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Technologies, Université de Lorraine,
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Numerical comparison of crystallographic contour maps is

used extensively in structure solution and model refinement,

analysis and validation. However, traditional metrics such as

the map correlation coefficient (map CC, real-space CC or

RSCC) sometimes contradict the results of visual assessment

of the corresponding maps. This article explains such apparent

contradictions and suggests new metrics and tools to compare

crystallographic contour maps. The key to the new methods

is rank scaling of the Fourier syntheses. The new metrics are

complementary to the usual map CC and can be more helpful

in map comparison, in particular when only some of their

aspects, such as regions of high density, are of interest.
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1. Notation

F(hkl)exp[i’(hkl)]: crystallographic structure factor with

indices hkl.

Fcalc = Fcalc exp(i’calc): structure factors calculated from an

atomic model.

Fmodel = Fmodel exp(i’model): structure factors calculated from

an atomic model including modelled contribution from bulk

solvent and various scales (Afonine et al., 2013).

Nx, Ny, Nz: grid numbers defining a regular grid in real space.

Ngrid: total number of grid nodes of the unit cell used for

comparison; in particular, Ngrid = Nx�Ny�Nz if the maps are

analyzed for the whole unit cell.

n = (nx, ny, nz): grid node defined by its three integer indices.

�(x, y, z): Fourier synthesis calculated in the unit cell of direct

space.

�(n) = �(nx, ny, nz): Fourier synthesis calculated in grid node n.

��(n) = ��(nx, ny, nz): Fourier synthesis scaled in �.

�d1–d2: Fourier synthesis calculated with structure factors in

the resolution range (d1, d2).

�complete, �incomplete: Fourier syntheses calculated with a

complete set of structure factors up to a given high-resolution

cutoff or with some reflections excluded from this set; both the

resolution value and the method used to exclude reflections

are described explicitly for particular tests.

(F, ’) synthesis: Fourier synthesis calculated with the Fourier

coefficients Fexp(i’).

N�: number of grid nodes with the value below the cutoff level

� in the Fourier synthesis �: �(n) < �; � is given in the same

units as �.

�(�; �): quantile rank corresponding to the cutoff level � for

the Fourier synthesis �(n).

Q(n): (quantile) rank-scaled Fourier synthesis �(n).

P(n): rank-scaled Fourier synthesis �(n) with the values flat-

tened out of the peaks.

M(q) = {n: Q(n) < q}: mask defined by the cutoff level

expressed in the quantile rank q.
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D(q; �a, �b); discrepancy function between two grid functions,

�a(n) and �b(n), in particular between two Fourier syntheses.

CC(�a, �b): map correlation coefficient between two grid

functions.

CCr(�a, �b): rank correlation coefficient between two grid

functions.

CC<qpeak>(�a, �b): peak correlation coefficient between two

grid functions; selected peaks correspond to the qpeak quantile

rank.

2. Introduction

Macromolecular crystallography operates with the electron

(or neutron) density distribution in crystals. For ideal crystals,

this physical entity can be described by a periodic function

�exact(x, y, z) of three space fractional coordinates (x, y, z) and

can be represented by a Fourier series composed of an infinite

number of complex coefficients F(hkl)exp[i’(hkl)],

�exactðx; y; zÞ

¼ �
P1

hkl¼�1

FðhklÞ exp½i’ðhklÞ� exp½�2�iðhxþ kyþ lzÞ�

ð1Þ

(Ewald, 1913). The values of these coefficients, called structure

factors, depend on the crystal under study. The scale factor �,

equal to the inverse unit-cell volume, puts function (1) on an

absolute scale; alternative scales can also be used. In crystallo-

graphic practice, Fourier series contain only a finite set S of

terms and are usually calculated on a three-dimensional

regular grid Nx � Ny � Nz with the grid nodes described by

integer indices n = (nx, ny, nz),

�ðnÞ ¼ �ðnx; ny; nzÞ ¼ �
P

hkl2S

FðhklÞ exp½i’ðhklÞ�

� exp �2�i h
nx

Nx

þ k
ny

Ny

þ l
nz

Nz

� �� �
: ð2Þ

We call these grid functions (2) Fourier syntheses. To be

analyzed visually or by a computer program, these mathe-

matical entities are traditionally explored by contouring three-

dimensional isosurfaces

�ðnÞ ¼ �1; �ðnÞ ¼ �2; . . . ; ð3Þ

where �n are empirically chosen values. The result of such

contouring is a geometric object that is referred to below as a

crystallographic contour map.

Crystallographic structure solution typically deals with

many maps arising at different stages of the process. Often,

one is required to compare maps in order to assess model-

building and/or refinement steps. Quantitative comparison of

maps calculated for the same crystal, for different crystals

and even for different structures is important to evaluate the

progress of structure solution and to validate the structure.

However, confusion about the three terms given above,

electron (or neutron) density distribution, Fourier syntheses

and corresponding Fourier contour maps, sometimes leads

to apparent contradictions between numerical and visual

analyses, as shown below.

As an example, we consider the exact electron density

�pept_a(n) = �exact(n) corresponding to a peptide model (B =

1 Å2) placed in an orthogonal unit cell with unit-cell para-

meters a = b = 6, c = 3 Å, space group P1. �pept_b(n) is its

Fourier synthesis at a resolution of 0.5 Å and �pept_c(n) is a

Fourier synthesis calculated at a resolution of 1.0 Å for the

same peptide model but taken with B = 5 Å2 and completed by

a water molecule with B = 20 Å2.

The maps for �pept_a(n) and �pept_b(n) shown at 2� (x3.1.1)

are very similar to each other (compare Fig. 1a with Fig. 1b).

However, the usual map correlation coefficient

CCð�a; �bÞ ¼

P
n

½�aðnÞ � h�ai�½�bðnÞ � h�bi�

P
n

½�aðnÞ � h�ai�
2

� �1=2 P
n

½�bðnÞ � h�bi�
2

� �1=2

ð4Þ

(see Supporting Information1
xS1) between �a(n) = �pept_a(n)

and �b(n) = �pept_b(n) is only 0.90; here, h�ai and h�bi represent

the mean values of �a(n) and �b(n), respectively. Indeed, the

contour maps at 1� (compare Fig. 1d with Fig. 1e) show that

�pept_b(n) differs significantly from �pept_a(n). This reminds us

that similarity of two contour maps at some cutoff level does

not necessarily imply similarity of the corresponding synth-

eses.

