sample size J is chosen
large enough to ensure a small variance. Then, for each arm a, two mean estimations µ̂a, µ̂

′
a are

computed based on I samples, and the arm a is classified Line 10 according to the smallest estimated
distance (14). The budget I for individual mean estimation is much smaller than J in high-dimension
d, with I = KJ/N for d large. This budget ensures yet that the probability of misclassifying an arm
is smaller than δ/N .

1: procedure ADC(δ,∆, S) ▷ Active Distance-based Classification
2: if |S| ≠ K then
3: return Null
4: else
5: Enumerate S = {b1, . . . , bK}, and compute J , I according to (13)
6: for j ∈ [K] do ▷ Estimate the mean of each group
7: µ̂(j), µ̂′(j)← empirical_mean(bj , J)
8: Ĝj ← {bj}
9: for a ∈ [n] \ S do ▷ Classify arm a

10: µ̂a, µ̂
′
a ← empirical_mean(a, I)

Add a to the group Ĝk such that k ∈ argmin
j=1,...,K

〈
µ̂a − µ̂(j), µ̂′

a − µ̂′(j)
〉

(14)

11: return {Ĝ1, . . . , ĜK} ▷ Return a clustering
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ACB algorithm. Combining the SRI and ADC subroutines, we get a simple active clustering
algorithm ACB for the case where ∆∗ and θ∗ are known – see Algorithm 1.

Algorithm 1 ACB (θ∗ and ∆∗ known)

1: Input: δ,∆, θ

2: Ŝ ← SRI(δ/2,∆, θ)
3: return Ĝ =ADC(δ/2,∆, Ŝ)

Algorithm 2 ACB∗ (θ∗ and ∆∗ unknown)

1: Input: δ
2: for l = 0, 1, . . . do
3: for p = 0, . . . , l do
4: Compute Sp,l ←SRI

(
δl,∆p, θp,l ∨ 1

N

)
5: if |Sp,l| = K then
6: for a ∈ Sp,l do
7: µ̄a, µ̄

′
a ←empirical_mean(a, n′

p)

8: ∆̂2 ← infa,b∈Sp,l
⟨µ̄a − µ̄b, µ̄

′
a − µ̄′

b⟩
9: return Ĝ =ADC(δ/3, 2−1/2∆̂, Sp,l)

4.2 Main algorithm ACB∗

When the parameters ∆∗ and θ∗ are unknown, we cannot rely on a single call to SRI and ADC as in
the ACB algorithm. Multiscale calls to SRI are required, for different candidate levels ∆p and θp,l
for ∆∗ and θ∗. These levels, related sample sizes n′

p, and confidence levels δl are defined by

∆2
0 = σ2[log(K) +

√
d+ log log(6N/δ)], δl =

δ

6(l + 1)3
(15)

θp,l =
1

K2l−p
, ∆p = ∆0

√
1

2p
, n′

p =

⌈
c6

σ2

∆2
p

(
log(3K2/δ) +

√
d log(3K2/δ)

)⌉
, (16)

where c6 is a numerical constant, whose value is given in (55).

The main recipe in ACB∗, is to scan decreasing candidate values ∆p and θp,l, until we find a scale
where SRI returns a set Sp,l of cardinality K, see Algorithm 2.

Below, we provide upper bounds on T ∗(δ, E(∆, θ, σ,N,K, d)) for both ACB and ACB∗. We write
τACB and τACB∗ for the budget of the non-adaptive procedure ACB(δ,∆, θ), and of the adaptive
one ACB∗(δ). Define the quantities

A =
σ2

∆2

[
N log (N/δ) +

√
dNK log (N/δ) +

√
d
log(K)

θ

]
B =

1

θ
log(K/δ) +

σ2

∆2

1

θ
log

(
K

δ

)[√
d+ log log(N/δ)

]
.

Theorem 4.1. Let δ > 0. Let ∆ > 0, θ > 0 be any two parameters such that E(∆, θ, σ,N,K, d) ̸=
∅. Both the ACB (Algorithm 1) and its adaptive version ACB∗ (Algorithm 2) are δ-PAC on
E(∆, θ, σ,N,K, d). There exist numerical constants c, c′, c′′, independent of all the parameters
∆, θ, σ,N,K, d such that the following holds. For any environment ν in E(∆, θ, σ,N,K, d), such
that θ ≥ log(K)/N , we have

EACB,ν [τACB ] ⩽ cN + c′A ; τACB ⩽ cN + c′(A+B) a.s.

PACB∗,ν

[
τACB∗ ⩽ cN + c′′L log2(L)(A+B)

]
≥ 1− δ ,

where L := log2

(
1

θK

(
∆2

0

∆2 ∨ 1
))

.

5 Numerical experiments
In this section, we run experiments on synthetic data with standard Gaussian noise (σ = 1). We
consider environments with equidistant centers (with ∆∗ = 1), and balanced groups (θ∗ ≈ 1/K). We
choose a high-dimensional setting with N = 200, d = 1000, and K ∈ {10, 15, 20, 25}. We compare
ACB with oracle-BOC [36] - in our balanced setup it simply performs uniform sampling, see below.

Regarding ACB, we assume that ∆∗ is known, and we implement the non-adaptive version of
ACB with δ = 0.1. In order to provide a tighter calibration of ACB, we slightly modify ACB
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algorithm in order to specialize it to the Gaussian distribution –see Appendix A. As the setting is
perfectly symmetric (balanced clusters, equidistant means), the Oracle-BOC policy is equivalent to
the Uniform Sampling strategy, with Loyd initialised by maximin. We implement instead a kmeans++
initialisation, as it is known to outperform maximin [2].

Figure 1: Comparison of the necessary
budget for ACB and oracle-BOC.
We represent (orange curve) the (em-
pirical) budget of ACB computed
with 100 simulations, for K =
10, 15, 20, 25. The error bars are equal
to twice the standard deviation. In
blue, we provide the smallest budget
for which oracle-BOC (initialised with
kmeans++) makes less than 10% of er-
ror out of 100 experiments. As this
budget is a numerical constant, there
are no error bars.

In Figure 1, we plot the estimated mean budget of ACB as a function of K, as well as the budget of
oracle-BOC, with the budget chosen so that the procedure is exactly δ-PAC with δ = 0.1. This figure
confirms our theoretical findings that, in a high-dimensional setting (d ≫ N/K), ACB improves
over oracle-BOC - which is here equivalent to a state of the art batch clustering algorithm - when
the number K of groups increases. Also, we have checked that ACB is δ-PAC. Fixing δ = 0.1,
we observe no more than 1 error out of 100 experiments. We detail further the experimental setup
(including compute resources) in Appendix A.

6 Discussion
Optimality of ACB. First, we discuss the budget of ACB, and we compare it to the information-
theoretical lower bound of Theorem 3.1. To simplify the discussion, let us first consider the case
where the partition G∗ is almost balanced, that is when θ is of the order of 1/K, and assume that
∆2

σ2 ≲ log(N/δ). According to Theorem 4.1, the δ-PAC algorithm ACB has an expected budget upper
bounded by (3), as long as K ≤ N/ log(N). In light of Theorem 3.1, we see that the expected budget
is optimal with respect to all the quantities of the problem: the number of arms N , the minimum
separation ∆, the number of groups K, the probability δ, and the subGaussian norm σ. The only
restriction is that the number of groups K is smaller than N/ log(N), but it is really mild as non-
supervised learning problems are mostly relevant for dimension reduction, that is when K is really
small compared to N . In fact, for larger K ∈ [ N

log(N) , N/2], the expected budget EACB,ν [τACB ] is

optimal, up to a possible
√
log(N) multiplicative term. Theorem 4.1 also states high probability

controls of the budget τACB and τACB∗ which again, are optimal (up to log terms for the latter), in
most regimes.

When the true partition G∗ is extremely unbalanced, so that θ∗ ≤ log(K)√
log(N/δ)KN

, the bound A on the

expected budget may be larger than the lower bound of Theorem 3.1. We conjecture that the upper
bound could be improved in this extreme case, but we leave this for future work.

Further comparison with [36]. When δ goes to zero while σ, ∆, K, and d are fixed, the average
budget of ACB in (3) is at most of the order of σ2

∆2N log(1/δ), and is consistent with the BOC
algorithm of [36]. Still, we mention that [36] manage to pinpoint the exact value of the asymptotic
optimal budget, while our non-asymptotic bounds are only tight up to numerical constants. We
however point out that this asymptotic expression hides dependencies on K, d, and N , which are not
negligible unless δ is exponentially small with respect to d,K - and in high dimension, such a high
confidence regime is typically out of reach.

Comparison to batch clustering. We briefly come back to our fundamental questions on the
comparison between the batch and active clustering problems. Contrary to the batch setting, we
have established that the polynomial-time strategy ACB is information-theoretical optimal, thereby
establishing the absence of computation-information gap. This is in contrast with the classical batch
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clustering problem, where strong evidence of a computation-information gap were proved in [12]
in high dimension, when there are many groups. We therefore illustrate here that clustering is an
unsupervised learning problem, where repeated active sampling breaks a computational barrier, which
is interesting and opens perspectives for other unsupervised clustering problems where computation-
information gap are conjectured.

Conclusion and limitations. In our paper, we characterized the non-asymptotic minimal budget
for recovering the groups in a collection of environment E(∆, θ, σ,N,K, d), where the minimum
distance between the groups is higher or equal to ∆, and all groups have a size larger than θ. We also
crafted a strategy adaptive to both θ∗ and ∆∗. Unlike in batch clustering, our results prove that there
is no computation-information gap.

Our work still has limitations, and raises several open questions: First, it remains to explore how
sequential and active learning can be leveraged for adapting to heterogeneous distances between
groups and heterogeneous group sizes. This has been investigated in [36] in the asymptotic regime,
but not in the non-asymptotic regime. Second, when σ is unknown, building a sampling strategy that
is adaptive to it, would require to estimate the subGaussian norm of the noise, while at the same time
estimating the distances between the means. We leave this question for a future work. Finally, as in
most of the clustering literature, we assumed that the number K of groups was known to the learner.
Investigating the problem of estimating or testing the number of groups in an active setting is also an
interesting research direction.
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A Details on the numerical experiments

Experimental setting
We consider artificial data, generated with standard Gaussian noise (σ = 1). We build environ-
ments with equidistant centers, and balanced groups. Precisely, we choose µ(k) = ek/

√
2, where

{e1, . . . , eK} are the K first vector of the canonical base of Rd, so that the centers are equidistant,
and ∆∗ = 1.

We choose a partition where each group has a size ⌊N/K⌋ or ⌊N/K⌋+ 1, which makes the partition
almost balanced, with θ∗ = 1

N

⌊
N
K

⌋
∼ 1

K .

Finally, we choose a large number of arms N = 200, and a relatively large dimension d = 1000. The
number of clusters varies in {10, 15, 20, 25}, and the experiments provided in this paper were ran on
these different environments.

Variant of the procedure and parametrization of ACB
In the main paper, we introduced and calibrated ACB to allow for subGaussian noise. In particular,
the quantities ns, nmax, I and J , defined in eqs. (9) to (11) and (13) were calibrated by inverting
concentration inequalities, at the cost of non-optimal numerical constants.

In order to study numerically our procedure with sharper constants, we implement a variant of the
algorithm whose tuning parameters are adjusted to the Gaussian setting. The test statistics and the
classifier, so as the parameters are adjusted to specifically work with Gaussian distribution.

In SRI, we avoid dual sampling for computing d̂ab in order to save a factor two in the budget. We
modify the test statistic from line 3 in the function REPRESENTEDTEST used in SRI. We use
IS.TRUE

{
minb∈S ∥µ̂a − µ̄b∥2 ≤ ∆2/2 + dσ2

(
1
ns

+ 1
nmax

)}
, so that there is no need to compute

µ̂′
a in REPRESENTEDTEST, and neither µ̄′

b in SRI . Observe that ∥µ̂a − µ̄b∥2 is an estimator of
∥µa − µb∥2 which is biased. As in the experiment, the variance is known, we debias it, using the
shift dσ2

(
1
ns

+ 1
nmax

)
in the statistics above.

In order to have a δ-PAC algorithm, we take nmax = 4 σ2

∆2 (x− d), where x is the 1− δ/K quantile
of a χ2 distribution. This quantile is obtained with the library scipy.stats. As we implement the
non-adaptive version of the algorithm, we do not limit the number of candidates, and the budget of
SRI in our implementation. The condition from Line 12 in SRI is indeed not used. Now, we choose
n0, . . . , nr, by putting ns = ⌈2sn0⌉ for s = 0, . . . , r, for all s. We choose n0 so that the budget spent
on the rejected candidates should be close to the budget spent on the accepted representatives. We
choose n0 = ⌈(K/U ′)nmax⌉ where U ′ = (1/θ) log(1/δ). Finally, r is chosen such that nr = 2rn0

is equal to nmax, up to a factor 2.

In the Active Distance-based Classification routine (ADC), we also modify the sampling size
I and J (eq. (13)), and the classifier from (10). In the classification, we label each arm with
argminj=1,...,K ∥µ̂a − µ̂(j)∥, which is a distance-based classifier as in eq. (14), but without dual
sampling. By the analysis of the probability of error of this classifier, we choose

I =

⌈
σ2

∆2
max(16β, 4

√
2K/Nα)

⌉
, J =

⌈
σ2

∆2
max(16β, 4

√
2N/Kα)

⌉
,

where β is the 1− δ/(4K(N −K)) quantile of a normal distribution (obtained with scipy.stats), and
α is the 1− δ/(4K(N −K)) quantile of a product of independent standardN (0, Id), that we had to
compute empirically with Monte Carlo. With this choice of tuning parameters, one can prove that
the corresponding variant of ACB is δ-PAC for Gaussian data. The proof is analogous to the one
in Section C. Our numerical experiments confirm that, with these tuning parameters, the modified
procedure is still δ-PAC.

Experiments Compute Resource
We used for the experiments python/Anaconda/3-5.1.0 and the scikit-learn/1.02 package. The
experiment were run in the cluster MESO@LR, working with CPUs of 4Gb. To give an idea on the
computation cost, for N, d,K = 200, 1000, 10, each call for ACB takes approximately 5 minutes. In
total, the curve for ACB from fig. 1 took around 9h30 for each value of K.
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B Proof of the Lower Bound

Sketch of the proof
Throughout Appendix B, we fix ∆ > 0, σ and d. In this section, we bound the worst case budget for
any δ-PAC algorithm on the collection of environments E(∆, θ, σ,N,K, d) –see Equation (5), and
we prove Theorem 3.1.

We start in Appendix B.1 by reducing the active clustering problem to a binary classification problem.
For that purpose, we construct a family of environments, for which, the problem of active clustering
essentially reduces to ⌊K/2⌋ independent and identical sub-problems of binary classification. The
environments that we construct are symmetrical, (in some sense defined in the proof) and we will
explain in Lemma B.7 that we can find an optimal algorithm (as defined in Definition B.6) that
samples (in expectation) the same number of time each arm. This construction jointly deals with the
low-dimensional (Lemma B.1) and the high-dimensional (Lemma B.2) regimes. For the construction,
we will need to assume that N ⩾ 2K, that K is even, and that K divides N , and we explain
in Lemma B.4 how to reduce to this hypothesis.

We divide then the proof in two main lemmas, dealing with the low-dimensional and high-dimensional
regimes. We recall that T ∗ – see (5) – is the optimal worst case budget.
Lemma B.1. If N ⩾ 2K, K is even, K divides N , and θ = 1/K, then for any δ ∈ (0, 1),

T ∗(δ, E(∆, θ, σ,N,K, d)) ⩾
σ2

∆2
N kl

(
1− δ,

δ

N

)
,

where kl is the relative entropy defined as kl : x, y 7→ x log(x/y) + (1− x) log((1− x)/(1− δ)).
Lemma B.2. If N ⩾ 2K, K is even, K divides N , and θ = 1/K, then for all δ ∈ (0, 1/6),

T ∗(δ, E(∆, θ, σ,N,K, d)) ⩾
σ2

∆2

√
dKN

72
kl

(
1

3
− 2δ,

4δ

N

)
.

In Appendix B.2, we prove Lemma B.1, the dimension-free lower bound. It is enough for this term to
assume that the centers of the groups are known, and we use an information-theoretic method with
the KL-divergence, which is somewhat related to previous works for the thresholding bandit problem
derived by [6].

In Appendix B.3, we prove Lemma B.2 in the high-dimensional regime. For this purpose, we
will consider a Bayesian setting and assume a Gaussian prior on the centers of the groups. The
KL-divergence is hard to compute for the probability induced by the interaction between an algorithm
and a Bayesian bandit environment. To overcome this technical problem, we formalize the intuition
that the problem of active clustering is in some sense “harder” than a problem of supervised learning
where the player knows the labels of every arm except one arm that has to be classified. It will reduce
the problem into a two-sample (batch) testing problem (see Definition B.13), and the conclusion will
follow from some explicit computation and an impossibility result for this latter batch problem.

We postpone the proofs of some technical lemmas in Appendix B.4
Remark B.3. We explain quickly the term cN in the lower bound from Theorem 3.1. Assume that, for
any ν ∈ E(∆, θ, σ,N,K, d), it holds that Eπ,σ[τ ] ⩽ cN with c < 1/2. Then, for any environment
ν, there is a fixed probability that two arms from two different groups are not sampled at all during
the procedure. The best to do for the learner is then to estimate randomly the groups of the arms,
inducing a fixed probability of making at least one error in the clustering. We do not discuss further
this term cN in the lower bound in the remainder of the proof. Still, note that it is only relevant in an
artificial regime where ∆ is arbitrary large.

Now, we explain how Lemmas B.1 and B.2 and remark B.3 imply Theorem 3.1.

Proof of Theorem 3.1. Let N,K such that N ⩾ 2K. Let θ > 0 such that E(∆, θ, σ,N,K, d) ̸= ∅.
We first reduce the problem into a problem where K is even, N is a multiple of K, and the groups
have the same size N/K. With this technical condition fulfilled, we will be able to Lemmas B.1
and B.2. We define N ′, K ′, and θ′:

• if K is even, K ′ := K and N ′ := K⌊N/K⌋ ;

14



• if K is odd, K ′ := K − 1 and N ′ = K ′
⌊
N−⌈θN⌉

K′

⌋
;

• in both cases, θ′ := 1/K ′ .

We now use the following natural reduction result, whose proof is in Appendix B.4.1.

Lemma B.4. The optimal worst case budget over E(∆, θ, σ,N,K, d) is larger than the one over
E(∆, θ′, σ,N ′,K ′, d),

T ∗(δ, E(∆, θ, σ,N,K, d)) ⩾ T ∗(δ, E(∆, θ′, σ,N ′,K ′, d)) .

It holds immediately that that K ′ is even, and that K ′ divides N ′. Moreover, as E(∆, θ, σ,N,K, d) ̸=
∅, then ⌈θN⌉ ⩽ N/K. This inequality and the assumption N ⩾ 2K, implies that N ′ ⩾ 2K ′. We can
then use Lemma B.1 and Lemma B.2 with N ′ and K ′ in order to bound T ∗(δ, E(∆, θ′, N ′,K ′, d)).

We have for any δ ∈ (0, 1/6),

T ∗(δ, E(∆, θ′, σ,N ′,K ′, d)) ⩾
σ2

∆2
N ′ kl

(
1− δ,

δ

N ′

)
∨ σ2

∆2

√
dK ′N ′

72
kl

(
1

3
− 2δ,

4δ

N ′

)
.