Note that here we use the coefficient (4) to compare the

whole syntheses, for example as in Read (1986) and Lunin &

Woolfson (1993), while it can also be used locally (see, for

example, Brändén & Jones, 1990; Kleywegt et al., 2004; Rupp,

2006; Tickle, 2012).

Secondly, the traditional choice of a cutoff level in � (x3.1.1)

is often not appropriate for map comparison. The map for

�pept_c(n) at 2� (Fig. 1f) shows a much larger volume of the

unit cell in comparison with that for �pept_a(n) at the same 2�
cutoff level (Fig. 1a). However, the maps look similar when

taken at different cutoff values (compare Fig. 1c with Fig. 1a).

Thirdly, the three maps �pept_a(n), �pept_b(n) and �pept_c(n)

look similar to each other, while the map correlation coeffi-

cient CC calculated using (4) is high for one pair of them,

CC(�pept_a, �pept_b) = 0.9, and is low for another, CC(�pept_a,

�pept_c) = 0.6.

In fact, the map correlation coefficient (4) is obtained by

comparing two sets of values calculated on the same grid,

comparing all these values point by point but with no refer-

ence to the position of these points in space (these may even

be in a one-dimensional space). However, when we compare

two maps visually we look at the shape of one or a few chosen

isosurfaces. In other words, these two methods of comparison

give different characteristics for different objects related to

each other as explained above.

Fig. 2 illustrates a practical example with two protein

models available in the PDB (Bernstein et al., 1977; Berman et
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al., 2000). Here again, the calculated CC values disagree with

the visual analysis. The corresponding details are given in

x4.2.1.

Crystallographers use contour maps at different contour

levels to focus on different aspects of the maps. At high

contour levels the most prominent features are shown, while

at lower contour levels more

details of the electron density are

seen. In many cases it is the most

prominent features that are most

useful to the crystallographer in

identifying where atoms are likely

to be present in the structure. In

other cases, of course, the details

of the map are very important in

identifying errors in atomic

placement and in comparing

different maps.

In this article, we focus on a

subset of the information in a

map, such as the prominent

features in the electron density,

and suggest new approaches to

comparing crystallographic maps.

The emphasis in this work is on

the shapes of isosurfaces in these

maps. These are the shapes that

crystallographers normally use to

identify the atomic features of

structures in crystals.

Suppose we have two functions

calculated on the same grid. For

each function a mask can be

defined by some isosurface, with

all the points inside this mask

having a value greater than the

cutoff associated with the isosur-

face. We would like to compare

the shapes of these masks

(isosurfaces). Intuitively, masks

containing a different number of

grid nodes are different. The

question we focus on is how

similar are two masks composed

of the same number of grid nodes,

i.e. covering the same volume of

the unit cell. We show below that

to answer this question it is

convenient to rescale the synth-

eses in the quantile rank (see

x3.1.2) instead of a traditional

scaling in � (see x3.1.1).

After introducing rank scaling,

we discuss a way to create a

normalized metric useful in the

comparison of two masks or a

series of masks for various cutoff

levels (x3.2). This naturally leads

to a use of the Spearman rank

correlation (Spearman, 1904; see

research papers
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Figure 2
Fourier contour maps for 1nh2 and 3cr1. All syntheses are calculated with the model structure factors at a
resolution of 1.90 Å (1nh2) or 2.25 Å (3cr1). The syntheses are obtained for the complete data sets (right
column) and for those from the PDB (left column). The 1nh2 maps are shown with a cutoff level of 1.0� and
those for 3cr1 with a cutoff level of 1.5�. See x4.2 for details. The map correlation coefficient between the
top syntheses is 0.702 and that between the bottom syntheses is 0.642.

Figure 1
Fourier contour maps for artificial crystallographic peptide data. The function �pept_a(n) is an exact
electron-density distribution for the peptide model with B = 1 Å2; �pept_b(n) is the corresponding Fourier
synthesis at a resolution of 0.5 Å. �pept_c(n) is the Fourier synthesis at a resolution of 1.0 Å for the same
model completed by a water molecule and taken with B = 5 Å2. All H atoms were excluded from the
calculations.



also, for example, Lehmann & D’Abrera, 1998 and references

therein), which is the same as the conventional correlation

coefficient calculated for rank-scaled maps (x3.3). Considering

only grid nodes with relatively high rank values results in

another metric, a peak correlation coefficient (x3.4) that

corresponds to a visual comparison of the contour maps and

that is based on much of the key structural information in the

maps. x4 gives various possible illustrations where the new

metrics complement the traditional map correlation coeffi-

cient or explain some its apparent contradiction with a visual

analysis.

Comparison of maps calculated on different grids is outside

the scope of this work.

3. Methods

3.1. Scaling of crystallographic Fourier syntheses

3.1.1. Scaling by r. In macromolecular crystallography,

currently the most popular way of scaling crystallographic

syntheses is by �. Sigma-scaled Fourier syntheses are obtained

as follows,

��ðnÞ ¼
1

��
½�ðnÞ � h�i� ð5Þ

with

h�i ¼

P
n

�ðnÞP
n

1
¼

P
n

�ðnÞ

Ngrid

ð6Þ

and

�� ¼

P
n

½�ðnÞ � h�i�2

Ngrid

8<
:

9=
;

1=2

: ð7Þ

Here, �(n) is some initial function, Ngrid is the number of grid

points in the unit cell and h�i is always equal to 0 when the

term F000 is absent from the Fourier series (2). With such a

scaling, the grid function (5) has the propertiesP
n

��ðnÞ ¼ 0 ð8Þ

and P
n

�2
�ðnÞ

Ngrid

2
4

3
5

1=2

¼ 1: ð9Þ

Empirically, crystallographers consider values of ��(n) > 1 as

a ‘signal level’ at which the structural details are analyzed

(values notably above the mean value, i.e. above the value

for bulk solvent) and values of ��(n) > 3 as a ‘strong signal

level’.

Another source of confusion comes from the map correla-

tion coefficient (4). In statistics, the correlation coefficient is

used to compare two sets of values from related distributions.

However, the same formal expression is often used in crys-

tallography, instead of the least-squares metric (Supporting

Information xS1), to compare two syntheses defined as vectors

in an Ngrid-dimensional space. We stress that in the current

work we do not consider the crystallographic Fourier synth-

eses as random functions even when such a consideration

has previously been used in a number of projects (see, for

example, Luzzati, 1953; Blow & Crick, 1959; Ramachandran &

Raman, 1959; Main, 1979 and references therein; Vijayan,

1980; Read, 1986; Lunin, 1989; Terwilliger, 2000; Burla

et al., 2010; Lang et al., 2014). In the following, we consider

that both the map correlation coefficient (4) and the new

metrics are calculated for the whole unit cell. Naturally, they

can be calculated locally for any part of the unit cell; in this

case, Ngrid would be the number of grid nodes inside this

part.

Since the scaling (5)–(7) is a linear transformation, the

correlation coefficient (4) calculated for the ��(n) values

coincides with the correlation coefficient CC calculated using

the original values �(n).

While such scaling in � is convenient to distinguish

macromolecular features, it may be misleading when used for

visual and numerical comparison of syntheses, as the example

in x2 shows (Fig. 1; see also x4.1). The reason for this is that the

frequency distribution of the values of the syntheses (Lunin,

1988, 1993; Main, 1990a,b) may be different for the two

syntheses. As a consequence, the same cutoff level in � defines

different numbers of grid nodes selected by this level for these

syntheses. Obviously, regions composed of a different number

of points (using the same grid) can never be equal.

3.1.2. Rank scaling. The map comparison becomes easier if

the Fourier syntheses are scaled in quantile ranks or are rank

scaled. In image processing, this operation is referred to as

histogram equalization (see, for example, Pratt, 1978). This

means that for each cutoff value � we count the number N� of

grid nodes n such that the synthesis value is below it, �(n) < �,

and we then calculate the ratio

�ð�; �Þ ¼
N�

Ngrid

; 0 � �ð�; �Þ � 1: ð10Þ

Here, the second argument, �, is the Fourier synthesis to be

studied and the first argument, �, is a particular value. In

statistics, the value � (10) is called a quantile rank; when

multiplied by 100 this gives the percentile rank. The notions

of percentile and quantile and the corresponding ranks have

recently been used in crystallography by Pozharski (2010),

Gore et al. (2012) and Tickle (2012), although for different

goals. Previously in crystallography, a scaling in units

complementary to the quantile/percentile rank, i.e. in the

fractional unit-cell volume covered by the mask �(n) > �, has

been used by Vagin (personal communication) and by Lunin

and coworkers (Lunin, 1988; Vernoslova & Lunin, 1993).

For a given synthesis �, the function (10) increases with �.

This monotonic behaviour permits an easy rank scaling

(Appendix A), replacing the value �(n) at each point by

QðnÞ ¼ �½�ðnÞ; �� ð11Þ

using �(�; �) (10). This scaling does not change the shape of

any isosurface, as all points with the same value of � have the
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same value of the new function. Note that in contrast

to the rescaling in �, rank rescaling is a nonlinear transfor-

mation.

Most commonly, macromolecular crystallographers work

with syntheses calculated with the coefficients (amplitudes)

wFobs or 2mFobs � DFcalc (Read, 1986) and scaled in �.

Analyzing these syntheses, at least for the resolutions 1–3 Å

at which many structural projects are carried out, the cutoff

values � used for visual interpretation range approximately

between 1 and 2�. The particular choice may depend on the

resolution, bulk-solvent content and other factors. Fig. 3 shows

that the ranks corresponding to these values vary approxi-

mately from 0.85 to 0.95. These model calculations agree with

calculations using various experimental data (not shown); in

particular, this includes experimental data from PDB entries

with low, medium and extremely high solvent content. This

research papers
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Figure 3
Quantile ranks (multiplied by 100) corresponding to a different � cutoff in Fourier syntheses at resolutions of 3 Å (left column), 2 Å (central column)
and 1 Å (right column). Syntheses are computed with the exact structure factors calculated from an accurate atomic model (top row) and from a model
with large random coordinate errors (second row) with a small (third row) and a large (bottom row) atomic displacement parameter (B). The model was
placed in unit cells of different sizes simulating different percentages of bulk-solvent content equal to 0.23 (empty square markers), 0.58 (no markers)
and 0.81 (solid circle markers).



also agrees with the previous observation by Ioerger &

Sacchettini (2002).

Other scaling methods, e.g. choosing another � value [for

example such that maxn |�(n)| = 100 or using a so-called

‘absolute scale’] or another nonlinear scheme (for example,

Bhat, 1988; Lunin et al., 2000) are known, but we will not

review this issue here in detail.

3.2. Comparison of two masks

Since the introduction of graphics stations in macro-

molecular crystallography, syntheses have typically been

presented by a single isosurface at a time with the possibility of

varying the corresponding cutoff levels. When we compare

two syntheses visually, we look at the shape of the masks

covered by the corresponding isosurfaces (there are a number

of publications on image analysis that discuss the relevant

computational procedures; see, for example, Bruckner &

Möller, 2010 and references therein). As mentioned above, the

quantitative similarity of two masks can be examined most

readily when these masks are constructed so that they contain

equal volumes. This is a particular advantage of the rank-

scaling approach, which naturally leads to equal volumes at

given contour levels in different maps. Other one-to-one

syntheses-scaling schemes with a similar property (Supporting

Information xS3) are less convenient for the goals of the

current work.

In order to compare two masks, we start by measuring

(calculating) the difference between them. Let Qa(n) and

Qb(n) be the two rank-rescaled syntheses �a(n) and �b(n). For

any quantile rank value, 0 � q � 1, the subsets (masks)

MaðqÞ ¼ fn : QaðnÞ < qg

MbðqÞ ¼ fn : QbðnÞ < qg ð12Þ

contain the same number Nselected = qNgrid of grid nodes.

The difference between these masks may be described by the

number Ndiff of the nodes that belong to one of them and do

not belong to another one,

MdiffðqÞ ¼ MabðqÞ [MbaðqÞ; ð13Þ

where

MabðqÞ ¼ fn : ½QaðnÞ< q� and ½QbðnÞ � q�g

MbaðqÞ ¼ fn : ½QaðnÞ � q� and ½QbðnÞ < q�g: ð14Þ

Note that by construction Mab(q) and Mba(q) contain the same

number of points. The condition Ndiff = 0 means that the masks

Ma(q) and Mb(q) coincide. If Ndiff > 0 then the masks are

different, but the value of Ndiff does not allow judgment of the

degree of this difference because the same number of differing

points Ndiff may have a different significance for small and

large rank values q.