We can also easily deduce from the expression of N ′ that N ′ ⩾ N/6.

Finally, we study δ 7→ kl(1−δ, 2δ/N ′) to obtain the bound valid for all δ ∈ (0, 1) and for all N ′ ⩾ 1,

kl

(
1− δ,

2δ

N ′

)
⩾ log

(
1

δ

)
+ log(N ′)(1− δ)− 1.5 .

In particular, we have the bound kl
(
1− δ, 2δ

N ′

)
⩾ 1

2 log(N
′/δ) for δ ∈ (0, 1/4).

By studying the variation of δ 7→ kl(1/3− 2δ, 4δ/N ′), we obtain the bound valid for all δ ∈ (0, 1/6)
and for all N ′,

kl

(
1

3
− 2δ,

4δ

N ′

)
⩾

1

3

[
log

(
1

4δ

)
+ log(N ′)(1− 6δ)

]
− 0.7 .

Combining all these inequalities and Remark B.3, we obtain Theorem 3.1.

B.1 From active clustering to binary classification

B.1.1 Construction of a family of environments

From now on, we assume that K is even, and N/K is an integer. In all the proof, we only consider
perfectly balanced environments such that θ = 1/K. We also assume that N ⩾ 2K. Define
L := ⌊K/2⌋. In this subsection, we construct a family of environments defined with a prior on the
centers of the groups.

We assume that the noises are Gaussian with covariance matrix σ2Id. This fulfills the subGaussian
noise hypothesis from Assumption 2.1. In this Gaussian model, an environment is characterized by
the hidden partition G∗ and the (distinct) centers of the groups.

We use a Bayesian approach, and we define the K = 2L centers of the groups, that we order as
µ1,1, µ1,−1, . . . , µL,1, µL,−1. For all l ∈ [L], we construct the centers µl,1 and µl,−1 as symmetrical
with respect to some offset. More specifically, for all (l, g) ∈ [L]× {−1, 1}, we define

µl,g := gµ̄(l) + C(l) , (17)

where

• for all l ∈ [L], C(l) ∈ Rd is a fixed offset defined as C(l) = β(l∆, 0, . . . , 0) ∈ Rd;
• β > 1 will be fixed later and is arbitrary large;
• µ̄ := µ̄(1), . . . , µ̄(L) are i.i.d and µ̄(l) ∼ γ. The prior distribution γ over Rd will be set

differently if we consider the low or high-dimensional regime. We will specify later this
prior.
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Through the proof, we fix a partition G∗ of [N ] into K groups. The partition G∗ is com-
posed of K = 2L nonempty groups G∗

1,1, G
∗
1,−1, . . . , G

∗
L,1, G

∗
L,−1 associated to the means

µ1,1, µ1,−1, . . . , µL,1, µL,−1. For each arm a ∈ [N ], we denote as (l∗a, g
∗
a) ∈ [L] × {−1, 1} for

the labels such that a ∈ G∗
l∗a,g

∗
a

and µa = µl∗a,g
∗
a
. Also, we will always restrict ourselves to balanced

partitions G∗ so that each group G∗
l,g has the same size N/K and thus θ∗ = 1/K.

In summary, we have

[N ] =
⊔

(l,g)∈[L]×{−1,1}

G∗
l,g ,

where the groups (G∗
l,g) are nonempty and share the same size N/K.

We also define the so-called L “blocks”. For l ∈ [L], we define G∗
l := {a ∈ [N ] ; l∗a = l} =

G∗
l,1 ⊔ G∗

l,−1. For each arm a ∈ [N ], l∗a corresponds to the label of the pair of groups (block) G∗
l

that contains a. If l∗a = l, then the arm a belongs either to G∗
l,1 or G∗

l,−1 depending on the value of
g∗a ∈ {−1, 1}. We also denote as G∗

+ := {a ∈ [L]; g∗a = +1}.
We now construct a set of partitions obtained from G∗ by switching two arms from the two different
groups of the same block. Arbitrarily define a set {s(1), . . . , s(L)} of arms such that for all l ∈
[L], s(l) ∈ G∗

l,−1. For any arm a ∈ [N ], we write ba := s(l∗a). For an arm a in G∗
+ = {a ∈ [L]; g∗a =

+1}, we define G∗
(a) as the partition equal to G∗ except that the arm a is switched from Gl∗a,1

to
Gl∗a,−1, and the arm ba is switched from Gl∗a,−1 to Gl∗a,+1. This is a valid partition with K nonempty
and perfectly balanced groups. As we took N ⩾ 2K, it holds that, if any two distinct partition G
and G′ belong to {G∗} ∪ {G∗

(a)}a∈G∗
+

, we have G ̸∼ G′. As a consequence, any δ-PAC algorithm
distinguishes, with probability higher than 1− δ, whether the environments are characterized by a
partition G∗ or by some (G∗

a)a∈G∗
+

.

For any partition G′ such that [N ] = ⊔l,gG′
l,g , we denote as ν(G′, µ̄) for the environment constructed

in this paragraph with the means (µl,g)l,g = (C(l) + gµ̄(l)) and µ̄ ∈ Rd. We will use Pπ,G′,µ̄

[resp. Eπ,G′,µ̄] for the probability distribution [resp expectation] induced by the interaction between
an algorithm π and the environment ν(G′, µ̄) for a fixed realization of µ̄. We also denote as
Pπ,G′ =

∫
µ̄

Pπ,G′,µ̄ dγ
⊗L(µ̄) [resp. Eπ,G′] as the integrated probability with respect to the prior

γ⊗L on µ̄ [resp expectation].

There is a technical detail that has to be handled with this Bayesian prior, if µ̄l is too small or
too large, the environment ν(G′, µ̄) is not necessary in E(∆, θ, σ,N,K, d). We define therefore
Y :=

⋂
l∈[L]{∆/2 ⩽ ∥µ̄(l)∥ ⩽ ∆(β − 1)/2}. On Y , the centers are distinct, the minimal gap is

larger than ∆, and the set of possible values for (µ̄(l))l are disjoint.

We denote ESym(G∗, γ) as the Bayesian family of environments of the form ν(G′, µ̄), where µ̄ ∼
γ⊗L and the partitions G′ ∈ {G∗} ∪

⋃
a∈G∗

+
{G∗

(a)}.

We explain a bit more the construction.

Remark B.5. 1. The parameter β will be arbitrary large so that it is very easy to decide if two
arms belong to different blocks or not. In this case, it is intuitively easy to first separate the
arms into L blocks (that means to estimate l∗1, . . . , l

∗
N ). Then the difficulty of the problem

mostly lies in the L sub-problems of binary classification, where each block has to be
partition into two groups.

2. In the low-dimensional regime, we will take µ̄(l) = (∆/2, 0 . . . , 0) (γ is deterministic). It
means that we will derive the lower bound from Lemma B.1 for fixed centers of the groups
µ(1), . . . , µ(K) which basically amounts to the simpler setting where the learner knows the
centers in advance.

3. In the high-dimensional regime, we will use a Gaussian prior on (µ̄(l))l∈[L]. With this
prior, we will be able to quantify to what extent we have to estimate the unknown means
(µ̄(l))l∈[L] to be able to group the arms.
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B.1.2 Symmetrization

Now, we exploit the different symmetries of the environments of the shape ν(G′, µ̄), and the symme-
tries of the distribution of the centers when µ̄ ∼ γ, in order to restrict our study to algorithms that are
δ-PAC on ESym(G∗, γ) and that satisfies a symmetry property defined below.
Definition B.6. We say that π is δ-PAC on ESym(G∗, γ), if, conditionally on the event Y , we have

Pπ,G′(Ĝ ∼ G′|Y) ⩾ 1− δ ,

for any G′ ∈ {G∗} ∪ {G∗
(a)}a∈G∗

+
. We say that an algorithm π is symmetric on ESym(G∗, γ), if for

any b ∈ [N ] and G′ ∈ {G∗} ∪ {G∗
(a)}a∈G∗

+
, then

Eπ,G′ [Nb(τ)|Y] =
1

N
Eπ,G′ [τ |Y] = 1

N
Eπ,G∗ [τ |Y] .

We denote as ΠSym(δ, ESym(G∗, γ)) for the family of symmetric and δ-PAC algorithms on
ESym(G∗, γ).

Finally, we define the optimal Bayesian budget for an algorithm in ΠSym(δ, ESym(G∗, γ)) as

T ∗(δ, ESym(G∗, γ)) := inf
π∈ΠSym

Eπ,G∗ [τ |Y] ,

where the inf is taken over ΠSym(δ, ESym(G∗, γ)), recalling that Eπ,G∗ is the integrated budget with
respect to the prior γ.

The next lemma implies that we only need to lower bound the quantity T ∗
Sym(δ, ESym(G∗, γ)).

Lemma B.7. If K is even, K divides N , θ = 1/K, and N ≥ 2K, it holds that
T ∗(δ, E(∆, θ, σ,N,K, d)) ⩾ T ∗

Sym(δ, ESym(G∗, γ)) .

Remark B.8. We highlight that this construction essentially reduces the problem into L sub-problems
of active binary classification. On the family of environments ESym(G∗, γ), the offsets C1, . . . , CL

and the labels of the blocks l∗1, . . . , l
∗
N are fixed and common to all the environments ν(G∗, µ̄) and

ν(G∗
(a), µ̄), it is equivalent to say that this is known by the learner. Then, the problem consists on

estimating the partition into two groups G∗
l = G∗

l,1 ⊔G∗
l,−1 (up to switching of the two groups) for

any of the L blocks. If an algorithm is symmetric, it will have access in expectation to the same
budget to solve each sub-problem.

The proof of this Lemma, technical but standard is provided in Appendix B.4.2. In the proof, we
explain how to use the knowledge of the blocks G∗

1, . . . , G
∗
L and the offsets C(1), . . . , C(l) in order

to transform any algorithm into a symmetric algorithm – see Definition B.6. The rough idea is to
permute the arms, and then to apply the algorithm to the permuted arms.

B.2 First Lower bound : proof of Lemma B.1

In this section, we prove the Lower Bound from Lemma B.1. We highlight that the lower bound
from Lemma B.1 does not depend on the dimension d. Thus, we will derive lower bound for fixed
centers of the groups which basically amounts to the simpler setting where the learner knows them in
advance.

We use the construction of Appendix B.1, and we choose the prior distribution γ1 := δµ to be
a Dirac, i.e, µ̄(l) = µ for all l and the centers are deterministic and fixed. We choose µ =
(∆/2, 0, . . . , 0) ∈ Rd and β = 2. The environment ν(G∗, µ̄) is in E(∆, θ, σ,N,K, d), so the event
Y from Definition B.6 holds almost surely.

Remark B.9. The active clustering problem on ESym(G∗, γ) is highly connected to a specific instance
of the Thresholding Bandit Problem (TBP), another pure exploration problem studied in [6]. In this
problem, a player interacts with a multi-armed bandit environment with one-dimensional rewards,
and she has to recover the set of arms with a mean larger or equal to a certain threshold (for us, this
threshold is ∆). The proof of Lemma B.1 is inspired by the proof of Theorem 1 in [6]. For the
thresholding bandit problem, the authors derive a lower bound in the fixed budget setting. In this
setting, the player has to minimize the simple regret (related to the probability of error), using a fixed
budget. From their result, we could deduce a lower bound of the form σ2

∆2 (N −K) log(N−K
δ ). Here,

we use a workaround to establish a slightly tighter lower bound of the form σ2

∆2N log(Nδ ).
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We consider T ∗
Sym(δ, ESym(G∗, γ1)) = inf

π∈ΠSym

Eπ,G∗ [τ ] where the inf is taken over all symmetric

and δ-PAC algorithm on ESym(G∗, γ1) –see Definition B.6.
Lemma B.10. If K is even, K divides N and N ⩾ K, then,

T ∗
Sym(δ, ESym(G∗, γ1)) ⩾ N

σ2

∆2
kl

(
1− δ,

2δ

N

)
.

Then, Lemma B.1 simply follows from the reduction arguments of B.7 and lemma B.10 that we prove
now.

Proof of lemma B.10. Let π be a symmetric and δ-PAC algorithm for the active clustering problem
on ESym(G∗, γ1). It outputs a partition Ĝ of [N ] such that for any a ∈ G∗

+,

Pπ,G∗
(a)

(Ĝ ∼ G∗
(a)) ⩾ 1− δ , and

Pπ,G∗(Ĝ ∼ G∗) ⩾ 1− δ .

The main tool that we use is a data-processing inequality– see e.g.[14]. We will use the KL-divergence
which, in our setting, turns out to be explicitly computed. The difficulty of the proof is to recover the
term log(N/δ) in the lower bound of the budget. For that, we adapt the proof page 15 of [6] to the
fixed confidence setting. The idea is that, instead of constructing one partition, different from G∗,
we constructed a collection of {G∗

(a)}a∈G∗
+

, where any algorithm has to distinguish G∗ from any of
these environments (up to relabelling).

First, we use lemma 1 from [19] which relies on the data-processing inequality and the decomposition
of the KL-divergence in the multi-armed bandit model. It holds that, for any a ∈ G∗

+,

kl
(

Pπ,G∗
(a)

(Ĝ ∼ G∗
(a)),Pπ,G∗(Ĝ ∼ G∗

(a))
)
⩽ KL

(
Pπ,G∗

(a)
,Pπ,G∗

)
(18)

= Eπ,G∗
(a)

[Na(τ) +Nbl∗(a)
(τ)]

∆2

2σ2
,

the last equality follows from the fact that the environments ν(G∗, µ̄) and ν(G∗
(a), µ̄) only differ

on arm a and ba and KL(N (−∆/2, σ2),N (∆/2, σ2)) = ∆2/2σ2. We recall that for any b ∈ [N ],
Nb(τ) is the number of times that the arm b is sampled.

Thanks to the joint convexity of the kl function, see Corollary 3 from [14], we have

kl

 1

N/2

∑
a∈G∗

+

Pπ,G∗
(a)

(Ĝ ∼ G∗
(a)),

1

N/2

∑
a∈G∗

+

Pπ,G∗(Ĝ ∼ G∗
(a))

 (19)

⩽
1

N/2

∑
a∈G∗

+

kl
(

Pπ,G∗
(a)

(Ĝ ∼ G∗
(a)),Pπ,G∗(Ĝ ∼ G∗

(a))
)

.

By construction, the partition G∗ and all the different partitions (G∗
a)a∈G∗

+
belong to different

equivalence classes with respect to the relation∼. As π is δ-PAC – see Definition B.6, we deduce that

∀a ∈ G∗
+, Pπ,G∗

(a)
(Ĝ ∼ G∗

(a)) ⩾ 1− δ ;∑
a∈G∗

+

Pπ,G∗(Ĝ ∼ G∗
(a)) = Pπ,G∗(⊔a∈G∗

+
{Ĝ ∼ G∗

(a)}) ⩽ Pπ,G∗(Ĝ ̸∼ G∗) ⩽ δ .

With the monotony properties of the kl function, we obtain

kl

(
1− δ,

δ

N/2

)
⩽ kl

 1

N/2

∑
a∈G∗

+

Pπ,G∗
(a)

(Ĝ ∼ G∗
(a)),

1

N/2

∑
a∈G∗

+

Pπ,G∗(Ĝ ∼ G∗
(a))

 . (20)

Gathering Equations (18), (19) and (20), we obtain

kl

(
1− δ,

2δ

N

)
⩽

1

N/2

∑
a∈G∗

+

Eπ,G∗
(a)

[Na(τ) +Nba(τ)]
∆2

2σ2
(21)
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We recall that π is symmetric. Hence, For any a ∈ G∗
+, we have

Eπ,G∗
(a)

[Na(τ) +Nba(τ)] =
2

N
Eπ,G∗

(a)
[τ ] =

2

N
Eπ,G∗ [τ ] .

Finally, with eq. (21), we conclude that

Eπ,G∗ [τ ] ⩾
σ2

∆2
N kl

(
1− δ,

2δ

N

)
. (22)

We take now the inf over all algorithms π, which are δ-PAC and symmetric, this proves lemma B.10.

B.3 Second Lower Bound: proof of Lemma B.2

In this section, we prove the lower bound from Lemma B.2. If d ⩽ (8/3)2 log(K/δ), the lower
bound from Lemma B.2 is smaller than the dimension-free lower bound from Lemma B.1, which is
already proved. We may then assume that d ⩾ (8/3)2 log(K/δ). For the sake of the presentation, we
postpone the proofs of some technical lemmas to the end of the next subsection.

Step 1: introduction of the Gaussian prior

In this regime, we choose the prior distribution γ to be Gaussian. Indeed, we introduce γ2 =

N (0, ρ2Id) with ρ2 = ∆2

d and µ̄(1), . . . , µ̄(L) are i.i.d of law N (0, ρ2Id). Also, we choose β = 4.
We consider the Bayesian family of environments constructed in Appendix B.1 ESym(G∗, γ2).

Because of this Bayesian prior, we have some additional technical challenge in comparison to the
low-dimensional case.

1. We can not use the decomposition of the KL-divergence for bandit in order to compute
KL(Pπ,G∗

(a)
,Pπ,G∗) because the integral over the prior γ1 is inside the KL-divergence.

Most of the work consists on upper bounding this divergence with a divergence that can be
computed.

2. We can not compare the maximum budget over E(∆, θ, σ,N,K, d) (i.e., supν∈E(∆) Eπ,ν [τ ])
to the Bayesian budget Eπ,G∗ [τ ] because the minimal gap of ν(G∗, µ̄) is not always larger
than ∆. This is why we condition on the event Y =

⋂
l∈[L]{∆/2 ⩽ ∥µ̄(l)∥ ⩽ ∆(β −

1)/2} ⊂ {ν(G∗, µ̄) ∈ E(∆, θ, σ,N,K, d)}.

We compute Pγ⊗L(Yc) for the Gaussian prior. This is the only time we will use the hypothesis
d ⩾ (8/3)2 log(K/δ).

Lemma B.11. If we assume that d ⩾ (8/3)2 log(K/δ) and γ2 = N (0, ρ2), we have

Pγ⊗L
2

(Y) = Pγ⊗L
2

 ⋂
l∈[L]

{∆/2 ⩽ ∥µ̄(l)∥ ⩽ 3∆/4}

 ⩾ 1− δ .

Step 2: From active binary classification to (batch) two-sample testing

Let π ∈ ΠSym be a δ-PAC and symmetric algorithm for the active clustering problem on
ESym(G∗, γ2) –see Definition B.6. We define t = 6Eπ,G∗ [τ |Y]/N and T = 6Eπ,G∗ [τ |Y]/K.

We recall that, for any a ∈ G∗
+ = {a; g∗a = 1}, G∗

(a) is obtained by switching one arm a with another
arm ba ∈ G∗

l∗a,−1. We recall that Na(τ) :=
∑τ

t=1 1{As=a} is the number of times the arm a is

sampled. We also denote, Ml(τ) =
∑
b:l∗b=l

Nb(τ) as the number of times the arms in the block G∗
l are

sampled. As π is symmetric and as the blocks have the same size 2N/K, we have, for any a ∈ G∗
+,

ta := 3Eπ,G∗
(a)

[Na(τ) +Nba(τ)|Y] = t , and Ta := 3Eπ,G∗
(a)

[Ml∗a
(τ)|Y] = T .
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Remark B.12. We now give some heuristic in order to explain the rest of the proof. Imagine that, at
time τ , the learner receives an oracle that gives the labels of all the arms except the arm a, assume
also that the learner knows that a ∈ G∗

l . As in a supervised classification setting, the player has
to find the label ga of the unlabeled data sampled from a, using the labelled data available. It has
access to Na(τ) observations from a distributed as N (gaµ̄(l), σ

2Id), and Ml∗a
(τ)−Na(τ) labelled

data distributed as N (µ̄(l), σ2Id). It also has access to data from the other blocks, but those data
are not useful to find ga. Moreover, Na(τ) is of the order of Eπ,G∗ [τ ]/N and Ml∗a

(τ)−Na(τ) is of
the order of Eπ,G∗ [τ ]/L. As a consequence, with this amount of data, a learner should be able to
correctly recover the labels in this simplified setting.

With this heuristic in mind, we introduce the following (batch) two-sample testing problem.
Definition B.13. Let t, T be two integers, we consider data Y1, . . . , Yt, Z1, . . . , ZT and two sym-
metric hypotheses H1 and H−1 such that, for g ∈ {−1, 1}, under Hg, the data follows the law Pg

defined as follows:

• µ ∼ γ and conditionally on µ :

• Y1, . . . , Yt, Z1, . . . , ZT are independent;

• ∀r ∈ [t], Yr ∼ N (gµ, σ2Id)

• ∀s ∈ [T ], Zr ∼ N (µ, σ2Id).

This problem is interesting because we can explicitly compute the KL-divergence.
Lemma B.14. Let g ∈ {−1, 1} and Pg defined in Definition B.13. It holds that

KL(P−g,Pg) = KL(Pg,P−g) =
2tTρ4d

σ4 + σ2ρ2(t+ T )
⩽

2tTρ4d

σ4
∧ 2ρ2d

σ2

tT

t+ T
.

Now, we explain properly the ideas introduced in the previous remark. We define the event Ba =
{Na(τ)+Nba(τ) ⩽ t}∩{Ml∗a

(τ) ⩽ T}. Thanks to Markov inequality, the event Ba has a probability
higher than a constant and conditionally on Ba, the algorithm π has access to strictly less information
than in (batch) two-sample testing problem defined above with ta and Ta. We formalize this in the
following coupling lemma.
Lemma B.15. Let a ∈ G∗

+ be an arm and fix Aa an event. Consider the family of random variables
(Y1, . . . , Yt), (Z1, . . . , ZT ) that follows a distribution P−1 – see Definition B.13. Consider also an
independent sequence (ϵs, Us)s⩾1 of random variables such that for all s ⩾ 1, ϵs ∼ N (0, Id) and
Us ∼ U([0, 1]). Then, there exists a function fa that is measurable according to the random variables
Y,Z, ϵ, U and such that Aa ∩ Ba = fa(Y,Z, ϵ, U), where the equality holds with respect to the
probability distribution Pπ,G∗

(a)
=
∫
µ̄

Pπ,G∗
(a)

,µ̄ dγ
⊗L(µ̄).

Similarly, if (Y,Z) ∼ P1, with the same function fa, Aa∩Ba = fa(Y,Z, ϵ, U), under the probability
distribution Pπ,G∗ .

In the previous lemma, we will consider Aa := {Ĝ ∼ G∗
(a)} for a ∈ G∗

+. By construction of G∗
(a)

(because N ⩾ 2K), the events Aa are disjoint. By using the fact that π is δ-PAC on E(γ,∆), we
have the following property for Aa,
Lemma B.16. The family (Aa ∩Ba)a∈G∗

+
is such that

1.
∑

a∈G∗
+

Pπ,G∗(Aa ∩Ba) ⩽ δ + Pγ⊗L(Yc) ⩽ 2δ;

2. Pπ,G∗
(a)

(Aa ∩Ba) ⩾ 1/3− δ − Pγ⊗L(Yc) ⩾ 1/3− 2δ.

We delay the technical proofs of Lemma B.15 and Lemma B.16. From there, we have all the tools that
we need. We now use data-processing inequalities similar to the proof of Lemma B.1 to conclude.

Step 3: Conclusion to the proof of Lemma B.2

We assume that δ ∈ (0, 1/6), so that kl
(
1/3− 2δ, 2δ

N/2

)
is defined.
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We use the first point of Lemma B.16. We notice that the events (Aa)a are disjoint by construction of
G∗

(a) and because we took at least two arms by groups (N ⩾ 2K), it holds that∑
a∈G∗

+

Pπ,G∗(Aa ∩Ba) = Pπ,G∗(⊔a∈G∗
+
Aa ∩Ba) ⩽ 2δ .

With the second point of Lemma B.16, for any a ∈ G∗
+, we have

PG∗
(a)

(Aa ∩Ba) ⩾ 1/3− 2δ ⩾ 0 .

We use the monotony properties of the kl function, it holds that

kl

(
1/3− 2δ,

2δ

N/2

)
⩽ kl

 1

N/2

∑
a∈G∗

+

Pπ,G∗
(a)

(Aa ∩Ba),
1

N/2

∑
a∈G∗

+

PG∗(Aa ∩Ba)

 .

Thanks to the joint convexity of the kl function, see corollary 3 in [14], we deduce that

kl

 1

N/2

∑
a∈G∗

+

Pπ,G∗
(a)

(Aa ∩Ba),
1

N/2

∑
a∈G∗

+

Pπ,G∗(Aa ∩Ba)


⩽

1

N/2

∑
a∈G∗

+

kl
(

Pπ,G∗
(a)

(Aa ∩Ba),Pπ,G∗(Aa ∩Ba)
)

.

Now, we use the coupling lemma B.15,

Pπ,G∗
(a)

(Aa ∩Ba) = P1 × Pϵ,U (fa(Y,Z, ϵ, U))

Pπ,G∗(Aa ∩Ba) = P−1 × Pϵ,U (fa(Y, Z, ϵ, U)) .

We use the data-processing inequality, see corollary 2 in [14], for all a ∈ G∗
+,

kl
(

Pπ,G∗
(a)

(Aa ∩Ba),Pπ,G∗(Aa ∩Ba)
)
= kl (P1 × Pϵ,U (fa(Y, Z, ϵ, U)),P−1 × Pϵ,U (fa(Y, Z, ϵ, U)))

⩽ KL (P−1 ⊗ Pϵ,U ,P1 ⊗ Pϵ,U )

= KL (P−1,P1) .

Gathering the previous inequalities, we obtain

kl

(
1

3
− 2δ,

4δ

N

)
⩽

1

N/2

∑
a∈G∗

(a)

KL(P−1,P1) .

We recall that ρ2 = ∆2/d. With the explicit computation from Lemma B.14, we have

dσ4

2∆4
kl

(
1

3
− 2δ,

4δ

N

)
⩽

1

N/2

∑
a∈G∗

+

tT = tT .

Finally, we have, using the definition of t and T ,

Eπ,G∗ [τ |Y]2 ⩾
dσ4KN

72∆4
kl

(
1

3
− 2δ,

4δ

N

)
.

As it is true for any π ∈ ΠO, take the inf in the last inequality over π ∈ ΠO and use Lemma B.7 to
get

T ∗(δ, E(∆, θ, σ,N,K, d)) ⩾
σ2

∆2

√
dKN

72
kl

(
1

3
− 2δ,

4δ

N

)
,

this is exactly the inequality of Lemma B.2.
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B.4 Proof of technical lemmas

B.4.1 Proof of Lemma B.4

Let N,K such that N ⩾ 2K. Let θ > 0 such that E(∆, θ, σ,N,K, d) ̸= ∅. We prove Lemma B.4
assuming that K is odd, the other case is simpler and can be proved with the same construction up to
minor details.

Recall the expressions introduced before Lemma B.4, K ′ = K − 1, N ′ = K ′
⌊
N−⌈θN⌉

K′

⌋
and

θ′ = 1/K ′.

Let π being δ-PAC on E(∆, θ, σ,N,K, d), we will use π to construct π′, an algorithm which is
δ-PAC on E(∆, θ′, σ,N ′,K ′, d).

Let ν′ ∈ E(∆, θ′, σ,N ′,K ′, d) be an environment with K − 1 perfectly balanced groups. We run the
algorithm π where we create the data X1, . . . , Xτπ with the following coupling.

• If Aπ
t ∈ [N ′], we sample Xt with the arm Aπ

t from ν′.
• If Aπ

t ∈ [N ′ + 1;N − ⌈θN⌉], we sample Xt with a1, the first arm from ν′.
• If Aπ

t ∈ [N − ⌈θN⌉+ 1, N ], we create Xt = c where c is an arbitrary large constant.

Equivalently, we have created the environment ν where the N ′ first arms are the arms of ν; the
⌈θN⌉ last arms are in an artificial group associated to a Dirac in c, and the remaining arms are
in the same group as a1. The environment ν has a hidden partition G∗

1, . . . , G
∗
K where G∗

1 =
G′

1 ∪ [N ′ + 1;N − ⌈θN⌉], G∗
2, . . . , G

∗
K−1 = G′

2, . . . , G
′
K−1, and G∗

K = [N − ⌈θN⌉+ 1, N ]. By
construction, this environment is in E(∆, θ, σ,N,K, d). In particular, the balancedness is larger than
θ, and the minimal gap is larger than ∆ if c is large enough.

When π reaches τπ, it outputs a partition of [N ], Ĝπ
1 , . . . , Ĝ

π
K , and we output Ĝπ′

as the partition
defined by the restriction to [N ′] of the partition Ĝπ . This is what we call the algorithm π′.

As π is δ-PAC on E(∆, θ, σ,N,K, d), it holds that, with a probability Pπ,ν higher than 1−δ, Ĝ ∼ G∗,
and this implies that Ĝπ′ ∼ G′. Finally, we have Pπ′,ν′(Ĝπ′ ∼ G′) ⩾ Pπ,ν(Ĝ

π ∼ G∗) ⩾ 1 − δ.
This means that π′ is indeed δ-PAC on E(∆, θ′, σ,N ′,K ′, d).

In terms of budget, we have τπ
′
⩽ τπ, because the data provided from the last group are artificially

created by the algorithm. We deduce that

Eπ′,ν′ [τπ
′
] ⩽ Eπ,ν [τ

π] ⩽ sup
ν∈E(∆,θ,σ,N,K,d)

Eπ,ν [τ ] .

Then, we take the sup over ν′ ∈ E(∆, θ′, σ,N ′,K ′, d), and we have

T ∗(δ, E(∆, θ′, σ,N ′,K ′, d)) ⩽ sup
ν′∈E(∆,θ′,σ,N ′,K′,d)

Eπ′,ν′ [τ ] ⩽ sup
ν∈E(∆,θ,σ,N,K,d)

Eπ,ν [τ ] .

Finally, we consider the inf over π δ-PAC on E(∆, θ, σ,N,K, d), which concludes the proof
of Lemma B.4.

B.4.2 Proof of Lemma B.7

Let π′ be a δ-PAC algorithm on E(∆, θ, σ,N,K, d).

We will use the algorithm π′ to construct an algorithm π, which is symmetric and δ-PAC on the class
ESym(G∗, γ) – see Definition B.6. We will use the symmetries in the structure of the environment
ν(G′, µ̄) when µ̄ is distributed with the prior γ⊗L as the main argument to prove that π will have
the wanted properties. To avoid confusion, we index (Aπ′

s )s, τπ
′

and Ĝπ′
for the algorithm π′ and

without ′ for the algorithm π. As explained in the previous remark, the algorithm π just need to
perform well (i.e., being δ-PAC) on the family ESym(G∗, γ), so we can use the offsets and the labels
l∗1, . . . , l

∗
N to construct the algorithm π.

Construction of π
In this paragraph, we describe how we symmetrize a strategy π′ –see Algorithm 3. Let G′ ∈
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{G∗} ∪ {G∗
(a)}a∈G∗

+
being a partition. In order to make the reading easier, we use the notation

l∗a = l∗(a) for all a ∈ [N ]. For any arm a, we denote as g′(a) ∈ {−1, 1} as the label such that the
mean of a is µa = g′(a)µ̄(l∗(a)) + C(l∗(a)), in the environment ν(G′, µ̄), for any µ̄ ∈ Rd.

We need to define the behavior of π when facing the environment ν(G′, µ̄) for any µ̄.

Define S as the set of permutations of [N ] that switch the blocks in G∗, that is to say if κ ∈ S then
for all l ∈ [L], ∃l′ ∈ [L], such that κ(G∗

l ) = G∗
l′ . For any κ ∈ S, κ naturally induces a permutation

of [L] denoted as κ̃ such that for all a ∈ [N ], l∗(κ(a)) = κ̃(l∗(a)).

First, the strategy π uniformly samples a permutation κ in S and a vector χ ∈ {−1, 1}L. From a
rough perspective, the strategy π will then apply the strategy π′ by permuting the blocks using κ and
reversing the means of each block using χ.

Algorithm 3 Symmetrization of π′.

1: Input: ν(G′, µ̄) an environment in ESym(G∗, γ)

2: Output: Ĝπ , partition of [N ]
3: t = 1
4: Take κ ∼ U(S)
5: Take χ ∼ U({−1, 1}L)
6: while t ⩽ τπ

′
(Aπ′

1 , Xπ′

1 , . . . , Aπ′

t−1, X
π′

t−1) do
7: Choose an arm with π′ and get Aπ′

t (Aπ′

1 , Xπ′

1 , . . . , Aπ′

t−1, X
π′

t−1) ∈ [N ].
8: Sample Xπ

t from Aπ
t := κ(Aπ′

t )

9: Create the data Xπ′

t := χ(κ̃(l∗(Aπ′

t )))
[
Xπ

t − C(κ̃(l∗(Aπ′

t )))
]
+ C(l∗(Aπ′

t ))
10: t=t+1
11: Compute Ĝπ′

(Aπ′

1 , Xπ′

1 , . . . , Aπ′

τ , Xπ′

τ ) := Ĝπ′

1 , . . . , Ĝπ′

K

12: return Ĝπ
1 , . . . , Ĝ

π
K := κ(Ĝπ′

1 ), . . . , κ(Ĝπ′

K )

Within the procedure π, we run algorithm π′ with modified data Xπ′

1 , . . . , Xπ′

τ . At time t, the
algorithm π′ chooses to sample the arm Aπ′

t , where the decision is based on the data (Xπ′

s , Aπ′

s )s⩽t−1.
Instead of sampling the arm chosen by π′, the algorithm π samples Xπ

t from the arm Aπ
t := κ(Aπ′

t )

and sends the data Xπ′

t to π′, according to the formula

Xπ′

t = χ(κ̃(l∗(Aπ′

t )))
[
Xπ

t − C(κ̃(l∗(Aπ′

t )))
]
+ C(l∗(Aπ′

t )) ,

where we recall that C(l) is the offset associated to block l. When π′ decides to stop, π also stops;
i.e., τπ(Xπ

1 , A
π
1 , . . . , X

π
τ , A

π
τ ) = τπ

′
(Xπ′

1 , Aπ′

1 , . . . , Xπ′

τ ′ , Aπ′

τ ′ ). Then, π′ outputs a partition Ĝπ′
=

Ĝπ′

1 , . . . , Ĝπ′

K based on the modified data, and π outputs Ĝπ
1 , . . . , Ĝ

π
K := κ(Ĝπ′

1 ), . . . , κ(Ĝπ′

K ).

Lemma B.17. Take κ ∈ S, and χ ∈ {−1, 1}L. For all l ∈ [L], define µ̄κ(l) := µ̄(κ̃(l)). As µ̄ is
sampled according to γ⊗L, then µ̄κ follows the same prior γ⊗L. Define G′(κ, χ) as a partition of
[N ] into 2L groups such that for all (l, g) ∈ [L]× {−1; 1}, then

G′(κ, χ)l,g = {a ∈ [N ]; l∗(a) = l, and g′(κ(a))χ(κ̃(l∗(a))) = g} = κ−1
(
G′

κ̃(l),gχ(κ̃(l))

)
.

Conditionally on κ, χ,µ̄, the modified data Xτ ′

s are distributed according to the probability induced
by the interaction between π′ and the environment ν(G′(κ, χ), µ̄κ), after integration on the prior γ,
we have

Pπ,G′(·|Y, κ, χ) = Pπ′,G′(κ,χ)(·|Y) .

Remark B.18. It is very important to note that, as G′ is a partition with K = 2L groups of the same
size, the partition G′(κ, χ) is also balanced.

Proof of Lemma B.17. Let µ̄ ∈ (Rd)L be a realization of the prior γ⊗L.

When π′ tries to sample the arm a = Aπ′

t , we sample in fact κ(a). Using the Gaussian assumption
on the data, and the expression of the centers of the environment ν(G′, µ̄), it holds that

Xπ
t = g′(κ(a))µ̄(l∗(κ(a))) + C(l∗(κ(a))) + ϵs = g′(κ(a))µ̄(κ̃(l∗(a))) + C(κ̃(l∗(a))) + ϵt ,
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where ϵt ∼ N (0, σ2Id). We used also in the second equality that κ induces a permutation of the
blocks, so that l∗(κ(a)) = κ̃(l∗(a)).

We now decompose Xπ′

t , using the expression defined Line 9 of Algorithm 3. Assuming that
κ̃(l∗(a)) = m ∈ [L], we have

Xπ′

t =χ(m)
[
Xπ

t − C(m)
]
+ C(l∗(a))

=χ(m)
[
g′(κ(a))µ̄(m) + ϵt

]
+ C(l∗(a)) .

We develop and reorganize the terms, and we use the expression µ̄κ(l) = µ̄(κ̃(l)),

Xπ′

t =g′(κ(a))χ(m)µ̄(m) + χ(m)ϵt + C(l∗(a))

=g′(κ(a))χ(m)µ̄κ(l
∗(a)) + χ(m)ϵt + C(l∗(a)) .

As ϵt is symmetric with respect to 0, then ϵ′t := χ(m)ϵt is distributed as a normal distribution
N (0, σ2Id). Besides, the (ϵ′t)t are independent. The arm a appears to π′ to have a mean C(l∗(a)) +
g̃µ̄κ(l

∗(a)), where g̃ = g′(κ(a))χ(κ̃(l∗(a))) ∈ {−1, 1}. It appears then that the data received by π′

are distributed as ν(G′(κ, χ), µ̄κ), where, for all (g, l) ∈ [L]× {−1, 1},
G′(κ, χ)l,g = {a ∈ [N ]; l∗(a) = l, and g′(κ(a))χ(κ̃(l)) = g} ,

which proves the first part of the lemma.

The second expression for G′(κ, χ)l,g is now obtained using the fact that κ permutes the blocks , so
that l∗(κ(a)) = κ̃(l) and also that χ(κ̃(l)) ∈ {−1, 1}.
{a ∈ [N ]; l∗(a) = l, and g′(κ(a))χ(κ̃(l)) = g} ={a ∈ [N ]; l∗(κ(a)) = κ̃(l), and g′(κ(a)) = gχ(κ̃(l))}

=κ−1
(
G′

κ̃(l),gχ(κ̃(l))

)
.

Finally, if µ̄ ∼ γ⊗L, by exchangeability of the law of γ⊗L, and as κ̃ is a permutation of [L], the vector
(µ̄(κ̃(l)))l∈[L] is distributed as (µ̄(l))l∈[L]. We also highlight that the event Y =

⋂
l∈[L]{∆/2 ⩽

∥µ̄(l)∥ ⩽ ∆(β − 1)/2} =
⋂

l∈[L]{∆/2 ⩽ ∥µ̄κ(l)∥ ⩽ ∆(β − 1)/2} remains the same, so that we
have the equality of the laws

Pπ,G′(·|Y, κ, χ) = Pπ′,G′(κ,χ)(·|Y) .