To put this difference Ndiff on a scale, we compare Ma(q)

with a random set Mrandom composed of the same number

Nselected of grid nodes distributed uniformly in the unit cell

and thus containing no structural information. On average,

the number of grid nodes of Mrandom that are outside Ma(q) is

just the number of grid nodes in Mrandom multiplied by the

fraction of the cell that is outside Ma(q), i.e. by (1 � q),

ð1� qÞNselected ¼ ð1� qÞqNgrid: ð15Þ

The same estimate is valid for the comparison of Mrandom with

Mb(q). Based on this, we normalize Ndiff as

Dðq; �a; �bÞ ¼
Ndiff

2qð1� qÞNgrid

: ð16Þ

The calculated values of the normalized function D(q; �a, �b)

at some value of the argument q may be equal to its minimal

possible value, zero, when the corresponding masks coincide

and may approach one when the two masks are uncorrelated.

Since (15) is only a statistical estimate, in practice D(q; �a, �b)

may sometimes happen to be greater than one. We notate (16)

as D(q; �a, �b) and not D(q; Qa, Qb) to stress that this measure

can be applied to any two functions calculated on the same

grid and not necessarily functions rescaled in some specific

way. We call (16) a discrepancy function. Different values of

the argument q are useful for obtaining different types of

information: high q values are useful for identifying the peaks

of the functions (atomic positions or macromolecular chain),

while q close to 0.5 is useful for the identification of molecular

envelopes (the actual corresponding value of q varies with the

fraction of the solvent region).

3.3. Rank correlation coefficient

When calculating the discrepancy function D (16) between

two syntheses, we compare masks of equal size (‘equivalent

masks’), varying the cutoff level at which these masks are

selected. To make such comparison easier, we rank-scale the

syntheses. When comparing a pair of equivalent masks we

check each grid node one by one, identifying whether this grid

node is inside only one mask, the other, both or neither.

Alternatively, after rank scaling the two syntheses Qa(n)

and Qb(n) we may express their similarity by

CCrð�a; �bÞ ¼

P
n

½QaðnÞ � hQai�½QbðnÞ � hQbi�

P
n

½QaðnÞ � hQai�
2

� �1=2 P
n

½QbðnÞ � hQbi�
2

� �1=2
:

ð17Þ

This metric of similarity of syntheses �a(n) and �b(n) varies

from �1 to 1, and in statistics it is known as Spearman’s rank

correlation coefficient (Spearman, 1904). We may note that

(Appendix A)

CCrð�a; �bÞ ’

12
P

n

QaðnÞQbðnÞ

Ngrid

� 3: ð18Þ

The key property of the rank correlation coefficient CCr(�a,

�b) is its invariance with respect to scaling of the syntheses

�a(n) and �b(n). As mentioned in x3.1.1, scaling by � does

not change the standard correlation coefficient CC(�a, �b). In

particular, CC(�a, �b) = 1 for all proportional functions, i.e.

when �b(n) = ��a(n) for all n. An important advantage of the

rank correlation coefficient CCr(�a, �b) compared with CC(�a,
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�b) is that the former is invariant upon any monotonic (and

not necessary linear) rescaling of the syntheses �a(n) and

�b(n). In particular, CCr(�a, �b) for a pair of nonproportional

functions related by any monotonously increasing function

�b(n) = f [�a(n)].

Note that using CCr(�a, �b), in contrast to D(q; �a, �b),

applies not only to Fourier maps shown as series of masks but

also to any continuous spectrum of colours or intensities (see,

for example, Schotte et al., 2003).

As an example, the rank correlation coefficients CCr for

the peptide syntheses defined in x2 are given by CCr(�pept_a,

�pept_b) = 0.56 and CCr(�pept_a, �pept_b) = 0.22, which is more

indicative of their difference than the standard map correla-

tion coefficient values, which are equal to 0.90 and 0.60,

respectively. More details of comparison of these syntheses

using the discrepancy function, the rank correlation coefficient

and other metrics as defined below are discussed in x4.1.

3.4. Comparison of peaks

Syntheses such as wFobs or 2mFobs� DFcalc scaled in � have

both positive and negative values. While analysis of negative

values may be important (see, for example, Urzhumtsev et al.,

1989), often only the regions of positive values are of interest.

This is the case for visual analysis and manual model building;

for example, the program Coot (Emsley et al., 2010) defaults to

showing nondifference �-scaled maps at � > 0. However, maps

similar in the positive domain may be different in the negative

domain. This may give rise to an apparent contradiction:

similar-looking maps (inspected in the positive domain only)

may have low correlations computed using the entirety of the

maps.

Since map regions with high values contain most of the

structural information, it is useful to have a way to compare

contour maps such that (i) differences between low values of

the synthesis should not play a role and (ii) if a high value in

one synthesis corresponds to a low value in another synthesis,

the desired metric should not depend on the exact value of the

lower value.

For example, for structures with the most frequent

percentage of bulk solvent, the separation of positive and

negative values in �-scaled maps roughly corresponds to half

of the syntheses, i.e. to the quantile-rank cutoff q = 0.50. When

comparing the top halves of the rank-scaled syntheses Qa(n)

and Qb(n), we shall exclude from comparison all grid points

for which the values in both syntheses are low, defining a set of

grid nodes staying with

�50 ¼ fn : ½QaðnÞ > 0:50� or ½QbðnÞ > 0:50�g: ð19Þ

Similarly, to effectively compare regions with high density

(near peaks in the map) corresponding to a higher quantile

rank value 0.5 < qpeak < 1.0, we define

�qpeak ¼ fn : ½QaðnÞ > qpeak� or ½QbðnÞ > qpeak�g: ð20Þ

We then flatten the syntheses values in the �qpeak points if

these values are below qpeak for one of the syntheses,

PaðnÞ ¼
QaðnÞ if QaðnÞ � qpeak

qpeak if QaðnÞ< qpeak

�
;

PbðnÞ ¼
QbðnÞ if QbðnÞ � qpeak

qpeak if QbðnÞ< qpeak

�
ð21Þ

and finally calculate

CC<qpeak>ð�a; �bÞ ¼P
n2�qpeak

½PaðnÞ � hPai�½PbðnÞ � hPbi�

P
n2�qpeak

½PaðnÞ � hPai�
2

( )1=2 P
n2�qpeak

½PbðnÞ � hPbi�
2

( )1=2
:ð22Þ

Here,

hPai ¼

P
n2�qpeak

PaðnÞ

N�;qpeak

; hPbi ¼

P
n2�qpeak

PbðnÞ

N�;qpeak

ð23Þ

and N�,qpeak is the number of grid nodes in �qpeak defined by

(20). For example, a qpeak value equal to 0.50 defines CC50 and

a qpeak value equal to 0.90 defines CC90 . As previously, the

sums in (22) exclude all grid nodes in which both syntheses

have values lower than the chosen threshold, indicating that

we are not interested in comparison of syntheses at these

points.