Correction of π
We now deduce that π is δ-PAC on ESym(G∗, γ) –see Definition B.6.

By construction of the algorithm, and with the definition of G′(κ, χ) given in Lemma B.17, we have
conditionally on κ, χ, and µ̄,

Pπ,G′,µ̄(Ĝ
π ∼ G′|κ, χ) = Pπ′,G′(κ,χ),µ̄κ

(
Ĝπ′
∼ G′(κ, χ)

)
.

If µ̄ ∈ Y , then we have also µ̄κ ∈ Y and the environment ν(G′(κ, χ), µ̄κ) is in E(∆, θ, σ,N,K, d).
We recall that π is δ-PAC on E(∆, θ, σ,N,K, d), we then have

Pπ′,G′(κ,χ),µ̄κ

(
Ĝπ′
∼ G′(κ, χ)

)
1Y ⩾ (1− δ)1Y .

The conclusion then follow by integrating over the law of κ, χ, and µ̄ to obtain Pπ,G′(Ĝπ ∼ G′|Y) ⩾
1− δ, and π is indeed δ-PAC on ESym(G∗, γ).

Symmetry of π
We want to prove that π is symmetric as defined in Definition B.6. Take a1, a2 ∈ [N ]2 two arms and
assume that a1 ∈ G′

l1,g1
and a2 ∈ G′

l2,g2
.

First, we recall that Aπ
t = κ(Aπ′

t ) so that,

Nπ
a1
(τ) =

τ∑
s=1

1Aπ
s=a1 =

τ∑
s=1

1κ(Aπ′
s )=a1

= Nπ′

κ−1(a1)
(τ) .
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We now use the expression of the uniform laws that follows κ,χ and Lemma B.17,

Eπ,G′ [Nπ
a1
(τ)|Y] = 1

2L#S
∑
κ∈S

∑
χ∈{−1,1}L

Eπ,G′ [Nπ
a1
(τ)|Y, κ, χ]

=
1

2L#S
∑
κ∈S

∑
χ∈{−1,1}L

Eπ′,G′(κ,χ)[N
π′

κ−1(a1)
(τ)|Y] .

We construct κ′ ∈ S a permutation which switches the blocks of a1 and a2, while switching a1 and
a2, take

∀ϵ ∈ {−1, 1}, κ′(G′
l1,ϵg1) = G′

l2,ϵg2 ; ∀ϵ ∈ {−1, 1}, κ′(G′
l2,ϵg2) = G′

l1,ϵg1 ;

κ′(a1) = a2, κ
′(a2) = a1 , and ∀c ∈ [N ], if l∗(c) ̸∈ {l1, l2}, κ′(c) = c .

The permutation κ′ exists because the groups of G′ have exactly the same size.

We also define χ′ ∈ {−1, 1}L with

χ′(l) = χ(l) if l ̸∈ {l1, l2} , χ′(l1) = (g1g2)χ(l2) , and χ′(l2) = (g2g1)χ(l1) .

Note that κ′ ∈ S. When we consider S is a group of permutation we see that κ′S = S. Moreover,
as the law of χ(1), . . . , χ(L) is exchangeable and symmetric with respect to 0, χ′ and χ follow the
same distribution.

It implies that we can use a change of variable in the sum,

Eπ,G′ [Nπ
a1
(τ)|Y] = 1

2L#S
∑
κ∈S

∑
χ∈{−1,1}L

Eπ′,G′(κ,χ)[N
π′

κ−1(a1)
(τ)|Y]

=
1

2L#S
∑
κ∈S

∑
χ∈{−1,1}L

Eπ′,G′(κ′κ,χ′)[N
π′

(κ′κ)−1(a1)
(τ)|Y] .

Now, for any κ ∈ S, (κ′κ)−1(a1) = κ−1(κ′)−1(a1) = κ−1(a2) because κ′ exchanges a1 and a2.

Then, fix χ and κ and consider the partition G′(κ′κ, χ′). We want to prove that, G′(κ′κ, χ′) =
G′(κ, χ). By definition (Lemma B.17), we have to prove that ∀b ∈ [N ],

g′(κ(b))χ(κ̃(l∗(b))) = g′(κ′κ(b))χ′(κ̃′κ̃(l∗(b))) , (23)

We prove eq. (23).

Take ϵ ∈ {−1, 1} and b ∈ κ−1(G′
l1,ϵg1

), by construction, κ̃′ is the transposition (l1 l2), and we have

χ′(κ̃′κ̃(l∗(b))) = χ′(κ̃′(l1)) = χ′((l1 l2)(l1)) = χ′(l2) = (g1g2)χ(l1) .

Besides, we have χ(κ̃(l∗(b))) = χ(l1). Moreover, κ(b) ∈ G′
l1,ϵg1

and then κ′(κ(b)) ∈ G′
l2,ϵg2

, i.e.,
g′(κ′κ(b)) = ϵg2.

The equality in eq. (23) therefore holds for all b in κ−1(G′
l1,ϵg1

),

g′(κ(b))χ(κ̃(l∗(b))) = ϵg2(g1g2)χ(l1) = ϵg1χ(l1) = g′(κ(b))χ(κ̃(l∗(b))) .

The labels l1 and l2 play the symmetric role, so we also have the equality of eq. (23) for b ∈
κ−1(G′

l2,ϵg2
). Finally, if l∗(κ(b)) ̸∈ {l1, l2}, then by construction of χ′ and κ′, we have κ′(κ(b)) =

κ(b) and χ′(κ̃′κ̃(l∗(b))) = χ′(κ̃(l∗(b))) = χ(κ̃(l∗(b))).

eq. (23) being proved, we have finally,

Eπ,G′ [Nπ
a1
(τ)|Y] = 1

2L#S
∑
κ∈S

∑
χ∈{−1,1}L

Eπ′,G′(κ′κ,χ′)[N
π′

(κ′κ)−1(a1)
(τ)|Y]

=
1

2L#S
∑
κ∈S

∑
χ∈{−1,1}L

Eπ′,G′(κ,χ)[N
π′

κ−1(a2)
(τ)|Y]

=Eπ,G′ [Nπ
a2
(τ)|Y] .
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This proves that Eπ,G′ [Nπ
a1
(τ)|Y] is independent of a1 and equal to Eπ,G′ [τ |Y]/N . Now, using the

same method as above with κ′ = (a ba), we also deduce that Eπ,G∗
(a)

[τ |Y] = Eπ,G∗ [τ |Y] does not
depend on a.

This proves that π is symmetric as defined in Definition B.6.

We have proved that π is δ-PAC and symmetric on ESym(G∗, γ). It remains to conclude for the proof
of the lemma.

Budget of π By construction of the algorithm, we have

Eπ,G∗ [τπ|Y, κ, χ] = Eπ′,G∗(κ,χ)[τ
π′
|Y] ⩽ sup

ν∈E(∆,θ,σ,N,K,d)

Eπ′,ν [τ
′] ,

since, on the event Y , we have ν(G∗(κ, χ), µ̄) ∈ E(∆, θ, σ,N,K, d). We now use the fact that π is
in ΠSym(δ, ESym(G∗, γ)), so that

T ∗
Sym(δ, ESym(G∗, γ)) ⩽ Eπ,G∗ [τ |Y] ⩽ sup

ν∈E(∆,θ,σ,N,K,d)

Eπ′,ν [τ
′] .

Finally, we prove Lemma B.7 by taking the inf over π′ ∈ Π(δ, E(∆, θ, σ,N,K, d).

B.4.3 Proofs from Appendix B.3

Proof of lemma B.11. Let l ∈ [L] and define Z = ∥µ̄(l)∥2/ρ2. We have µ̄(l) ∼ N (0, ρ2) with
ρ2 = ∆2/d, then Z ∼ χ2(d) is a chi-square distribution with d degrees of freedom. We apply the
Laurent-Massart inequality with x = (3/8)2d – see E.2,

P

(
∥µ̄(l)∥ < ∆

2

)
= P

(
Z − d <

∆2

4ρ2
− d

)
= P

(
Z − d < −2

√
d(3/8)2d

)
⩽ exp(−(3/8)2d) .

Then, we notice that β = 4 satisfies (β − 1)2/4 ⩾ 1 + 2(3/8)2 + 2
√

(3/8)2, we have

P

(
∥µ̄(l)∥ > (β − 1)

∆

2

)
=P

(
Z − d > ((β − 1)2/4− 1)d

)
⩽P

(
Z − d > 2

√
d(3/8)2d+ 2(3/8)2d

)
.

Now, we use the other side of Laurent-Massart inequality with x = (3/8)2d to obtain

P

(
∥µ̄(l)∥ > (β − 1)

∆

2

)
⩽ exp(−(3/8)2d) .

We recall that we assumed that d ⩾ (8/3)2 log(K/δ), and so exp(−(3/8)2d) ⩽ δ/K. A union
bound on L = K/2 ensures that lemma B.11 holds.

Proof of Lemma B.15. Let a ∈ G∗
+ be an arm labelled by (l∗a, 1) in G∗ and let Y,Z ∼ P−1 –

see Definition B.13. We fix an algorithm π for the active clustering problem on E(G∗, γ2). The
algorithm π is characterized by three families of measurable functions (πs, τs, fs)s⩾1 where for all
s ⩾ 1

• As = πs((A1, X1), . . . , (As−1, Xs−1);Us)

• τ = min{t ⩾ 1 ; τs((A1, X1), . . . , (As, Xs);Us) = 1}

• ĝ = fτ ((A1, X1), . . . , (Aτ , Xτ );Uτ )

Here, the sequence (Us) captures the fact that π can use some external randomness to make decisions.
We define Ns,a =

∑s
u=1 1{Au∈{a,ba}} and Ms =

∑s
u=1 1{

Au∈G∗
l∗a

}. We consider the event Ba on

which the inequalities Nτ,a = Na(τ) +Nba ⩽ ta = t and Mτ ⩽ Ml∗a(τ) ⩽ Ta = T holds. Then,
the data collected (X1, . . . , Xτ ) when π interacts with ν(G∗

(a), µ̄) and µ̄ ∼ γ⊗L can be constructed
with Y,Z, ϵ, U using the following coupling.
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First, we create the observations from arms that belongs to a block different than the one of a, using
the variables (ϵu)u⩾1. We sample once and for all (L− 1) centers by defining for any l ∈ [L] \ {l∗a},

µ̄(l) = ρϵl ,

we observe that (µ̄)l ̸=l∗a
) ∼ γ

⊗(L−1)
2 .

Then, for any s ⩾ 1, if As ∈ G∗
l with l ̸= l∗a, we can create Xs with the expression

Xs = C(l) + gµ̄(l) + σϵs+L .

Now, for s ⩾ 1, when As ∈ G∗
l∗a

, we use Y,Z,

• Xs = C(l∗a) + YNs,a
if As = a

• Xs = C(l∗a)− YNs,a
if As = ba

• Xs = C(l∗a) + g∗As
ZMs

if As ∈ G∗
l∗a
\ {a, ba}

We highlight that the law of Y, Z is a marginal distribution that captures the fact that the data obtained
from the block G∗

l∗a
are obtained using the prior γ for µ̄(l∗a).

From there, it is possible to give (explicitly) a function fa measurable with respect to Y, Z, ϵ, U such
that Aa ∩ Ba = f(Y, Z, ϵ, U) where the equality holds in law with respect to Pπ,G∗

(a)
(integrated

with respect to µ̄). If we use the same measurable function fa with X,Y ∼ P1, then Aa ∩ Ba =
f(Y,Z, ϵ, U) where the equality holds with respect to Pπ,G∗ .

Proof of Lemma B.16 . We recall that π is a δ-PAC algorithm for the problem of active clustering with
an oracle. We recall that Aa = {Ĝ ∼ G∗

(a)}. By construction of the partitions G∗
(a), these partitions

are not equivalent (for the relation ∼). We highlight that this is due to the fact that all the groups
contain more than two arms. The events (Aa)a are disjoints, and ⊔a∈G∗

+
(Aa ∩Ba) ⊂ {Ĝ ̸∼ G∗}.

Now, we have directly

Pπ,G∗(∪a∈[N ]\SAa ∩Ba) ⩽ Pπ,G∗(Ĝ ̸∼ G∗) .

By definition, π is δ-PAC on ESym(G∗, γ2), we have

Pπ,G∗(Ĝ ̸∼ G∗) = Pπ,G∗(Ĝ ̸∼ G∗|Y)Pγ⊗L(Y) + Pπ,G∗(Ĝ ̸∼ G∗|Yc)Pγ⊗L(Yc)

⩽ δ + Pγ⊗L(Yc) ⩽ 2δ

For the second point of the lemma, we fix a ∈ G∗
+.

Pπ,G∗
(a)

((Aa ∩Ba)
c) = Pπ,G∗

(a)
(Ac

a ∪Bc
a|Y)Pγ⊗L(Y) + Pπ(A

c
a ∪Bc

a|Yc)Pγ⊗L(Yc)

⩽ Pπ,G∗
(a)

(Ac
a ∪Bc

a|Y) + Pγ⊗L(Yc)

⩽ Pπ,G∗
(a)

(Ac
a|Y) + Pπ,G∗

(a)
(Bc

a|Y) + Pγ⊗L(Yc) .

Now, π is δ-PAC which implies that

Pπ,G∗
(a)

(Ac
a|Y) = Pπ,G∗

(a)
(Ĝ ̸∼ G∗

(a)|Y) ⩽ δ .

For the second term, we use Markov inequality with respect to the distribution Pπ,G∗
(a)

(·|Y). We
recall that π satisfies a symmetry property and that t = ta = 3Eπ,G∗

(a)
[Na(τ) + Nba(τ)|Y] and

T = Ta = 3Eπ,G∗
(a)

[Ml∗a
(τ)|Y]. We also recall that Ba = {Na(τ)+Nba(τ) ⩽ ta}∩{Ml∗a

(τ) ⩽ Ta}.
We have with Markov inequality

Pπ,G∗
(a)

(Bc
a|Y) ⩽ Pπ,G∗

(a)
(Na(τ) +Nba(τ) > ta|Y) + Pπ,G∗

(a)
(Ml∗a

(τ) > Ta|Y) ⩽
1

3
+

1

3
=

2

3
.

This concludes the proof of Lemma B.16.

27



Proof of Lemma B.14. Let g ∈ {−1, 1} and take Pg defined in Definition B.13 with the Gaussian
prior. We have µ ∼ N (0, ρ2Id) and conditionally on µ,

• Y1, . . . , Yt, Z1, . . . , ZT are independent;

• ∀r ∈ [t], Yr ∼ N (gµ, σ2Id)

• ∀s ∈ [T ], Zr ∼ N (µ, σ2Id).

First, Y1, . . . , Yt, Z1, . . . , ZT have i.i.d coordinates and so has µ. Then, it is enough to
prove Lemma B.14 in dimension 1. The general case will be obtained by multiplying by d the result for
dimension 1. We assume then that d = 1, and we want to prove that KL(P−g,Pg) =

2tTρ4

σ4+σ2ρ2(T+t) .

Now, we specify the distribution of the vector Y, Z. As µ follows a Gaussian distribution, the vector
(X,Y ) = Y1, . . . , Xt, Z1, . . . , ZT is a Gaussian vector.

With the law of total variance, we have Y,Z ∼ N (0,Σg) where Σg is the covariance (square) matrix
of size (T + t). The matrix Σg is defined as follows:

Σg = σ2It+T + ρ2
(

Jt,t gJt,T
gJT,t JT,T

)
=: σ2I(t+T ) + ρ2Hg ,

where I(t+T ) is the identity matrix of size (T + t), and we define Jt,T being the rectangle matrix of
size t× T where all entries are equal to 1.

We observe that Hg has a particular shape, in particular, H2
g = (T + t)Hg. As a consequence, it is

easy to compute its inverse. We have:

Σ−1
g =

1

σ2
I(t+T ) +

1

ρ̃2
Hg ;

with ρ̃2 = −σ2

ρ2 (σ
2 + ρ2(t+ T )) .

Now,

Σ−1
g Σ−g−I(T+t) =

(
1

σ2
I(T+t) +

1

ρ̃2
Hg

)(
σ2I(T+t) + ρ2H−g

)
−I(T+t) =

ρ2

σ2
H−g+

σ2

ρ̃2
Hg+

ρ2

ρ̃2
HgH−g ,

where we compute

HgH−g = (t− T )

(
Jt,t −gJt,T
gJT,t −JT,T

)
.

Finally, with the formula for the KL divergence between two multidimensional Gaussian distribution,
we have

KL(P−g,Pg) =
1

2

(
log
|Σg|
|Σ−g|

+ Tr(Σ−1
g Σ−g − I(T+t)) + 0Σ−1

g 0

)
=

1

2

(
ρ2

σ2
Tr(H−g) +

σ2

ρ̃2
Tr(Hg) +

ρ2

ρ̃2
Tr(HgH−g)

)
=

1

2

(
ρ2(t+ T )

σ2
− ρ2(T + t)

σ2 + ρ2(T + t)
− ρ4(T − t)2

σ2(σ2 + ρ2(t+ T ))

)
=

1

2

(
ρ4((t+ T )2 − (T − t)2)

σ2(σ2 + ρ2(T + t))

)
=

2tTρ4

σ4 + σ2ρ2(T + t)
.

This concludes the computation of KL(P−g,Pg).

C Analysis of ACB

In this section, we establish that ACB 1 is δ-PAC, and we control its budget thereby proving the part
of Theorem 4.1 pertaining to ACB.
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Theorem C.1. Let δ > 0. Let ∆ > 0, θ > 0 be the two parameters used in the design of ACB, such
that E(∆, θ, σ,N,K, d) ̸= ∅. The ACB algorithm (1) is δ-PAC on E(∆, θ, σ,N,K, d).
Moreover, define τACB for the budget of ACB(δ,∆, θ). There exist two universal constants c and c′

(with c small), independent of all the parameters ∆, θ, σ,N,K, d and such that for any environment
ν in E(∆, θ, σ,N,K, d), if we assume that log(K)

θ ⩽ N , then EACB,ν [τACB ] ⩽ cN + c′A, and
τACB ⩽ cN + c′(A+B) almost surely, where

A =
σ2

∆2

[
N log (N/δ) +

√
dNK log (N/δ) +

√
d
log(K)

θ

]
B =

log(K/δ)

θ
+

σ2

∆2

1

θ
log

(
K

δ

)[√
d+ log log

(
1

θδ

)]
.

In fact, Theorem C.1 is a straightforward consequence of the two following lemmas that separately
consider the two sub-routines SRI and ADC.
Lemma C.2 (Analysis of SRI). Let δ > 0 be fixed. Let ∆ > 0 and 1/K > θ > 0 and let
Ŝ =SRI(δ,∆, θ) be the output of Algorithm SRI applied to an environment in E(∆, θ, σ,N,K, d).
Let τSRI be the number of samples used by the SRI routine to compute Ŝ. With probability higher
than 1− δ, it holds that Ŝ contains exactly one arm by group.

Moreover, there exist two universal constant c and c′ (independent of all the parameters) such that
almost surely, we have

τSRI ⩽c
1

θ
log

(
K

δ

)
+ c′

σ2

∆2

1

θ
log

(
K

δ

)[
log(K) +

√
d+ log log

(
1

θδ

)]
. (24)

Also, the expected budget satisfies

Eν [τSRI ] ⩽ c
log(K)

θ
+ c′

σ2

∆2

[
log(K)

θ
log

(
1

θδ

)
+

log(K)

θ
+

√
dK

log(K)

θ
log

(
K

δ

)]
.