3.5. Practical applications

Depending on the particular problem, different tools are

useful to compare crystallographic Fourier syntheses and the

corresponding contour maps.

Naturally, when the similarity of three-dimensional func-

tions (for example, crystallographic Fourier syntheses) is

analyzed, for example when these functions are used to extract

the phase values of corresponding Fourier coefficients, the

traditional map correlation coefficient (4) is still a good metric.

However, in a major part of crystallographic projects only

the Fourier contour maps for positive cutoff values (in

�-scaled syntheses) are used for visual inspection of maps.

Moreover, for syntheses at a resolution of 1–3 Å the most

frequently used cutoff levels of 1–2� correspond to rank

values q of as high as 0.85–0.95. To accompany the traditional

visual analysis, we suggest using the coefficient CC90 as a rule

of thumb and switching to CC95 using higher rank values in the

case of a larger fraction of bulk solvent, higher map resolution

or smaller B factors, and switching to CC85 or CC80 in the

opposite situations. The correlation coefficient CC50 may be

used to characterize the similarity of isosurfaces roughly

corresponding to molecular masks for structures with typical

values of the bulk-solvent fraction.

Use of the coefficient CCr may be advised when the whole

set of isosurfaces, including those for negative peaks, are

studied. The discrepancy function D(q; �1, �2) completes this

toolset when more detailed information is required.

x4 below provides examples of applications of the new

correlation coefficients to macromolecular diffraction data.

All of these applications confirm that the new metrics reflect
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important synthesis details that the standard CC does not fully

consider. Moreover, in some cases they explain an apparent

disagreement between CC and visual map analysis.

With regard to an appropriate visual comparison of synth-

eses, we suggest rank-scaling them first and selecting the same

cutoff value for the visualization of each. Alternatively, the

syntheses can be taken on their initial scales (for example in �)

with the cutoff levels selected from equalization of the

corresponding rank values as described in (28) and (29) in

Appendix A.

4. Examples, applications and results

4.1. Peptide model data

We first apply the new metrics to the syntheses �pept_a(n),

�pept_b(n) and �pept_c(n) defined in x2 for a simulated peptide

crystal. For the very sharp electron-density distribution

�pept_a(n) corresponding to a crystal with very few atoms, the

rank scale is lower than that for the macromolecular syntheses

at usual resolutions of 1–3 Å. In particular, for �pept_a(n) the

value q = 0.80 corresponds to a zero cutoff level in �, the value

q = 0.95 corresponds to 0.6� and q = 0.99 corresponds to 2.2�.

(Fig. 3 reminds us that for typical macromolecular syntheses

the value 0� corresponds to the range q = 0.40–0.60, the value

1� corresponds to the range q = 0.85–0.90 and 2� to the range

q = 0.90–0.95.)

For the exact electron-density distribution �pept_a(n) and the

corresponding synthesis �pept_b(n) at a resolution of 0.5 Å, the

rank correlation coefficient is lower than the standard map

correlation coefficient (Table 1). This means that for most

cutoff levels the masks in the 0.5 Å resolution synthesis differ

significantly from those in the exact electron density. Figs. 1(d)

and 1(e) provide an example. The coefficient CC90(�pept_a,

�pept_b) is above 0.80, indicating that the peaks (their position

and shape) around atomic positions are more or less

conserved.

Both the CC and CCr correlation coefficients for �pept_a(n)

with �pept_c(n) are lower than for the comparison of �pept_a(n)

with �pept_b(n); this is owing to the lower resolution of

�pept_c(n) and the presence of an additional atom in the crystal.

Neither of these values indicates similarity of the contour

maps showing peaks above the level for the water molecule

(Figs. 1a and 1c), while the correlation coefficient CC95 does.

The Supporting Information (xS2) contains another

example built on the basis of this peptide model; this example

is more mathematical and illustrates comparison of grid

functions by different correlation coefficients in a more

transparent way. These results confirm that the new metrics

describe the information contained in the crystallographic

contour maps much better than the traditional metrics.

4.2. Incomplete low-resolution data sets

4.2.1. Explaining an apparent contradiction between low
correlation coefficients and similar contour maps. A model

Fcalc exp(i’calc) Fourier synthesis (referred to as �incomplete)

computed for PDB entry 1nh2 by (2) using reflection indices

from the deposited data set (Bleichenbacher et al., 2003;

highest resolution 1.9 Å; data completeness 95%) shows part

of the structure very poorly (Fig. 2a). Fig. 2(b) shows a model

Fourier synthesis �complete calculated with the same coefficients
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Table 1
Numerical comparison of the syntheses for the peptide model.

For definition of the syntheses (Fig. 1) and the correlation coefficients between
�a and �b, see the text.

�a �b CC CCr CC50 CC70 CC80 CC90 CC95 CC99

�pept_a �pept_b 0.895 0.557 0.597 0.663 0.708 0.485 0.517 0.829
�pept_a �pept_c 0.596 0.219 0.214 0.360 0.488 0.662 0.740 0.428
�pept_b �pept_c 0.660 0.273 0.210 0.295 0.337 0.349 0.553 0.553

Figure 4
Discrepancy function D(q) comparing the Fourier contour maps obtained
with complete and incomplete data sets. (a) Comparison of the syntheses
�incomplete calculated for the set of reflections as deposited in the PDB
with the syntheses �complete obtained with the complete data set of the
respective resolution (dhigh = 1.90 Å for 1nh2 and dhigh = 2.25 Å for 3cr1).
(b) Comparison of �complete (complete data set at a resolution from dhigh

to infinity) with �incomplete calculated with a data set in the resolution
interval dhigh to 10 Å. The curves are shown for dhigh = 2 Å (solid squares,
1zud; solid circles, 1q09; solid triangles, 1ous) and for dhigh = 4 Å (open
squares, 1zud). The curve marked by stars is for comparison of the two
�complete maps for 1zud, one calculated with the complete data set at a
resolution of 2 Å and the other with the complete data set at a resolution
of 4 Å.



using all theoretically possible reflections up to 1.9 Å resolu-

tion. The correlation coefficient CC calculated using (4)

between the two syntheses is 0.70. Since both syntheses were

calculated with the model data, the only source of difference

is the missing reflections, essentially the lowest resolution

reflections (there are 300 reflections missing from 408 with

resolution below 10 Å; all 59 reflections with resolution below

20 Å are missing).

A similar comparison of �incomplete with �complete for another

test case (PDB entry 3cr1; MacElrevey et al., 2008; highest

resolution 2.25 Å; data completeness 98%) yields an even

lower map correlation coefficient CC = 0.64, which one would

expect to be reflected by a larger difference between the two

maps. This low correlation coefficient is owing to missing only

2% of the reflections (there are 116 reflections missed out of

251 collected at a resolution below 10 Å and 32 reflections out

of 42 at a resolution below 20 Å). However, the contour map

obtained with the incomplete data set is perfectly inter-

pretable for the whole molecule and is very similar to the map

calculated with the complete set of reflections (compare

Fig. 2d with Fig. 2c). This illustrates that the map correlation

coefficient is not necessarily a good predictor of the visual

similarity of maps either from its value or when comparing

different pairs of maps.

The rank correlation coefficient CCr (18) is 0.30 for 1nh2

and just 0.01 for 3cr1 and is even lower than the values of the

standard map correlation coefficient. It shows that in this case

of missing low-resolution data most of the masks are severely

changed compared with the corresponding masks in �complete

(see also Urzhumtsev, 1991; Urzhumtseva & Urzhumtsev,

2011).

The peak correlation coefficient considers only the part of

the map in the quantile rank greater than 0.90 and gives

different information. Its value is 0.67 for 1nh2 and 0.83 for

3cr1 and shows that the peaks are conserved much better for

3cr1, agreeing with the visual analysis. This relationship is not

shown by either the standard map correlation coefficient or

the rank correlation coefficient. Fig. 4(a) expands on this

calculation of CC90 by showing the discrepancy function D(q)

for these two comparisons. It can be seen that for most rank

values q the contours are quite different in both cases, D(q) ’

1, that for high q values such as 0.90 they

are equally similar and for very high

values such as q ’ 0.95 they are more

similar for 3cr1.

4.2.2. Effect of low-resolution
incompleteness on crystals with various
solvent contents. The examples in x4.2.1

illustrate the effect of low-resolution

data incompleteness. It seemed possible

that the strength of this effect might

depend on the fraction of bulk solvent

in the crystal. We made a comparative

analysis considering three cases of bulk-

solvent content: near the very common

value of 50% (PDB entry 1zud;

Lehmann et al., 2006; solvent content

0.47), very high (PDB entry 1q09; Changela et al., 2003;

solvent content 0.84) and very low (PDB entry 1ous; Loris et

al., 2003; solvent content 0.24).

For each of these structures, we calculated a complete set of

structure factors Fcalc exp(i’calc) from the atomic model at a

resolution of 2 Å. We call the Fourier synthesis calculated with

these structure factors �2–1(n) = �complete(n). We also calcu-

lated another Fourier synthesis Fcalc exp(i’calc) in which all of

the structure factors at a resolution outside the range 2–10 Å

were excluded. We call this synthesis omitting low-resolution

data beyond 10 Å �2–10(n) = �incomplete(n).

Both the conventional correlation coefficient CC and the

rank correlation coefficient CCr comparing �2–1(n) and �2–

10(n) decrease with increasing volume of the bulk-solvent

region in these cases (Table 2). Note that for 1ous, with an

extremely low bulk-solvent content, all of the maps are well

conserved.

The variation in CCr is more significant; in particular, its

value of close to zero for 1q09 means that for these data most

of the masks changed, information which is difficult to extract

from the CC value of above 0.7. At the same time, the peaks

are well conserved for all three structures; Fig. 5 gives an

example for 1zud. The larger the bulk-solvent content, the

higher the quantile rank corresponding to the highest value of

the peak correlation coefficient (Table 2; Fig. 4b).

The situation is quantitatively similar when we compare the

corresponding maps �4–1(n) = �complete(n) and �4–10(n) =

�incomplete(n) calculated with data at lower resolution, in the

ranges from 4 Å to infinity and from 4 to 10 Å, respectively

(Table 2).

4.3. Effect of data-resolution cutoff

Intuitively, it is clear that excluding high-resolution data

changes the maps in a different way than excluding low-

resolution data. It is easy to illustrate this using the new

metrics.

To do so, for each of the three structures described in x4.2

we calculated the Fcalc exp(i’calc) syntheses �2–1(n) and 4–1(n)

with the complete data sets at resolutions of 2 and 4 Å,

respectively, and compared them. The map correlation coef-
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Table 2
Comparison of the Fourier syntheses for selected PDB entries.

All syntheses were obtained with the calculated structure factors (Fcalc, ’calc). Correlation coefficients
between �a and �b are defined in the text.

PDB
code

�a

resolution
(Å)

�b

resolution
(Å) CC CCr CC50 CC70 CC80 CC90 CC95 CC99

1q09 2–1 2–10 0.714 0.059 0.080 0.242 0.471 0.811 0.850 0.669
4–1 4–10 0.605 0.495 0.353 0.388 0.510 0.680 0.591 0.238
4–1 2–1 0.876 0.441 0.560 0.825 0.847 0.629 0.438 �0.070

1zud 2–1 2–10 0.855 0.443 0.666 0.864 0.908 0.899 0.875 0.845
4–1 4–10 0.764 0.622 0.670 0.764 0.767 0.683 0.590 0.459
4–1 2–1 0.797 0.779 0.685 0.555 0.468 0.260 0.002 �0.402

1ous 2–1 2–10 0.961 0.860 0.868 0.958 0.962 0.954 0.938 0.908
4–1 4–10 0.888 0.832 0.808 0.846 0.857 0.820 0.745 0.588
4–1 2–1 0.596 0.492 0.419 0.331 0.239 0.005 �0.250 �0.528



ficient values CC(�2–1, �4–1) are relatively high; for example

for 1q09 this coefficient is as high as 0.88. This number shows

some difference in the maps at such high- and low-resolution

cutoffs; however, one might intuitively expect a much larger

difference. Indeed, the rank correlation coefficient CCr(�2–1,

�4–1) is much lower for 1q09, being equal to 0.44 and showing

that the maps are substantially different.