(25)

Lemma C.3 (Analysis of ADC). Let ν be an environment in E(∆, θ, σ,N,K, d). Let S be a set of
K arms containing exactly one arm belonging to each of the K groups. Let Ĝ =ADC(δ,∆, S) be
the output of the ACD routine, and τADC be the budget of ADC, i.e., the number of samples used to
compute Ĝ. First, with probability larger than 1− δ, Ĝ is a perfect clustering, that is

PADC,ν(Ĝ ∼ G∗) ⩾ 1− δ .

Second, there exists a universal constant c such that

τADC ⩽ 2N + c
σ2

∆2
N log

(
N

δ

)
+ c

σ2

∆2

√
dKN log

(
N

δ

)
. (26)

As a warm-up, we discuss the intuition behind the SRI routine in Appendix C.1. Then, we prove
Lemma C.2 in Appendix C.2. The proofs of some technical lemmas are postponed to Appendix C.3.
Finally, we establish Lemma C.3 in Appendix C.4.

C.1 Discussion of the SRI routine

In this section, we fix ∆ > 0, and θ > 0 the two parameters used in the design of the SRI routine.
We also fix δ > 0 and σ > 0. We consider then the algorithm SRI = SRI(δ,∆, θ), where the
parameters of the algorithm U , (ns)s, nmax and r are computed with σ, ∆, θ and δ, using the
expressions from Remark C.4. We denote by Pν for the probability induced by SRI(δ,∆, θ) and an
environment ν.

Let ν be an environment with a hidden partition G∗ = G∗
1, . . . , G

∗
K and the centers of the

groups µ(1), . . . , µ(K), with σ-subGaussian noises Assumption 2.1. We associate to G∗ the la-
bels (k(a))a∈[N ] such that the mean of a is µa = µ(k(a)) and a ∈ G∗

k(a). We recall that ∆∗ denotes
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the minimal gap of ν and θ∗ is the proportion of arms in the smallest group. We want to study how
SRI = SRI(δ,∆, θ) behaves when it interacts with the environment ν. For now, ν denotes any
environment in the hidden partition model, with subGaussian noises of parameters σ – see Assump-
tion 2.1 and Assumption 2.3. In this subsection, in particular, we do not assume anything about ∆∗
and θ∗, unless we specify the contrary.

Step 1: explanation and notation.

In the algorithm, there are some parameters defined in (9)–(11) that we recall here.
Remark C.4. For any s ⩾ 1,

U =

⌈
8

θ
log

(
8K

δ

)⌉
,

r = ⌈log2(log(4U/δ))⌉ ,

ns =

⌈
c1

σ2

∆2
(2s + log(12K))

⌉
∨
⌈
c2

σ2

∆2

√
d(2s + log(6))

⌉
,

nmax = nr ∨
⌈
c3

σ2

∆2

√
d log(2K)

⌉
,

s0 = r ∧min{s ⩾ 1;ns ⩾ 2} ,

where the universal constants c1, c2, c3 are respectively defined by c1 = 322 ∨ 8cHW , c2 =

16
√
cHW /2 ∨ 32

√
2, and c3 = 32

√
2 where cHW is the constant of Hanson-Wright inequality –see

Appendix E. Also, the maximum budget Tmax (12) is defined as

Tmax = 2K

(
nmax +

r∑
s=s0+1

ns

)
+ 2Uns0 + 2U

r∑
s=s0+1

ns

2s−4
,

and thereby only depends on θ, ∆, K, and δ.

We refer as an epoch of the algorithm, the successive passage in the u loop in the SRI routine. We
introduce some notation, taking into account the dependency on u.

At the beginning of the u-th epoch, the arm au is taken randomly and uniformly on the set [N ] of arms
(independently of everything else). We denote by Su for the set of arms selected as representatives
before the u-th epoch. Before the first epoch, we initialise S1 = {a0}. During the u-th epoch, the
algorithm decides to add au to Su or not by performing a sequence of tests – see Line 6 to 11 in SRI
routine. If au is added to Su, it computes (Line 11) two empirical means µ̂au

and µ̂′
au

using 2nmax

samples.

We say that

• the arm au is bad if there exists a ∈ Su such that ∥µau
− µa∥ ⩽ ∆/4;

• the arm au is good if for any arm a ∈ Su then ∥µau
− µa∥ ⩾ ∆.

Remark C.5. If ∆ ⩾ ∆∗, it is possible that some arms are neither good nor bad. Nonetheless, if
∆∗ ⩾ ∆, then all arms from ν are good or bad. Moreover, in this case, the arm au is bad if and only
if au is already represented in Su.

We want to add au to Su if au is good, but we allow the algorithm to reject some good arms if it does
not affect the budget (up to a numerical constant). Anyway, we want to reject every bad arm, and
reject them as quickly as possible.

For s ⩾ 1, we define as ϕu
s for the output of REPRESENTEDTEST(au, (µ̂b, µ̂

′
b)b∈Su

,∆, ns) computed
during the u-th epoch and for the s-th step. We call it the test (u, s). We further write,

ϕu
s := 1{

mina∈Su ⟨µ̄u,s−µ̂a,µ̄′
u,s−µ̂′

a⟩⩽∆2

2

} ,

where µ̄u,s and µ̄′
u,s denotes the two empirical means of arm au computed with 2ns samples, when

REPRESENTEDTEST(au, (µ̂b, µ̂
′
b)b∈Su

,∆, ns) is called. Remark that these empirical means are only
used for the test (u, s).
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We start with some s0 equal to r ∧ min{s ⩾ 1;ns ⩾ 2} so that ns strictly increases at each
iteration s → s + 1. If, at some test s0 ⩽ s ⩽ r, it holds that ϕu

s = 1, then au is rejected and
considered as a bad arm (Line 8). If au is rejected, we denote by τu for the time of rejection of au,
τu := min{s0 ⩽ s ⩽ r ;ϕu

s = 1}. If for all s = s0, . . . , r, ϕu
s is equal to zero (False) (condition in

Line 9), then au is added to Su (Line 10) and considered as a new representative. If au is not rejected,
τu = +∞ by convention. The empirical mean µ̂au

(resp. µ̂′
a) denotes the estimator of µau

computed
once and for all when au is added to Su (Line 11), and used in every test that follows.

Remark C.6. In REPRESENTEDTEST, the condition ⟨µ̄u,s− µ̂a, µ̄
′
u,s− µ̂′

a⟩ ⩽ ∆2

2 is natural, because
Eν [⟨µ̄u,s− µ̂a, µ̄

′
u,s− µ̂′

a⟩] = ∥µau
−µa∥2, which is equal to zero if a and au are in the same group,

and is larger than ∆∗ else. This is a benefit of sub-sampling.

Step 2: Control the probability of rejecting a good arm or adding a bad arm to S

In order to use the subGaussian noise assumption– see assumption 2.1, we define ϵa =
√
nmax

σ (µ̂a −
µa) and ϵu,s =

√
ns

σ (µ̄u,s − µau) (and respectively ϵ′u,s, ϵ′a). We refer to corollary E.4 for concentra-
tion inequalities on these variables.

With this notation, we develop the statistic ⟨µ̄u,s − µ̂a, µ̄
′
u,s − µ̂′

a⟩ as follows

〈
µ̄u,s − µ̂a, µ̄

′
u,s − µ̂′

a

〉
= ∥µau

− µa∥2 +
√
2σ

√
nmax

〈
ϵa + ϵ′a√

2
, µa − µau

〉
+

σ2

nmax
⟨ϵa, ϵ′a⟩

− σ2

√
nmaxns

⟨ϵu,s, ϵ′a⟩ −
σ2

√
nmaxns

〈
ϵ′u,s, ϵa

〉
(27)

+

√
2σ
√
ns

〈
ϵu,s + ϵ′u,s√

2
, µau − µa

〉
+

σ2

ns

〈
ϵu,s, ϵ

′
u,s

〉
.

We will use concentration inequalities in order to control all deviations of
〈
µ̄u,s − µ̂a, µ̄

′
u,s − µ̂′

a

〉
around its mean ∥µau − µa∥2.
Remark C.7. In order to estimate the means of the representatives added to S, we compute once
and for all (µ̂a, µ̂

′
a) when arm a is added to S (Line 11) of the SRI routine. It implies that the test

statistics (ϕu
s )s,u are not independent. This is why we condition on the event Y defined below, which

controls once and for all the deviation of the random variables ϵa and ϵ′a.

We define Y as the event:

Y =

{
∀a ∈ Ŝ,∀k ∈ [K] \ {k(a)},

∣∣∣∣〈ϵa + ϵ′a√
2

,
µa − µ(k)

∥µa − µ(k)∥

〉∣∣∣∣ ⩽ 1

16

√
∆2

2σ2

√
nmax

}
⋂{

∀a ∈ Ŝ, |⟨ϵa, ϵ′a⟩| ⩽
1

16

∆2

σ2
nmax

}
(28)⋂{

∀a ∈ Ŝ, ∥ϵ′a∥2 ∨ ∥ϵa∥2 − E[∥ϵa∥2] ⩽ cHW log(12K/δ) ∨
√
cHW d log(12K/δ)

}
,

where cHW is the universal constant from Hanson-Wright inequality (Lemma E.3).

Lemma C.8. For any environment ν, we have,

Pν(Y) ⩾ 1− δ/4 .

We leave the proof of this technical lemma to Appendix C.3; it is a consequence of the concentration of
subGaussian random variables, in particular Hanson-Wright inequality (lemma E.3 and corollary E.4).
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We now give an auxiliary lemma that will be used in the rest of the proof as an elementary brick. For
every test (u, s), we define the event Zu,s as

Zu,s =

{
∃k ∈ [K] \ {k(au)} ;

∣∣∣∣〈ϵu,s + ϵ′u,s√
2

,
µau
− µ(k)

∥µau − µ(k)∥

〉∣∣∣∣ ⩾ 1

16

∆

σ

√
ns

2

}
⋃{∣∣〈ϵu,s, ϵ′u,s〉∣∣ ⩾ 1

16

∆2

σ2
ns

}
(29)

⋃{
∃a ∈ Ŝ ; |⟨ϵu,s, ρ′a⟩|+

∣∣〈ϵ′u,s, ρa〉∣∣ ⩾ 1

4

∆2

σ2

√
nsnmax

4d+ cHW l ∨
√
cHW dl

}
,

with l = log(12K/δ) and cHW is the constant from Lemma E.3.

Lemma C.9. The sequence of events (Zu,s)u⩾1,s⩾s0 satisfies four properties.

1. Conditionally on the random directions (ρa, ρ′a)a :=
(

ϵa
∥ϵa∥ ,

ϵ′a
∥ϵ′a∥

)
a
, with a ∈ Ŝ the events

Zu,s are independent (for all test (u, s)).

2. For all u ⩾ 1 and ∀s0 ⩽ s ⩽ r, the inclusion Y ∩ {au is good and ϕu
s = 1} ⊂ Zu,s holds.

3. For all u ⩾ 1 and ∀s0 ⩽ s ⩽ r, the inclusion Y ∩ {au is bad and ϕu
s = 0} ⊂ Zu,s also

holds.

4. Finally, we have ∀u ⩾ 1 and ∀s0 ⩽ s ⩽ r, Pν(Zu,s) ⩽ exp(−2s).

These results are important to prove that the SRI routine actually rejects bad arms and add good arms
to S. We recall that ϕu

s = 1 implies that the test (u, s) would reject au.

Sketch of proof. The terminology bad and good was introduced in the previous paragraph. Let u ⩾ 1
and s0 ⩽ s ⩽ r. The variables (ϵu,s, ϵ′u,s) are mutually independent (for any test (u, s)), and the
event Zu,s is measurable with respect to

(
(ρa, ρ

′
a)a∈Ŝ , ϵu,s, ϵ

′
u,s

)
, the first point of Lemma C.9 is

clear.

The construction of the event Zu,s follows from the decomposition in eq. (27). We notice that if
the event Y holds, the estimation of all centers (µa, µ

′
a) for a in Ŝ are concentrated around the true

centers. The points two and three follow from this observation. Moreover, the deviation of µ̄u,s

around µau
are subGaussian, the point 4 will follow from subGaussian concentration inequalities.

We postpone the proof of this result to Appendix C.3.

Now, in the next lemma, we prove that r is large enough to ensure that, within the procedure, every
bad arm is rejected with large probability.

Lemma C.10. Recall that r = ⌈log2(log(4U/δ))⌉. If Y holds, then, with probability higher than
1− δ/4, we do not add bad arms to S, i.e.,

Pν

(
{∃a, b ∈ Ŝ , ∥µa − µb∥ ⩽ ∆/4} ∩ Y

)
⩽

δ

4
.

Proof. Within the procedure, the algorithm picks at most U arms (without counting a0) – see Line 4
in SRI routine. If there exists a, b ∈ Ŝ such that ∥µa − µb∥ ⩽ ∆/4, it means that there exists an
epoch 1 ⩽ u ⩽ U , where the last test statistic ϕu

r is equal to zero, although au is bad. If the events Y
holds, using the third point of Lemma C.9, the event Zu,r holds.

In terms of probability, with a simple union bound, we have

Pν

(
{∃a, b ∈ Ŝ , ∥µa − µb∥ ⩽ ∆/4} ∩ Y

)
⩽ Pν({∃1 ⩽ u ⩽ U , au is bad , ϕu

r = 0} ∩ Y)

⩽
U∑

u=1

Pν(Zu,r) .
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We recall that the probability of Zu,r is smaller than exp(−2r), and we conclude with the expression
of r.

Pν

(
{∃a, b ∈ Ŝ , ∥µa − µb∥ ⩽ ∆/4} ∩ Y

)
⩽ U exp(−2r) ⩽ δ

4
.

C.2 Proof of Lemma C.2

Step 3: SRI is δ-PAC

For all epochs u ⩾ 1 and s0 ⩽ s ⩽ r, we denote Hs,u :=

u−1∑
v=1

1{s⩽τv⩽r} as the number of arms that

are rejected with a time of rejection larger than s within the epochs 1, . . . , u− 1. We highlight that
Hs0,u is the total number of arms rejected before epoch u.

Now, we define M = inf {u ⩾ 1; |Su| = K or u > U or Budget > Tmax} as the stopping time (i.e.,
the number of epochs) of SRI. It corresponds to the number of arms taken randomly from [N ],
(namely a0, . . . , aM−1) to build the set Ŝ. When M is reached, SRI outputs Ŝ = SM , whether or
not it contains K arms.

We will prove that, with probability higher than 1− δ, we have, on E(∆, θ, σ,N,K, d), we will have
|SM | = K and SM contains each representative of each cluster.

Now, assume that θ∗ ⩾ θ and ∆∗ ⩾ ∆. We use Appendix C.1 to prove that the SRI routine outputs a
set with exactly one arm by group when it interacts with the environment ν ∈ E(∆, θ, σ,N,K, d).

First, we define

X :=

r⋂
s=s0+1

{Hs,M <
1

2s−4
U} . (30)

The definition (12) of Tmax ensures that, on the event X , the stopping condition of the SRI routine
reduces to the condition {|Su| = K} ∪ {u > U} and then M = (U + 1) ∧min{u ⩾ 1; |Su| = K}.
It turns out that the event X has a large probability when it is intersected with Y .

Lemma C.11. Let 1 + s0 ⩽ s ⩽ r and recall that Hs,M = #{u ∈ [|1;M − 1|], s ⩽ τu ⩽ r}. It
holds that

Pν

(
{Hs,M ⩾

1

2s−4
U} ∩ Y

)
⩽ exp(−U/2) . (31)

This implies that

Pν(Y ∩ X c) ⩽
δ

8
.

Proof of Lemma C.11. We start with the first statement of Lemma C.11, take s such that s0 < s ⩽ r.

If s = 1, 2 or 3, the inequality is trivial because Hs,M ⩽ U , we assume that s > 3 ∨ s0. Recall that
ν ∈ E(∆, θ, σ,N,K, d), so that all arms are either good or bad. By definition of τu, if s ⩽ τu ⩽ r, it
means that at some test t ∈ [s, r], ϕu

t = 1 but ϕu
t = 0 for t < s. Moreover, each arm is either good or

bad because ∆∗ ⩾ ∆. The following inclusion holds then,

{s ⩽ τu ⩽ r} ∩ Y =({s ⩽ τu ⩽ r} ∩ {au is good } ∩ Y)
⊔

({s ⩽ τu ⩽ r} ∩ {au is bad } ∩ Y)

⊂ (∪s⩽t⩽r{ϕu
t = 1} ∩ {au is good} ∩ Y)

⊔(
{ϕu

s−1 = 0} ∩ {au is bad} ∩ Y
)

.

We use the points 2 of Lemma C.9 to get the inclusion {ϕu
t = 1} ∩ {au is good} ∩ Y ⊂ Zu,t

valid for any t ∈ [s, r]. Using the point 3 of the same lemma with s − 1 ⩾ s0, we have also
{ϕu

s−1 = 0} ∩ {au is bad} ∩ Y ⊂ Zu,s−1. Then,

{s ⩽ τu ⩽ r} ∩ Y ⊂
⋃

s−1⩽t⩽r

Zu,t , (32)
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and we recall that the events (
⋃

s−1⩽t⩽r Zu,t)u⩾1 are independent according to Lemma C.9 (if we
condition on the random directions (ρa, rho′a)a). Now, we use a union bound on t and the bound
Pν(Zu,t) ⩽ exp(−2t) valid for any t ∈ [s0, r], and we have,

Pν

 ⋃
s−1⩽t⩽r

Zu,t

 ⩽ exp(−2s−2) .

From the inequality Hs,M =
∑M−1

u=1 1{s⩽τu⩽r} ⩽
∑U

u=1 1{s⩽τu⩽r}, we deduce that Hs,M1Y is
stochastically dominated by B(U, qs) where qs := exp(−2s−2).

We use Chernoff bound with α ⩾
√
qs, we have

Pν (Hs,M1Y ⩾ (1 + α/qs)qsU) ⩽

[
eα/qs

(1 + α/qs)1+α/qs

]qsU
=exp

[
αU
(
1− log(1 + α/qs)(1 + qs/α)

)]
=(1 + α/qs)

−αU/2 exp[αU(1− log(1 + α/qs)/2)− Uqs log(1 + α/qs)] .

As α ⩾
√
qs and s ⩾ 4, we have α

qs
⩾ 1√

qs
= exp(2s−3) ⩾ e2−1 and then 1−log(1+α/qs)/2 ⩽ 0.

It follows that

Pν (Hs,M1Y ⩾ 2αU) ⩽(1 + α/qs)
−αU/2

⩽(1 + 1/
√
qs)

−αU/2

⩽ exp

(
−αU

2
2s−3

)
= exp(−αU2s−4) .

Finally, taking α = 1/2s−3 ⩾ exp(−2s−3) =
√
qs, we deduce the first result of Lemma C.11

Pν

(
{Hs,M ⩾

1

2s−4
U} ∩ Y

)
⩽ Pν

(
Hs,M1Y ⩾

1

2s−4
U

)
⩽ exp(−U/2) .

Directly,

Y ∩ X c =

r⋃
s=1

Y ∩ {Hs,M ⩾
1

2s−4
U} ,

then, we use the first part of the lemma and a union bound,

P (Y ∩ X c) ⩽ r exp(−U/2) ⩽ δ/8 ,

where we conclude with the expression of U ⩾ 8
θ log

(
8K
δ

)
⩾ 2 log

(
8r
δ

)
. The last inequality follows

from the expression of r.

Now, we study the probability of adding K arms to S, before reaching the maximum number of
epochs U .

Lemma C.12. Recall that Ŝ denotes the output of SRI, consider a group G∗
k, it holds that

Pν({Ŝ ∩G∗
k = ∅} ∩ {∀a, b ∈ Ŝ, µa ̸= µb} ∩ Y ∩ X ) ⩽ 2 exp

(
−Uθ

8

)
.

Proof of Lemma C.12. Let k ∈ [K], we study the event {Ŝ ∩G∗
k = ∅}, event where the group G∗

k is
not represented in Ŝ (the output of the SRI routine). We use here the assumption that the groups are
nonempty. If Ŝ contains arms from different groups but no arm from the group G∗

k, it implies that
|Ŝ| < K and then, if the event X also holds, the algorithm has passed every epochs from u = 1 to U ,
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i.e., M = U + 1. In particular, the algorithm rejected every arm from G∗
k ∩ {a1, . . . , aU}. We have

the inclusion between events,

{Ŝ ∩G∗
k = ∅} ∩ {∀a ̸= b ∈ Ŝ, µa ̸= µb} ∩ X ⊂

⋂
u∈Bk

{au rejected} ,

where Bk := G∗
k ∩ {a1, . . . , aU} and denote Xk := |Bk|. As {a1, . . . , aU} are i.i.d and uniform on

[N ] then Xk is binomial with parameters U and θk = |Gk|/N ⩾ θ∗ ⩾ θ. Using Hoeffding’s bound
and taking α ∈ (0, 1) to be specified later, it holds that

Pν(Xk ⩽ θU(1− α)) ⩽ exp(−2α2Uθ) . (33)

Then, as ∆∗ ⩾ ∆, the arms in Gk ∩ {a1, . . . , aU} are good until one of them is added to S. In
particular, if none are added to S, they are all good. We then have

{|Ŝ| ∩G∗
k = ∅} ∩ {∀a ̸= b ∈ Ŝ, µa ̸= µb} ∩ Y ∩ X ⊂

⋂
u∈Bk

{au good and rejected} ∩ Y .

If au is rejected, it means that ϕu
s = 1 for some s0 ⩽ s ⩽ r, we then have the inclusion

{au is good and rejected} ⊂
⋃

s⩾s0
{au is good and ϕu

s = 1}. According to the second point
of Lemma C.9, we have {au is good and rejected} ∩ Y ⊂ ∪s⩾s0Zu,s. We denote Zu = ∪s⩾s0Zu,s.

In terms of probability, we have Pν (∩u∈Bk
{au rejected} ∩ Y) ⩽ Pν (∩u∈Bk

Zu).

Then, we also have Pν(Zu,s) ⩽ exp(−2s) for any s ∈ [s0, r], and with a union bound, Pν(Zu) ⩽
1/2. Moreover, with the first point of Lemma C.9, we deduce that the events (Zu)u are independent
(if we condition on ρa, ρ

′
a).

If Xk > θU(1− α) and using the independence of the events (Zu)u, we have

Pν

(
{Xk > θU(1− α)} ∩

( ⋂
u∈Bk

Zu

))
⩽

(
1

2

)θU(1−α)

.

Finally, with eq. (33), we have

Pν({Ŝ ∩G∗
k = ∅} ∩ {∀a ̸= b ∈ Ŝ, µa ̸= µb} ∩ Y ∩ X )

⩽Pν

(
{Xk > θU(1− α)} ∩

( ⋂
u∈Bk

Zu

))
+ Pν (Xk ⩽ θU(1− α))

⩽ exp (− log(2)θU(1− α)) + exp
(
−2α2Uθ

)
⩽2 exp(−Uθ/8) .

In the last line, we took α = 1/2.

We now have all the tools that we need to prove that SRI(δ,∆, θ) is δ-PAC on E(∆, θ, σ,N,K, d)
for the representative identification problem, which means that with probability higher than 1− δ,
SRI outputs a set of K representatives for environments that are E(∆, θ, σ,N,K, d).

Proof of the first statement of Lemma C.2. recall that in this subsection, ν ∈ E(∆, θ, σ,N,K, d).

As a direct consequence of Lemma C.10, we know that with high probability, Ŝ does not contain two
arms from the same group.

Pν

(
{∃a, b ∈ Ŝ , µa = µb} ∩ Y

)
⩽ Pν

(
{∃a, b ∈ Ŝ , ∥µa − µb∥ ⩽ ∆/4} ∩ Y

)
⩽

δ

4
.

Now, with Lemma C.12, for all k ∈ [K],

Pν

(
{Ŝ ∩G∗

k = ∅} ∩ {∀a ̸= b ∈ Ŝ, µa ̸= µb} ∩ Y ∩ X
)
⩽ 2 exp(−Uθ/8) .
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Now, we recall that U ⩾ 8
θ log

(
8K
δ

)
and then exp(−Uθ/8) ⩽ δ/8K. If the set Ŝ contains strictly

less than K arms then at least one group is not represented. With a union bound on k ∈ [K],

Pν

(
{|Ŝ| < K} ∩ {∀a ̸= b ∈ Ŝ, µa ̸= µb} ∩ Y ∩ X

)
⩽ 2K exp(−Uθ/8) ⩽ δ/4 .

Finally, together with Lemmas C.8 and C.11, we conclude that

Pν

(
∀k ∈ [K] ,∃!a ∈ Ŝ ;µa = µ(k)

)
≥ 1− Pν(Yc)− Pν(Y ∩ X c)

− Pν

(
|Ŝ| < K} ∩ {∀a ̸= b ∈ Ŝ, µa ̸= µb} ∩ Y ∩ X

)
− Pν

(
{∃a, b ∈ Ŝ , µa = µb} ∩ Y

)
⩾ 1− δ .

In summary, we have proved that SRI is δ-PAC on E(∆, θ, σ,N,K, d) for the Representatives
identification problem.

Step 4: upper bound on the budget τSRI

We establish here the bounds on the budget τSRI of Lemma C.2.

Explanation on Tmax

By definition (12) of Tmax, we know that, almost surely, the total budget τSRI satisfies:

τSRI ≤ Tmax = 2K

(
nmax +

r∑
s=s0+1

ns

)
+ 2Uns0 + 2U

r∑
s=s0+1

ns

2s−4
. (34)

Although plugging the values of nmax, ns, U , and s0, will lead to (24), we start by gently describing
the budget of SRI in order to give intuition on the definition of Tmax.

To analyze the budget, we divide the budget in two parts, τSRI = τaSRI + τ rSRI , where τaSRI is the
number of samples used for arms that are added to Ŝ and τ rSRI is the number of samples uses for
arms that are rejected.

First, we study τaSRI . From the algorithm, the arms that are selected in Ŝ are arms that pass
successfully all the tests, and after the tests, they are sampled again 2nmax times. In total, each arm in
Ŝ is sampled 2nmax +

∑r
s=s0

2ns, the factor 2 comes from the fact that we compute two empirical
means at each time. We have then

τaSRI = 2|Ŝ|nmax + (|Ŝ| − 1)

r∑
s=s0

2ns ⩽ 2K

(
nmax +

r∑
s=s0+1

ns

)
+ 2(|Ŝ| − 1)ns0 . (35)

Now, consider the budget spent for arms that are ultimately rejected during the procedure. For
s0 ⩽ s ⩽ r, we defined previously Hs,M =

∑M−1
u=1 1{s⩽τu⩽r}, as the number of arms rejected

after at least s tests in the procedure. The algorithm outputs Ŝ after M − 1 epochs. In particular,
Hs0,M = M − |Ŝ|. Besides, if the candidate au is rejected, it is sampled

∑τu
s=s0

2ns times. This
leads us to the equality

τ rSRI =

M−1∑
u=1

τu∑
s=s0

2ns1{au is rejected } =
r∑

s=s0

2Hs,Mns = 2
(
M − |Ŝ|

)
ns0 + 2

r∑
s=s0+1

Hs,Mns .

(36)

This justifies the definition Tmax (12), as under the large probability event X , τSRI ⩽ Tmax is directly
implied by (35) and (36).

Upper bound on Tmax

In order to upper bound Tmax (12), we need the following lemmas, whose proofs are postponed
to Appendix C.3. These lemmas are direct consequences of the expressions of ns, nmax, U and r
from equations (9),(11).
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Lemma C.13. Using the explicit expression of r, ns, nmax and s0 from Remark C.4, we have, up to
a universal constant c, the inequality

K

(
nmax +

r∑
s=s0+1

ns

)
⩽ K + c

σ2

∆2

[
log(K)

θ
log(K/δ) +

√
dK

log(K)

θ
log(K/δ)

]

⩽ K + c
σ2

∆2

1

θ
log

(
K

δ

)[
log(K) +

√
d
]

.

Lemma C.14. Using the explicit expression of r, U , ns and s0 from Remark C.4, we have

U

r∑
s=s0+1

ns

2s−4
⩽ c

σ2

∆2

1

θ
log

(
K

δ

)[
log(K) +

√
d+ log log

(
1

θδ

)]
,

where c is a numerical constant.

Now, by combining (34) with Lemmas C.13 and C.14 and bounding Uns0 by U +A where A is the
right side of Lemma C.14, we conclude that

τSRI ≤ Tmax ⩽ 2(U +K) + c
σ2

∆2

1

θ
log

(
K

δ

)[
log(K) +

√
d+ log log

(
1

θδ

)]
, (37)

where c is a numerical constant. We have proved (24).

Upper bound on E[τSRI ]

We now upper bound the expectation of τSRI . For that purpose, we now assume that ν ∈
E(∆, θ, σ,N,K, d). We will prove (25).

With the same decomposition on the budget τSRI = τaSRI + τ rSRI , and by linearity of the expectation,
we deduce from (35) and (36) that

Eν [τSRI ] = Eν [τSRI1Yc ] + Eν [τSRI1Y ]

≤ Tmaxδ + 2ns0Eν [(M − 1)1Y ] +

r∑
s=s0+1

2nsEν [Hs,M1Y ]

+ 2Eν [|Ŝ|1Y ]

(
nmax +

r∑
s=s0+1

ns

)

≤ Tmaxδ + 2K

(
nmax +

r∑
s=s0+1

ns

)
+ 2ns0Eν [(M − 1)1Y ] +

r∑
s=s0+1

2nsEν [Hs,M1Y ] .

(38)

Let us focus on the terms Eν [(M − 1)1Y ] and Eν [Hs,M1Y ].

Recall that Hs,M =
∑M−1

u=1 1{s⩽τu⩽r}. We also recall eq. (32), valid for s > s0, and which is a
consequence of Lemma C.9 and the fact that ∆∗ ⩾ ∆,

{s ⩽ τu ⩽ r} ∩ Y ⊂
⋃

s−1⩽t⩽r

Zu,t .

We have then,

Eν [Hs,M1Y ] = Eν

[
M−1∑
u=1

1{{s⩽τu⩽r}∩Y}

]
⩽ Eν

[
M−1∑
u=1

1{⋃s−1⩽t⩽r Zu,t}

]
.

We can use Wald’s equation. Indeed, if we condition on the direction of the estimated centers (ρa, ρ′a),
the random variables 1{⋃s−1⩽t⩽r Zu,t} are independent and identically distributed for u = 1, . . . , U .

, Pν(
⋃

s−1⩽t⩽r Zu,t) ⩽ exp(−2s−4) thanks to Lemma C.9. We observe that M is a stopping
time with respect to the filtration naturally associated to the sequence of epochs, and the sequence
(
⋃

s−1⩽t⩽r Zu,t)u is adapted to this filtration. With Wald’s equation, we deduce that

Eν [Hs,M1Y ] ⩽ Eν [(M − 1)1Y ] exp(−2s−4) . (39)
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Hence, we conclude that
r∑

s=s0+1

2nsEν

[
Hs,M1{Y}

]
⩽

r∑
s=s0+1

2nsEν [(M − 1)1Y ] exp(−2s−4) . (40)

It remains to bound Eν [(M − 1)1Y ]. We will bound stochastically M − 1 by a sum of geometric
random variables. We recall that Su is the state of the set of representatives at the beginning of the
epoch u and Ŝ = SM . We define for k ∈ [K − 1], Mk =

∑M−1
u=1 1{|Su|=k}. The number Mk is the

number of epochs necessary to add the (k + 1)-th arm to S. Once |Su| = K, the algorithm stops, so
that

M − 1 =

K−1∑
k=1

Mk .

Fix now k ∈ [K − 1]. If |Ŝ| < k, we have Mk = 0. We assume that |Ŝ| ⩾ k, and we condition
on S(k) and Y , the set containing the k first arms that were added to Ŝ. Let u such that |Su| = k.
Thanks to the second point of Lemma C.9, it holds that

{au is good } ∩ Y ∩
(
∩s∈[s0,r]Z

c
u,s

)
⊂ ∩s∈[s0,r]{ϕ

u
s = 0} = {au is added to S} .

Then, the events {au is good }, Y and ∩s∈[r]Zc
u,s are independent. Moreover, Pν(au is good ) ⩾

(K − k)θ∗ ⩾ (K − k)θ because it remains at least (K − k) groups not represented in S(k) and all
these groups have a proportion larger than θ∗. We also have thanks to Lemma C.8 and Lemma C.9,
Pν(Y) ⩾ 1− δ/4 and Pν(∩s∈[r]Zc

u,s) ⩾ 1/2.

Conditionally on Su = S(k), and on the estimated centers of the representatives in S(k), the event
{au is added to S} are independent and of probability larger than (1 − δ/4)(K − k)θ/2. Then,
Mk is stochastically dominated by a geometric random variable of parameter (K − k)θ/4. Finally,
Eν [Mk1Y ] ⩽ 4

(K−k)θ and

Eν [(M − 1)1Y ] =

K−1∑
k=1

Eν [Mk1Y ] ⩽
K−1∑
k=1

4

(K − k)θ
=

4

θ

K−1∑
k=1

1

k
⩽

4

θ
(1 + log(K)) . (41)

Now, eq. (40) becomes
r∑

s=s0+1

2nsEν [Hs,M1Y ] ⩽
r∑

s=s0+1

2ns

[
4

θ
(1 + log(K)) exp(−2s−4)

]
.

We bound the previous expression, using the same computation as Lemma C.14, and we state the
bound as a lemma proved later.
Lemma C.15. Using the explicit expression of r, U , ns, nmax and s0 from Remark C.4, we have

r∑
s=s0

ns

[
4

θ
· 1 + log(K)

exp(2s−4)

]
⩽ c

σ2

∆2

log(K)

θ

[
log(K) +

√
d
]
,

where c is a universal constant.

We come back to eq. (38), using eqs. (40) and (41), we have

Eν [τSRI ] ⩽Tmaxδ + 2K

(
nmax +

r∑
s=s0+1

ns

)

+
8ns0

θ
(1 + log(K)) +

r∑
s=s0+1

2ns

[
4

θ
(1 + log(K)) exp(−2s−4)

]
.

Now, if we define A′ = σ2

∆2

[
log(K)

θ log(1/(θδ)) + log(K)
θ

√
d+

√
dK log(K)

θ log(K/δ)

]
, Lemma C.13

and Lemma C.15 implies that we can choose c large enough (and universal) such that
r∑

s=s0+1

2ns

[
4

θ
(1 + log(K)) exp(−2s−4)

]
+ 2K

(
nmax +

r∑
s=s0+1

ns

)
⩽ 2K + cA′ .
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By definition of ns0 , we can also see that

8ns0

θ
(1 + log(K)) ⩽ 16

log(K)

θ
+ cA′ .

Finally, it follows from (37) and δ log(1/δ) ≤ 1 that

Tmaxδ ≤ c′
log(K)

θ
+ cA′ .

In summary, we have the desired bound in expectation,

Eν [τSRI ] ⩽ c′
log(K)

θ
+ c

σ2

∆2

[
log(K)

θ
log(1/(θδ)) +

log(K)

θ

√
d+

log2(K)

θ

]
.

C.3 Proofs of technical lemmas

Proof of Lemma C.8. We want to prove that Pν(Yc) ⩽ δ/4, where Yc is equal to

Yc =

{
∃a ∈ Ŝ,∃k ∈ [K] \ {k(a)},

∣∣∣∣〈ϵa + ϵ′a√
2

,
µa − µ(k)

∥µa − µ(k)∥

〉∣∣∣∣ > 1

16

√
∆2

2σ2

√
nmax

}
⋃{

∃a ∈ Ŝ, |⟨ϵa, ϵ′a⟩| >
1

16

∆2

σ2
nmax

}
⋃{
∃a ∈ Ŝ, ∥ϵ′a∥2 ∨ ∥ϵa∥2 − E[∥ϵa∥2] > cHW log(12K/δ) ∨

√
cHW d log(12K/δ)

}
.

From the definition of ns and nmax as given in (10), (11), it holds that nmax ⩾ nr, with

ns ⩾ c1
σ2

∆2
(2s + log(12K)) ∨ c2

σ2

∆2

√
d(2s + log(6)) .

With the definition of r in (9), we have also 2r ⩾ log(4U/δ) and U ⩾ 8K log(K/δ). We prove that,
for c1 = 322 ∨ 8cHW and c2 = 16

√
cHW /2 ∨ c3, then nmax is large enough to ensure Lemma C.8

(the value of c3 will be useful later).

We start with a union bound on Ŝ × [K], where |Ŝ| ⩽ K. We have

Pν

(
∃a ∈ Ŝ,∃k ∈ [K] \ {k(a)},

∣∣∣∣〈ϵa + ϵ′a√
2

,
µa − µ(k)

∥µa − µ(k)∥

〉∣∣∣∣ >
√

nmax∆2

2 · 162σ2

)

⩽K2Pν

(∣∣∣∣〈ϵa + ϵ′a√
2

,
µa − µ(k)

∥µa − µ(k)∥

〉∣∣∣∣ >
√

nmax∆2

2 · 162σ2

)
.

From the assumption on the noise (Assumption 2.1), it is easy to see that
〈

ϵa+ϵ′a√
2

, µa−µ(k)
∥µa−µ(k)∥

〉
is

1-subGaussian, proceeding as in the same proof of corollary E.4. With the standard concentration
inequality lemma E.1 for subGaussian variables, we have

Pν

(∣∣∣∣〈ϵa + ϵ′a√
2

,
µa − µ(k)

∥µa − µ(k)∥

〉∣∣∣∣ >
√

nmax∆2

2 · 162σ2

)
⩽2 exp

(
−nmax∆

2

(32σ)2

)
,

Now, c1 ⩾ 322 and 2r ⩾ log(4K/δ) so that nmax ⩾ c1
σ2

∆2 (2
r + log(12K)) ⩾ 322 σ2

∆2 log
(

48K2

δ

)
.

Finally, with the union bound above, we have

Pν

(
∃a ∈ Ŝ,∃k ∈ [K] \ {k(a)},

∣∣∣∣〈ϵa + ϵ′a√
2

,
µa − µ(k)

∥µa − µ(k)∥

〉∣∣∣∣ >
√

nmax∆2

2 · 162σ2

)
⩽

δ

24
. (42)
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Now, as proved in Corollary E.4, Hanson Wright inequality imply a bound for ⟨ϵa, ϵ′a⟩ and then with
the constant cHW from Lemma E.3, we have:

Pν

(
∃a ∈ Ŝ, , |⟨ϵa, ϵ′a⟩| >

∆2nmax

16σ2

)
⩽2K exp

(
− 2

cHW

(
∆2nmax

16σ2
∧ ∆4n2

max

162σ4d

))
⩽

δ

24
,

(43)

because the definition of c1, c2 and r, implies that

nmax ⩾ 8cHW
σ2

∆2
log

(
48K

δ

)
∨ 16

√
cHW

2

σ2

∆2

√
d log

(
48K

δ

)
.