As expected, the peak correlation coefficients for high rank

values q are low (see, for example, CC95 and CC99) since the

peaks are merged in the 4 Å resolution maps in comparison

with the 2 Å resolution maps. The close-to-zero values of these

coefficients are more intuitive than the value of the map

correlation coefficient CC(�2–1, �4–1) given above.

At the same time, some peak correlation coefficients are

relatively high, e.g. CC80(�2–1, �4–1) = 0.85 for 1q09. The

corresponding rank value corresponds well to that defining the

molecular region (see also Fig. 5) and shows that the mole-

cular masks are less affected by excluding the high-resolution

data. For the 1ous data, the molecule occupies practically the

whole unit cell (and simply the whole unit cell if structural

waters are included), and all peak correlation coefficients for it

are low, showing changes in the maps at all cutoff levels.

Thus, using CCr and the rank correlation coefficients may

illustrate features that are difficult to see when referring only

to the standard map correlation coefficient CC (4).

4.4. Effect of excluding reflections for cross-validation

x4.2 shows that the loss of a relatively small number of low-

resolution reflections (as few as 2%) can result in significant

changes in the Fourier contour maps. On the other hand, the

test data set (Brünger, 1992), typically containing 5–10% of

the total number of reflections, is purposely excluded from all

calculations; this should be the case for all steps including,
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Figure 5
Fourier contour maps for 1zud. All syntheses are calculated with the model structure factors at the resolution cutoff indicated above each column and are
shown at different rank levels (top, 0.9; middle, 0.7; bottom, 0.5). The solvent content is 0.47. Note the conservation of peaks and the loss of the molecular
envelope when removing low-resolution data and the conservation of the envelope with decreasing resolution.



formally speaking, the calculation of

contour maps (although the latter is not

always the case in practice). These data

are used for validation (Brünger, 1992)

and to estimate statistical parameters

(Lunin & Skovoroda, 1995; Pannu &

Read, 1996; Murshudov et al., 1997). In

general, the reflections for the test set

are chosen randomly and uniformly

across reciprocal space.

There is an old and frequently asked

question whether excluding such

reflections noticeably distorts the

Fourier contour maps. We do not

analyze this question in detail here, but

simply illustrate the effects for a typical

protein structure under typical condi-

tions. To do so, we used the IF2 struc-

ture that we recently solved (Simonetti

et al., 2013; PDB entry 4b3x). The

corresponding crystals belonged to

space group P212121, with unit-cell

parameters a = 45.42, b = 61.46,

c = 162.40 Å. The experimental data set

is complete to 2 Å resolution (with only two low-resolution

reflections missing); bulk solvent occupies approximately 50%

of the unit cell. The R and Rfree values calculated by PHENIX

(Adams et al., 2010) are less than 0.18 and 0.22, respectively,

showing that the structure factors Fmodel exp(i’model) calcu-

lated from the atomic model including the correction from the

bulk solvent [Jiang & Brünger (1994), with the improvements

described by Afonine et al. (2013)], reproduce the experi-

mental data well. Thus, we used the phase values ’model as the

best possible approximation to the unknown values to be

associated with the experimental structure-factor amplitudes

Fobs.

We calculated a series of Fourier syntheses at a resolution

of 2 Å with coefficients Fobs exp(i’model), with the fraction of

randomly excluded reflection ranging between 5 and 10%, as

is routinely undertaken for test-set reflections. Each of these

syntheses was compared with a synthesis calculated with the

complete data set. The correlation coefficient CC between

them remained high, i.e. above 0.90, even when the test set

contained up to 20% of the data. However, the peak corre-

lation coefficients CC50–CC80 indicated non-negligible map

changes when 10% of the data were excluded. The maps

showed significant noise at the rank value q = 0.80 (roughly

0.4� for this synthesis) and incorrect density for a few weakly

defined side chains. We note that the molecule occupies

approximately half of the unit cell: q = 0.50. The differences

resulting from the exclusion of 10% of reflections are more

significant than the differences owing to experimental errors

in amplitudes, as can be seen from comparison with the maps

calculated with coefficients Fmodel exp(i’model) (Table 3).

Overall, maps obtained with the model data Fmodel exp(i’model)

illustrated a behaviour similar to that for Fobs exp(i’model)

maps.

Summarizing, we suggest that carrying out an analysis of the

rank and peak correlation coefficients could be used as a

routine tool for identifying a suitable fraction of reflections for

a test set in Fourier syntheses even when this set has been

already assigned. A synthesis may be calculated with the

working set of reflections and with the full available data set,

and if the rank or peak correlation coefficients between these

maps are low (a more systematic analysis is probably required

to define appropriate critical values), the test data set might be

reduced for further calculations by reassigning, also randomly

and uniformly, some reflections back to the working set. As

this example shows, the usual correlation coefficient alone

may be not sufficiently informative.

4.5. Bulk-solvent contribution

It is largely accepted that using a bulk-solvent correction is

vital in order to properly include low-resolution data into the

structure-solution process (see, for example, Phillips, 1980;

Fenn et al., 2010; Afonine et al., 2013 and references therein).

However, the influence of the bulk-solvent correction on

Fourier syntheses has been less discussed.

To analyze the direct effect of the bulk-solvent contribution

on the Fourier synthesis, complementary to the synthesis with

{Fmodel exp(i’model)} for the IF2 model (x4.4), we calculated

another synthesis with the structure factors {Fcalc exp(i’calc)}

without a bulk-solvent correction. The data sets were

complete at the resolution of 2 Å. As mentioned above, the

first data set, including the bulk solvent, reproduces the

experimental data quite well.

The correlation coefficient CC between the two syntheses,

equal to 0.89, indicates their high similarity. However, the rank

coefficient CCr of 0.62 shows that in fact the changes in the
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Table 3
Influence of excluded test data sets.

Fourier syntheses at the resolution dhigh = 2 Å were calculated for the IF2 structure (Simonetti et al., 2013)
using Fobs or Fmodel amplitudes and phases ’model. Correlation coefficients between �a and �b are defined in
the text.