Finally, a direct application of Hanson-Wright inequality (Lemma E.3) ensures that

Pν

(
∃a ∈ Ŝ, ∥ϵ′a∥2 ∨ ∥ϵa∥2 − E[∥ϵa∥2] ≥ cHW log(12K/δ) ∨

√
cHW d log(12K/δ)

)
⩽ 2K exp(− log(12K/δ)) ⩽

δ

6
, (44)

This concludes the proof of Lemma C.8, using a union bound and inequalities (42) to (44).

Proof of Lemma C.9 . We recall that in this lemma, ν is an environment with minimal gap ∆∗ and
balancedness θ∗, and ν is not necessary in E(∆, θ, σ,N,K, d)). Let u ⩾ 1 and s ∈ [s0, r].

The first point of the lemma is a direct consequence of the expression of Zu,s and the mutual
independence of the series of empirical means (µ̄u,s, µ̄

′
u,s).

Second point of Lemma C.9
We assume that au is a good arm rejected by the test (u, s), which by definition of the test statistic
means that for all a ∈ Su, then |µau

− µa| ⩾ ∆, while the test statistic ϕu
s is equal to 1. It implies

that there exists a ∈ Su such that〈
µ̄u,s − µ̂a, µ̄

′
u,s − µ̂′

a

〉
⩽

∆2

2
.

From the decomposition of 27, and conditionally on the event Y 28, we have:

∆2

2
⩾∥µau − µa∥2 −

∆

16
∥µau − µa∥ −

∆2

16

− σ2

√
nmaxns

⟨ϵu,s, ρ′a⟩ ∥ϵ′a∥ −
σ2

√
nmaxns

〈
ϵ′u,s, ρa

〉
∥ϵa∥ (45)

+

√
2σ
√
ns

〈
ϵu,s + ϵ′u,s√

2
, µau − µa

〉
+

σ2

ns

〈
ϵu,s, ϵ

′
u,s

〉
. (46)

We also have on Y , ∥ϵa∥2 ⩽ E[∥ϵa∥2] + cHW l ∨
√
cHW dl with l := log

(
12K
σ

)
. , E[∥ϵa∥2] ⩽ 4d is

a direct consequence of the subGaussian assumption – see Lemma 1.4 from [30]. We have

(45) ⩾ − σ2

√
nmaxns

[∣∣〈ϵ′u,s, ρa〉∣∣+ |⟨ϵu,s, ρ′a⟩|]√4d+ cHW l ∨
√
cHW dl .

We also have directly,

(46) ⩾ −

√
2σ2∥µau

− µa∥2
ns

∣∣∣∣〈ϵu,s + ϵ′u,s√
2

,
µau
− µa

∥µau − µa∥

〉∣∣∣∣− σ2

ns

∣∣〈ϵu,s, ϵ′u,s〉∣∣ .

We recall that ∆ ⩽ ∥µau
−µa∥, because au is a good arm. Hence, we have ∥µau

−µa∥2− ∆
16∥µau

−
µa∥ − ∆2

16 −
∆2

2 ⩾ 3
8∥µau

− µa∥2 ≥ 3
8∆

2.
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From there, we state that if au is good and ϕu
s = 1 then there exists a ∈ Ŝ such that at least one of

the these three inequalities holds:

|⟨ϵu,s, ρ′a⟩|+
∣∣〈ϵ′u,s, ρa〉∣∣ ⩾ 1

4

∆2

σ2

√
nsnmax

4d+
√
cHW dl ∨ cHW l

,

∣∣〈ϵu,s, ϵ′u,s〉∣∣ ⩾ 1

16

∆2

σ2
ns ,∣∣∣∣〈ϵu,s + ϵ′u,s√

2
,

µau
− µa

∥µau − µa∥

〉∣∣∣∣ ⩾ 1

16

∆

σ

√
ns

2
.

By definition, Zu,s is the event where one of these three inequalities hold for some a ∈ Ŝ, so the
inclusion Y ∩ {au is good and ϕu

s = 1} ⊂ Zu,s is proved.

Third point of Lemma C.9
We now assume that au is bad, but the s-th test accept au, i.e., ϕu

s = 0. As au is bad, there
exists a ∈ Su such that ∥µau

− µa∥ ⩽ ∆/4. As ϕu
s = 0, for this specific arm a, we have:〈

µ̄u,s − µ̂a, µ̄
′
u,s − µ̂′

a

〉
> ∆2

2 .

Assume that 0 < ∥µau − µa∥ ⩽ ∆/4, with the same computation as in the first case, we have

∆2

2
⩽∥µau − µa∥2 +

∆

16
∥µau − µa∥+

∆2

16

+
σ2

√
nmaxns

√
4d+ cHW l ∨

√
cHW dl

(
|⟨ϵu,s, ρ′a⟩|+

∣∣〈ϵ′u,s, ρa〉∣∣)
+

√
2σ2∥µau − µa∥2

ns

∣∣∣∣〈ϵu,s + ϵ′u,s√
2

,
µau − µa

∥µau
− µa∥

〉∣∣∣∣+ σ2

ns

∣∣〈ϵu,s, ϵ′u,s〉∣∣ .

In the last line, we upper bound ∥µau −µa∥ by ∆/4. Now, consider the constant terms, ∆2

2 −∥µau −
µa∥2 − ∆

16∥µau
− µa∥− ∆2

16 ⩾ ∆2

2 −
∆2

16 −
∆2

64 −
∆2

16 ⩾ ∆2
(
1
4 + 1

16 + 1
4·16
)
. As above, we deduce

that at least one of the three inequalities defining Zu,s holds. If ∥µau
− µa∥ = 0, there are simply

fewer terms in the equality. This proves the inclusion Y ∩ {au is bad and ϕu
s = 0} ⊂ Zu,s.

Probability of Zu,s

We prove now that the probability of Zu,s decrease exponentially fast with s. Fix s0 ⩽ s ⩽ r.

We recall the expression of ns, and nmax

ns ⩾ c1
σ2

∆2
(2s + log(12K)) ∨ c2

σ2

∆2

√
d(2s + log(6)) ,

where c1 = 322 ∨ 8cHW , c2 = 16
√
cHW /2 ∨ 32

√
2, c3 = 32

√
2, and nmax ⩾ nr ∨

c3
σ2

∆2

√
d log(2K).

Let k ∈ [K] such that µau
̸= µ(k), as a consequence of assumption 2.1, the one-dimensional variable〈

ϵu,s+ϵ′u,s√
2

,
µau−µ(k)

∥µau−µ(k)∥

〉
is 1-subGaussian. With standard concentration of subGaussian variables

(Lemma E.1), we have

Pν

(∣∣∣∣〈ϵu,s + ϵ′u,s√
2

,
µau
− µ(k)

∥µau
− µ(k)∥

〉∣∣∣∣ ⩾ 1

16

∆

σ

√
ns

2

)
⩽ 2 exp

(
−∆2

σ2

ns

322

)
⩽

1

3K
exp(−2s) ,

because ns ⩾ 322 σ2

∆2 (2
s + log(6K)).

Now, with a union bound over k ∈ [K], it holds that

P

(
∃k ∈ [K] \ {k(au)} ;

∣∣∣∣〈ϵu,s + ϵ′u,s√
2

,
µau
− µ(k)

∥µau
− µ(k)∥

〉∣∣∣∣ ⩾ 1

16

∆

σ

√
ns

2

)
⩽

1

3
exp(−2s) ,

(47)
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Then,
〈
ϵu,s, ϵ

′
u,s

〉
is the inner product of two independent vectors, for which the assumptions

from Corollary E.4 holds. We use this corollary of Hanson-Wright inequality, and obtain

Pν

(∣∣〈ϵu,s, ϵ′u,s〉∣∣ ⩾ ∆2

σ2

ns

16

)
⩽ 2 exp

(
− 2

cHW

(
∆2

σ2

ns

16
∧ 1

d

∆4

σ4

n2
s

162

))
⩽

1

3
exp(−2s) , (48)

where the last inequality follows from the definition of ns (and c1, c2) where ns ⩾ 8cHW
σ2

∆2 (2
s +

log(6)) ∨ 16
√

cHW

2
σ2

∆2

√
d(2s + log(6)).

Finally, we want to upper bound the probability that the cross term between ϵa and ϵu,s is too
large. By conditioning with respect to the random variables (ρa, ρ′a)a, we consider these variables as
constants. We start with a union bound and the inequality a+ b ⩽ 2a ∨ b.

Pν

(
∃a ∈ Ŝ ; |⟨ϵu,s, ρ′a⟩|+

∣∣〈ϵ′u,s, ρa〉∣∣ ⩾ 1

4

∆2

σ2

√
nsnmax

4d+
√
cHW dl ∨ cHW l

)
⩽2KPν

(
| ⟨ϵu,s, ρ⟩ | ⩾

1

8

∆2

σ2

√
nsnmax

4d+
√
cHW dl ∨ cHW l

)
,

with ρ of norm 1. Then ⟨ϵu,s, ρ⟩ is a 1-dimensional subGaussian random variable. We use therefore
the concentration inequality in Lemma E.1, and we state that

Pν

(
∃a ∈ Ŝ ; |⟨ϵu,s, ρ′a⟩|+

∣∣〈ϵ′u,s, ρa〉∣∣ ⩾ 1

4

∆2

σ2

√
nsnmax

4d+
√
cHW dl ∨ cHW l

)
⩽4K exp

(
− 1

2 · 82
∆4

σ4

nsnmax

4d+
√
cHW dl ∨ cHW l

)
⩽4K exp

(
− 1

162
∆4

σ4

nsnmax

4d ∨
√
cHW dl ∨ cHW l

)
,

in the last line, we use again the inequality a+ b ⩽ 2a ∨ b.

Now, we need to bound this last expression by 1
3 exp(−2

s) by using the definition of ns and nmax

We recall that l = log(12K/δ) ⩽ 2r.

Now, with our choice for c1 and c2, it holds that ns ⩾ 322 σ2

δ2 (2
s + log(12K)) and nmax ⩾

cHW l ∨
√
cHW dl, so that

nsnmax ⩾ 162
σ4

∆2
(
√
cHW dl ∨ cHW l)(2s + log(12K)) .

We finally use the assumption that c2 ⩾ 32
√
2 and c3 = 32

√
2, so that

ns ⩾ 16
√
2 σ2

∆2

√
(4d)(2s + log(6)), nmax ⩾ 16

√
2 σ2

∆2

√
4d
√

2s + log(6) and nmax ⩾

16
√
2 σ2

∆2

√
4d log(2K). Then, with the inequality a ∨ b ⩾ (a+ b)/2, we have

nsnmax ⩾ 162
σ4

∆2
(4d)(2s + log(12K)) .

We combine these lower bound on nsnmax to deduce that

nsnmax ⩾ 162
σ4

∆2
(4d ∨

√
cHW dl ∨ cHW l)(2s + log(12K)) .

This allows us to conclude that

Pν

(
∃a ∈ Ŝ ; |⟨ϵu,s, ρ′a⟩|+

∣∣〈ϵ′u,s, ρa〉∣∣ ⩾ 1

4

∆2

σ2

√
nsnmax

4d+
√
cHW dl ∨ cHW l

)
⩽ 4K exp

(
− 1

162
∆4

σ4

nsnmax

4d ∨
√
cHW dl ∨ cHW l

)
⩽

1

3
exp(−2s) . (49)

We finish the proof with a union bound, gathering the inequalities (47) to (49),

Pν(Zu,s) ⩽
1

3
exp(−2s) + 1

3
exp(−2s) + 1

3
exp(−2s) = exp(−2s) .
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Proof of Lemma C.13. Throughout the proofs of Lemmas C.13 to C.15, c is a universal constant
changing from one line to another. Also, we use that, by the definition of s0 and ns, it turns out, that
if s > s0 then

ns ⩽ 2c1
σ2

∆2
(2s + log(12K)) ∨ 2c2

σ2

∆2

√
d(2s + log(6)) . (50)

We now bound K
(∑r

s=s0+1 ns + nmax

)
. Relying on the expression of ns above, and the sums∑r

s=1 2
s ⩽ 2r+1 and

∑r
s=1

√
2
s
⩽
√
2
r+1

(1 +
√
2), we deduce that

K

r∑
s=s0+1

ns ⩽2c1
σ2

∆2
K(2r+1 + log(12K)r)

∨
2c2

σ2

∆2
K
√
d
(√

2r(2 +
√
2) +

√
log(6)r

)
.

Now, from the expression of r and U , we have 2r ⩽ 2 log(4U/δ) ⩽ c log(1/(θδ)). It leads to the
bound

K

r∑
s=s0+1

ns ⩽ c
σ2

∆2

[
K log(1/(θδ)) +K log(K) log log(1/(θδ)) +K

√
d log(1/(θδ))

]
.

As 1/θ ⩾ K, we have K log
(
1
θ

)
⩽ 1

θ log(K), so that we can bound the term above by

K

r∑
s=s0+1

ns ⩽ c
σ2

∆2

[
1

θ
log(K/δ) +

√
dK

1

θ
log(K/δ)

]
.

We also compute nmax, we have Knmax ⩽ K + c σ2

∆2

[
Knr +K log(K)

√
d
]
, where Knr is upper

bounded by the same bound as K
∑r

s=s0+1 ns.

Finally, it implies that

K

r∑
s=s0+1

ns +Knmax ⩽ K + c
σ2

∆2

[
log(K)

θ
log(K/δ) +

√
dK

log(K)

θ
log(K/δ)

]
.

The second inequality in Lemma C.13 is clear, and the lemma is proved.

Proof of Lemma C.14. With the bound on ns for s > s0 from eq. (50), we simplify the terms in 2s

and obtain,
r∑

s=s0+1

U

2s−4
ns ⩽2c1

16Uσ2

∆2

r∑
s=s0+1

(
1 +

1

2s
log(12K)

)∨
2c2

16Uσ2

∆2

r∑
s=s0+1

(
1
√
2
s

√
d+

1

2s

√
d
√
log(6)

)

⩽2c1
16Uσ2

∆2
(r + 2 log(12K))

∨
2c2

16Uσ2

∆2

(
(2 +

√
2)
√
d+ 2

√
log(6)

√
d
)

⩽c
σ2

∆2
U

[
log log

(
1

θδ

)
+ log(K) +

√
d

]
,

because
∑

s⩾1 1/2
s ⩽ 2 and

∑
s⩾1 1/

√
2
s
= 2 +

√
2. We also use in the last inequality that

log(U/δ) ⩽ 2 log(8/θδ), so that r ⩽ log(2 log(8/θδ)) ⩽ c log log(1/θδ).

From the previous bound, we conclude that
r∑

s=s0+1

U

2s−4
ns ⩽ c

σ2

∆2
U

[
log log

(
1

θδ

)
+ log(K) +

√
d

]
+ c

σ2

∆2

√
d log(K)KU .

Moreover, we have by definition of U (9), U ⩾ K log(K), and then σ2

∆2

√
d log(K)KU ⩽ σ2

∆2U
√
d.
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Finally, using the expression of U (9), we have
r∑

s=s0+1

U

2s−4
ns ⩽ c

σ2

∆2

1

θ
log(K/δ)

[
log(K) +

√
d+ log log

(
1

θδ

)]
.

Proof of Lemma C.15. With the same computation as in Lemma C.14, we obtain
r∑

s=s0+1

ns

[
4

θ
(1 + log(K)) exp(−2s−4)

]
⩽ c

σ2

∆2

log(K)

θ

[
log(K) +

√
d
]
+ c

σ2

∆2

√
dK

log(K)

θ
log(K)

⩽ c
σ2

∆2

log(K)

θ

[
log(K) +

√
d
]

,

where we use K ⩽ 1/θ in the last inequality.

C.4 Proof of Lemma C.3

In this section, we want to prove that the subroutine ADC outputs the exact partition with probability
larger than 1− δ, for environments in E(∆, θ, σ,N,K, d). Let ν be an environment with a minimal
gap smaller than ∆, following Assumptions 2.1 and 2.3. We highlight that the algorithm ADC uses
∆, σ, N , K and d as parameters but not θ. Let S = {b1, . . . , bK} be a set of K arms containing one
representative by group. The objective is to find the groups G∗

1, . . . , G
∗
K up to permutation. Without

loss of generality, we fix the label of the groups so that G∗
k = {a ∈ [N ], µa = µbk}. We denote by

k(a) as the corresponding label of any arm a (a ∈ G∗
k(a)). With this convention, making an error of

clustering is equivalent of making an error of labelling.

We denote Ĝ for the output of the ADC routine. The algorithm labels the arms in S so that bk ∈ Ĝk

for k ∈ [K] (see Line 8). Then, it labels each arm a ∈ [N ] \ S by k̂(a) defined (eq. (14)) by

k̂(a) ∈ argmin
j=1,...,K

〈
µ̂a − µ̂(j), µ̂′

a − µ̂′(j)
〉

.

We have {Ĝ ∼ G∗} = {∃a ∈ [N ] \ S ; k̂(a) ̸= k(a)}.

Consider j ∈ [K] a group and a ∈ [N ] an arm. As explained in the introduction, the statistic d̂2a,j :=〈
µ̂a − µ̂(j), µ̂′

a − µ̂′(j)
〉

is a natural non-biased estimator of ∥µa − µ(j)∥2 where µ(j) = µbj is the

center of G∗
j . In the expression of k̂(a), µ̂(j) [resp. µ̂′(j)] is the empirical mean of representative

bj computed with J =
⌈
c4

σ2

∆2L ∨ c5
σ2

∆2

√
dLN

K

⌉
samples –see Equation (13) and Line 7– and

L = log(6NK/δ). The random variable µ̂a [resp. µ̂′
a] is the empirical mean of the arm a computed

with I =
⌈
c4

σ2

∆2L ∨ c5
σ2

∆2

√
dLK

N

⌉
samples – see Line 10. We emphasise that in high dimension,

J ≍ NJ/K is much larger than I . We want to bound the probability of misclassification for a single
arm in [N ] \ S. Let a ∈ [N ] \ S such that a belongs to the group G∗

k(a). The misclassification

probability for the arm a using the classifier k̂(a) of eq. (14) is

Pν(k̂(a) ̸= k(a)) =Pν

(
∃j = 1, . . . ,K , j ̸= k(a); d̂2a,j < d̂2a,k(a)

)
⩽

K∑
j ̸=k(a)

Pν

(
d̂2a,j < d̂2a,k(a)

)
. (51)

We used here a first union bound over j ∈ [1;K] \ k(a), and now, we upper bound each term on the
sum.
Lemma C.16. For all a ∈ [N ] \ S, and j ∈ [K], if µ(j) ̸= µa then

Pν

(
d̂2a,j < d̂2a,k(a)

)
⩽

δ

(K − 1)(N −K)
.
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This lemma easily leads to the desired result (Lemma C.3) by a union bound on a ∈ [N ] \ S.
With eq. (51) and Lemma C.16, we have indeed

Pν

(
Ĝ ̸∼ G∗

)
= Pν

(
∃a ∈ [N ] \ [S] ; k̂(a) ̸= k(a)

)
⩽

∑
a∈[N ]\S

∑
j∈[K]\{k(a)}

Pν

(
d̂2a,j < d̂2a,k(a)

)
⩽ δ .

Moreover, the budget τADC used to compute ADC is deterministic and equal to 2(N −K)I + 2KJ
with the notation of the algorithm which leads to the second part of the lemma directly.

We have indeed the (deterministic) bound on the budget of ADC

τADC = 2(N −K)I + 2KJ ⩽ 2N + 2c4
σ2

∆2
NL ∨ 4c5

σ2

∆2

√
dKNL .

It remains now to prove the auxiliary lemma.

Proof of Lemma C.16. Without loss of generality, we assume that µa = µ(1) and consider j = 2.
We write

µ̂a = µa +
σ√
I
εa = µ(1) +

σ√
I
εa ,

where εa :=
√
I

σ (µ̂a − µa). We define in the same way ε(1) :=
√
J
σ (µ̂(1)− µ(1)) and also ε(2), ε′a,

ε′(1) and ε′(2).

From direct computation, reorganising the terms, we write the event {d̂2a,2 < d̂2a,1} as〈
µ̂a − µ̂(2), µ̂′

a − µ̂′(2)
〉
<
〈
µ̂a − µ̂(1), µ̂′

a − µ̂′(1)
〉
⇔

√
2σ∥µ(1)− µ(2)∥√

I
A+

√
2σ∥µ(1)− µ(2)∥√

J
B +

√
2σ2

√
IJ

(C +D) +
σ2

J
(E + F ) > ∥µ(1)− µ(2)∥2 ,

(52)

where

A := −
〈

µ(1)− µ(2)

∥µ(1)− µ(2)∥
,
ε′a + εa√

2

〉
; C := −

〈
εa,

ε′(1)− ε′(2)√
2

〉
; E := −⟨ε(2), ε′(2)⟩ ;

B := −
〈

µ(2)− µ(1)

∥µ(2)− µ(1)∥
,
ε′(2) + ε(2)√

2

〉
; D := −

〈
ε′a,

ε(1)− ε(2)√
2

〉
; F := −⟨ε′(1), ε(1)⟩ .

Let us control the variation of each of these terms.

First, by Assumption 2.1, as in the proofs of Appendix C.1 and C.2, A and B are subGaussian. With
the concentration inequality (Lemma E.1) for subGaussian (real) variables, we have

Pν(A >
√
2L) ⩽ exp(−L) and P(B >

√
2L) ⩽ exp(−L) .

For the other terms, we use Hanson-Wright inequality (Corollary E.4) with cHW the universal constant
from the lemma. The scalar products C, D, E and F verifies all the assumptions for Corollary E.4,
and for instance,

Pν

(
C >

cHWL

2
∨
√

cHW
dL

2

)
⩽ exp(−L) ,

and we have the same bound for D,E and F .
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We recall the expression L = log
(
6NK

δ

)
defined after Equation (13), in particular, exp(−L) ⩽ δ

6NK .
With a union bound on these 6 errors, it holds that with probability larger than 1− δ/NK we have

√
2σ∥µ(1)− µ(2)∥√

I
A+

√
2σ∥µ(1)− µ(2)∥√

J
B +

√
2σ2

√
IJ

(C +D) +
σ2

J
(E + F )

⩽

√
2σ∥µ(1)− µ(2)∥√

I

√
2L+

√
2σ∥µ(1)− µ(2)∥√

J

√
2L+

2
√
2σ2

√
IJ

(
cHWL

2
∨
√

cHW
dL

2

)

+
2σ2

J

(
cHWL

2
∨
√
cHW

dL

2

)
.

The parameters I ,J are defined as

I =

⌈
σ2

∆2

(
c4L ∨ c5

√
K

N
dL

) ⌉
; J =

⌈
σ2

∆2

(
c4L ∨ c5

√
N

K
dL

)⌉
,

with c4 and c5 two universal constants defined as c4 = 82 ∨ 4
√
2cHW and c5 = 8

√
cHW with cHW

the universal constant in Hanson-Wright inequality (Lemma E.3). Now, each term in the last sum
is smaller than ∥µ(1) − µ(2)∥∆/4, or ∆2/4. As ν ∈ E(∆, θ, σ,N,K, d), we have ∆∗ ⩾ ∆ and
∥µ(1)− µ(2)∥ ⩾ ∆. It implies that with probability larger than 1− δ/NK, it holds that
√
2σ∥µ(1)− µ(2)∥√

I
A+

√
2σ∥µ(1)− µ(2)∥√

J
B +

√
2σ2

√
IJ

(C +D) +
σ2

J
(E + F ) ⩽ ∥µ(1)− µ(2)∥2 .

From there, eq. (52) assures that

Pν

(〈
µ̂1 − µ̂(2), µ̂′

1 − µ̂′(2)
〉
<
〈
µ̂a − µ̂(k(a)), µ̂′

a − µ̂′(k(a))
〉)

⩽
δ

KN
.

D Analysis of ACB∗

In this section, we prove the part of Theorem 4.1 pertaining to ACB∗. In fact, this result is a
straightforward consequence of the following theorem
Theorem D.1. Let δ > 0. For any environment ν, ACB∗ Algorithm 2 is δ-PAC. There exist positive
numerical constants c, c′, and c′′ such that the following holds.

PACB∗,ν

[
τACB∗ ⩽ cN + c′

σ2

∆2
∗θ∗

L∗ log

(
L∗K

δ

)[
log(K) +

√
d+ log log(L∗) + log log(N/δ)

]
+ c′

L∗

θ∗
log

(
L∗K

δ

)
+ c′′

σ2

∆2
∗

[
N log (N/δ) +

√
dNK log (N/δ)

] ]
≥ 1− δ , (53)

where

L∗ :=

⌈
log2

(
1

θ∗K

[(
∆2

0

∆2
∗
∨ 1

)])⌉
. (54)

We set the numerical constant c6 in the definition (16) of n′
p as

c6 = 2048 ∨ 64cHW ∨ 92
√
cHW , (55)

where cHW is the constant arising in Hanson-Wright inequality –see Lemma E.3.

D.1 Analysis of SRI for ∆ ≤ 4∆∗

We explained in Appendix C.1 how the algorithm Ŝ =SRI(δ,∆, θ) behaves for environments that are
not in E(∆, θ, σ,N,K, d). If ∆∗ ⩾ ∆ then the identification of K representatives goes well but, if
∆∗ ≫ ∆, the budget will be unnecessarily large. If ∆∗ ⩽ ∆, then the set of representative Ŝ may
contain less than K representative. The following lemma summarizes the properties of SRI.
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Lemma D.2. Take ν an environment with a minimal gap ∆∗ and a balancedness θ∗. Consider
Ŝ =SRI(δ,∆, θ) the output of the SRI routine, designed with ∆ > 0 and θ > 0. With probability
PSRI,ν larger than 1− δ, the following holds

• the set Ŝ does not contain two arms from the same cluster,

• if ∆∗ ⩽ ∆/4, then Ŝ contains strictly less than K arms,

• if ∆∗ ⩾ ∆ and θ∗ ⩾ θ then Ŝ contains exactly one arm by group.

Proof. The first point is a consequence of Lemma C.8 and Lemma C.10. The third point is exactly
the result of Lemma C.2.

For the second point, recall that by definition, a candidate au is bad if there exists an arm a in the
set S such that ∥µau

− µa∥ ⩽ ∆/4. In Lemma C.10, we prove that with probability larger than
1 − δ, no bad arms would be added to S. Moreover, if ∆∗ ⩽ ∆/4, then there exists at least one
group whose arms are bad during all the procedure, and hence, the second point is also a consequence
of Lemma C.8 and Lemma C.10.

D.2 Proof of Theorem D.1

D.2.1 ACB∗ is δ-PAC

We consider separately two cases ∆∗ ≤ ∆0 and ∆∗ > ∆0. We first focus on the case where
∆∗ ⩽ ∆0.

We remind the reader that the procedure ACB∗ consists on a sequence of calls for SRI, with different
parameters, we remind these parameters as defined in (15), (16)

∆2
0 = σ2[log(K) +

√
d+ log log(6N/δ)], δl =

δ

6(l + 1)3

θp,l =
1

K2l−p
, ∆p = ∆0

√
1

2p
, n′

p =

⌈
c6

σ2

∆2
p

(
log(3K2/δ) +

√
d log(3K2/δ)

)⌉
.

For short, we write SRI(p, l) for SRI routine with parameters δl, ∆p, and θp,l. For l ⩾ 0 and
p = 0, . . . , l, we define Ep,l as the event of probability larger than 1− δl under PSRI(p,l),ν defined in
Lemma D.2. We write E for the intersection of these events.

From Lemma D.2, the event Ep,l has a probability larger than 1− δl. With a union bound, and the
definition of δl (15), we deduce that

P(E) = P

⋂
p,l

Ep,l

 ⩾ 1−
∑
l⩾1

l∑
p=0

δl = 1−
∑
l⩾0

δ

6(l + 1)2
⩾ 1− δ/3 .

We write (l′, p′) the first value of (l, p) in Algorithm 2 such that |Sl,p| = K. On the event E , we have
that Ŝ = Sl′,p′ contains exactly one arm by cluster – see again Lemma D.2.

Even, if on the event E , we know that ∆∗ ≥ ∆p′/4 (see also Lemma D.2). This lower
bound on ∆∗ could be used to parameterize the ADC Algorithm 1, however, we prefer to
estimate ∆∗ directly in Algorithm 2 before applying the routine ADC. Recall that n′

p =

c6
σ2

∆2
p

(
log(3K2/δ) +

√
d log(3K2/δ)

)
. We use 2Kn′

p′ samples to estimate ∆∗–see ∆̂ in Line 8
of Algorithm 2. Arguing as in the proof of Lemma C.8, we deduce from the definition (55) of c6,
that, on the intersection of the event E with an event of probability higher than 1− δ/3, we have

1

4
∆2

∗ ⩽
1

2
∆̂2 ⩽ ∆2

∗

Since, on this event, we have 2−1/2∆̂ ≤ ∆∗, we are in position to apply Lemma C.3 to
ADC(δ/3, 2−1/2∆̂, Ŝ). In summary, we have proved that ACB∗ is δ-PAC.
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D.2.2 Control of the budget of ACB∗

We now bound the budget of ACB∗ under the same event as in the previous subsection.

The key observation was proven page 22 of [17], taking Tl = 2l, it holds that

{θ ∈ (0, 1/K),∆ ∈ (0,∆0);
∆2

0

Kθ∆2
⩽ 2l} ⊂

l−1⋃
p=0

{(θ,∆) : θ ⩾ θp,l,∆ ⩾ ∆p} .

In particular, if 2l ⩾ ∆2
0

Kθ∗∆2
∗

, then, there exists p ∈ [l − 1] such that θp,l ⩽ θ∗ and ∆p,l ⩽ ∆∗.
From this result and from Lemma D.2, we get that, on the event E , the stopping time l′ satisfies
l′ ⩽ L∗ =

⌈
log2

(
∆2

0

θ∗K∆2
∗

)⌉
–recall that L∗ is defined in (54).

We write τ1 at the total budget we have spent for computing Ŝ. Recall that the budget of the routine
SRI is almost surely bounded by Tmax — see (12) — and we upper bounded Tmax in (37). In order
to emphasize the dependency of this budget on (δ,∆, θ) we write Tmax(δ,∆, θ) in the sequel.

By (37), on the event E , we have

τ1 ⩽
L∗∑
l=0

l∑
p=0

Tmax(δl,∆p, θp,l ∨ 1/N)

⩽
L∗∑
l=0

l∑
p=0

2

(⌈
8

θp,l
log

(
8K

δl

)⌉
+K

)
+ c′

σ2

∆2
p

1

θp,l
log

(
K

δl

)[
log(K) +

√
d+ log log

(
N

δl

)]
.

We observe that, in ACB∗ Line 4, we use SRI with θp,l∨1/N because any environment has necessary
a balancedness larger than 1/N . It allows us to bound the log log-term in eq. (37) by log log(N/δ).

Now, by definition (16), θp,l = 1
K2l−p and ∆2

p =
∆2

0

2p so that 1
∆2

p

1
θp,l

= K2l

∆2
0

and then

τ1 ⩽
L∗∑
l=0

l∑
p=0

(
16K · 2p log

(
8K

δl

)
+ 2(K + 1)

)

+

L∗∑
l=0

l∑
p=0

c′
σ2

∆2
0

K2l log

(
K

δl

)[
log(K) +

√
d+ log log

(
N

δL∗

)]
⩽2(L∗ + 1)

2
(K + 1) + cK2L

∗
log

(
8K

δL∗

)
+c′

σ2

∆2
0

K(L∗ + 1)2L∗ log

(
K

δL∗

)[
log(K) +

√
d+ log log

(
N

δL∗

)]
.

Now, 2L∗ ⩽ 2
∆2

0

θ∗K∆2
∗

, so that

τ1 ⩽2(L∗ + 1)
2
(K + 1) + c

∆2
0

θ∗∆2
∗
log

(
8
K(L∗ + 1)

3

δ

)

+c′(L∗ + 1)
σ2

θ∗∆2
∗
log

(
6K(L∗ + 1)

3

δ

)[
log(K) +

√
d+ log log

(
6N(L∗ + 1)

3

δ

)]

⩽cL2
∗K + c′L∗

σ2

θ∗∆2
∗
log

(
KL∗

δ

)[
log(K) +

√
d+ log log

(
NL∗

δ

)]
. (56)

In the last inequality, we used the expression of ∆2
0 (15) which implies that

∆2
0

θ∗∆2
∗
log

(
8
K(L∗ + 1)3

δ

)
⩽ c′

σ2

θ∗∆2
∗
log

(
KL∗

δ

)[
log(K) +

√
d+ log log

(
N

δ

)]
.
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Let us now consider the budget τ2 dedicated to the estimation of ∆∗. Since ∆−2
p′ ≤ 2L∗∆−2

0 , we
deduce that

τ2 = 2Knp′ ≤ 2K + c
σ2

θ∗∆2
∗

(
log(3K2/δ) +

√
d log(3K2/δ)

)
. (57)

Finally, as we are working under the event ∆̂2/∆2
∗ ∈ [1/2, 2], we deduce from Lemma C.3 that the

budget τ3 incurred by ADC is smaller or equal to

τ3 ≤ 2N + c
σ2

∆2
∗
N log

(
N

δ

)
+ c

σ2

∆2
∗

√
dKN log

(
N

δ

)
. (58)

The total budget is obtained by summing the bounds (56), (57), and (58).

It remains to consider the case where ∆∗ ≥ ∆0. In that case, under the events of the previous
subsection, the first phase of the algorithm stops at the latest as (l, p) = (L∗, 0), where L∗ =
⌈log2(1/(θ∗K))⌉. Arguing as above, we deduce that τ1 satisfies

τ1 ≤ cKL2
∗ + c′L∗

1

θ∗
log

(
KL∗

δ

)
. (59)

Regarding the second step of the algorithm, we know that p′ ≤ L∗ so that ∆−2
p′ ≤ 2L∗∆−2

0 ≤ ∆−2
0

θ∗K
.

We deduce that

τ2 ≤ 2K + c
1

θ∗

log(3K2/δ) +
√
d log(3K2/δ)

[log(K) +
√
d+ log log(6N/δ)]

≤ 2K + c′L∗
1

θ∗
log

(
KL∗

δ

)
. (60)

Finally, the budget τ3 is still given by (58). Gathering (59), (60), and (58) allows us to conclude.

E Concentration inequalities

We now give a few concentration inequalities used in the paper.

First, a consequence of the definition of σ-subGaussian random variables given in Assumption 2.1 is
the following,

Lemma E.1. Let Y ∈ R be subGaussian, then for all x > 0,

P(X > x) ⩽ exp(−x2

2
), and P(X < −x) ⩽ exp(−x2

2
) .

Here is Laurent and Massart inequality, page 1325 of [22].

Lemma E.2 (Laurent & Massart). Let Z ∼ χ2
d a chi-square distribution, where d ⩾ 1 is the degree

of freedom, then for any x > 0,

P(Z ⩾ d+ 2
√
dx+ 2x) ⩽ exp(−x), and P(Z ⩽ d− 2

√
dx) ⩽ exp(−x) .

We now give the Hanson-Wright inequality for the concentration of scalar products of subGaussian
random variables – see [32] for the proof.

Lemma E.3 (Hanson-Wright inequality). Let Y be a d-dimensional vector in Rd with independent,
centered and 1-subGaussian components. Let A be a d × d matrix. Then, there exists a constant
cHW such that for any x ⩾ 0,

P(Y TAY − E[Y TAY ] > x) ⩽ exp

(
− 1

cHW

(
x2

∥A∥2F
∧ x

∥A∥op

))
,

where ∥A∥op is the operator norm of A, ∥A∥F is the Frobenius norm.

We use in this paper the following corollary,
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Corollary E.4. Let ν1 and ν2 be two probability distribution, with respective expectations µ1 and µ2.
We assume that there exists Σ1 and Σ2 two symmetric d× d matrices such that, for a = 1, 2, under
νa, E = Σ

−1/2
a [X − µa] is a vector with independent subGaussian random variables. Assume also

that ∥Σ1∥op ⩽ σ2 and ∥Σ2∥op ⩽ σ2.

Let m1 ∈ N∗ and m2 ∈ N∗ be two integers. Consider X1,1, . . . , X1,n1
be i.i.d variables distributed

as ν1, and X2,1, . . . , X2,n2
i.i.d variables distributed as ν2, independent of the observations of a2.

If ϵ1 :=
√
n1

σ

(
1
n1

∑n1

i=1 X1,i − µ1

)
, and ϵ2 :=

√
n2

σ

(
1
n2

∑n2

i=1 X2,i − µ2

)
, then, for any x ⩾ 1,

P(⟨ϵ1, ϵ2⟩ > x) ⩽ exp

(
− 2

cHW

(
x2

d
∨ x

))
.

Similarly, for any x > 0, we have

P

(
⟨ϵ1, ϵ2⟩ >

cHW

2
x ∨

√
cHW

2
dx

)
⩽ exp (−x) .

Proof. Let a = 1, 2. We specify the rotation Σa in the expression of ϵa,

ϵa =

√
na

σ

(
1

na

na∑
i=1

Xa,i − µa

)
=

1

σ
Σ1/2

a

1√
N

na∑
t=1

Σ−1/2
a [Xa,i − µa] .

Now, by assumption on the distribution νa, for all i ∈ [na], the vector Σ
−1/2
a [Xa,i − µa] has

independent and subGaussian entries. By independence of the random variables (Xa,1, . . . , Xa,na
),

the vector 1√
N

∑na

t=1 Σ
−1/2
a [Xa,i − µa] has independent entries. By independence and using the

definition of subGaussian variables given in Assumption 2.1, Ya := 1√
N

∑na

t=1 Σ
−1/2
a [Xa,i − µa] is

composed of independent and subGaussian entries. It holds then that:

⟨ϵ1, ϵ2⟩ = Y T
1

Σ
1/2
1 Σ

1/2
2

σ2
Y2 =

[
Y1

Y2

]T
S

[
Y1

Y2

]
,

where the matrix S := 1
2

[
0

Σ
1/2
1 Σ

1/2
2

σ2

Σ
1/2
1 Σ

1/2
2

σ2 0

]
is a 2d× 2d matrix. We can then apply Lemma E.3,

noticing that E[⟨ϵ1, ϵ2⟩] = 0, ∥S∥op = ∥Σ1/2
1 Σ

1/2
2

1
σ2 ∥op/2 ⩽ 1/2 and ∥S∥2F ⩽ d/2.
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