Type of
amplitudes

�a, data
excluded
(%)

�b, data
excluded
(%) CC CCr CC50 CC70 CC80 CC90 CC95 CC99

Fobs 0 5 0.976 0.900 0.783 0.805 0.938 0.966 0.957 0.905
10 0.951 0.842 0.694 0.786 0.887 0.936 0.920 0.834
20 0.899 0.753 0.591 0.684 0.792 0.869 0.841 0.705

Fmodel 0 5 0.974 0.850 0.687 0.846 0.952 0.963 0.954 0.895
10 0.950 0.797 0.627 0.788 0.905 0.935 0.918 0.824
20 0.900 0.715 0.547 0.691 0.813 0.873 0.840 0.685

Table 4
Influence of amplitudes and bulk-solvent modelling.

The Fourier syntheses were calculated with the complete data sets at resolution dhigh for the IF2 structure
(Simonetti et al., 2013). Correlation coefficients between �a and �b are defined in the text.

dhigh

(Å)
�a,
coefficients

�b,
coefficients CC CCr CC50 CC70 CC80 CC90 CC95 CC99

2 Fobs, ’model Fmodel, ’model 0.970 0.834 0.671 0.843 0.940 0.944 0.926 0.819
2 Fcalc, ’calc Fmodel, ’model 0.894 0.623 0.712 0.905 0.940 0.963 0.961 0.953
3 Fcalc, ’calc Fmodel, ’model 0.881 0.684 0.733 0.915 0.949 0.941 0.925 0.864



map owing to unmodelled bulk solvent are not negligible. This

means that ignoring a bulk-solvent correction when modelling

the ‘experimental syntheses’ may result in maps that differ

from the correct maps and therefore may lead to wrong or

unjustified conclusions. In particular, such data are not

recommended for analysis of molecular envelopes since they

may be mostly affected by this improper modelling (Table 4).

At the same time, such simulated syntheses can be successfully

used when studying only the structural details since CC80–

CC95 indicate very high similarity of the peaks.

Comparison of the corresponding syntheses calculated at a

resolution of 3 Å gives values comparable with those for the

2 Å resolution syntheses. However, the peak correlation

coefficients for the rank q � 0.9 are lower. For example, the

coefficient CC99 corresponding roughly to the 3� cutoff level

decreases from 0.95 at 2 Å to 0.86 at 3 Å. This indicates that at

lower resolution limits the unmodelled bulk-solvent contri-

bution may distort not only the molecular envelopes but also

the peaks of the syntheses.

5. Discussion

The several examples presented in this work show that the

traditional map correlation coefficient CC does not always

correspond well to the similarity of or the difference in two

Fourier syntheses based on visual examination. Approaches

are presented to address this problem. They are based on the

concept of a rank scaling of the syntheses. With such a scaling,

regions selected with the same cutoff level contain the same

number of grid nodes and the number of grid nodes in

common is a useful measure of the similarity of the maps at

that cutoff level.

The rank correlation coefficient CCr is calculated as a

correlation of the rank-scaled syntheses instead of the initial

values �(n), for example those in �. Both CC and CCr are

equal to 1 when the values of the two syntheses are related by

a linear transformation. However, in contrast to CC, CCr is

equal to 1 also when the values of the syntheses are related

by a nonlinear monotonic transformation; here, the maps are

exactly the same but correspond to different cutoff levels on

the original scales.

To accompany traditional visual analysis, we suggest using

the peak correlation coefficients, in particular CC90, as a rule

of thumb, adjusting the peak level to particular situations and

problems. To compare molecular masks or peaks in the low-

resolution maps, the correlation coefficient CC50 may be more

appropriate. The discrepancy function D(q; �a, �b) compares

the selected regions (masks) by counting the number of grid

nodes in complementary regions, regardless of the exact

values of the syntheses in these nodes.

The computational tools described here may be applied to

answer additional questions to those that we have illustrated.

The new coefficients may be calculated not in the whole unit

cell but locally in a given region. With the peak correlation

coefficient, one may compare syntheses previously difficult to

compare numerically such as the usual �A synthesis and a

difference synthesis. These tools may be used, in the case of

comparing several maps, to select the one for which the

corresponding contour maps correspond better to a control

map. Naturally, the choice of the map for comparison is

important and should be considered for each particular

project.

The developed metrics can be also applied to compare maps

corresponding to different crystals or to noncrystallographic

objects, for example electron microscopy reconstructed

images. The only requirement is that the compared parts of the

images are of the same size and the maps are calculated on the

same grid.

The tools discussed in this manuscript, namely the discre-

pancy function D(q; �a, �b), the rank correlation coefficient

CCr(�a, �b) and the peak correlation coefficient CC<qpeak>(�a,

�b), are implemented in PHENIX (Adams et al., 2010) and are

also available as an independent program from AU.

APPENDIX A
Rank-scaled synthesis and corresponding statistical
moments

Firstly, for a synthesis calculated on an arbitrary scale on a grid

composed of Ngrid nodes n, one computes the frequency of its

values, as was introduced into crystallography by Lunin (1988)

and Main (1990a,b). To do so, the interval (�min, �max) = [min

�(n), max �(n)] is divided into J nonintersecting subintervals

called bins: (�0 = �min, �1), (�1, �2), . . . , (�J�1, �J = �max). For

each grid node n, we identify the interval j to which the

corresponding value �(n) belongs to,

�j�1 � �ðnÞ < �j ð24Þ

and add a unit to the counter nj of this bin. The frequencies of

the synthesis values are then calculated as

	j ¼
nj

Ngrid

; j ¼ 1; 2; . . . ; J; ð25Þ

giving

PJ

j¼1

	j ¼ 1: ð26Þ

The quantile ranks qj corresponding to the bin borders � =

�j are the numbers N(�j) of grid nodes n with the synthesis

value below the threshold, �(n) < �j, normalized as

qj ¼
Nð�jÞ

Ngrid

¼
P
i�j

	i: ð27Þ

For an intermediate value �j�1 < � < �j, its quantile rank q

may be calculated by a linear interpolation

q ¼ qj�1 þ ðqj � qj�1Þ
�� �j�1

�j � �j�1

; ð28Þ

making it a strictly increasing function of the initial synthesis

values. Inversely, for a given rank qj�1 < q < qj the corre-

sponding initial synthesis value is recovered as

� ¼ �j�1 þ ð�j � �j�1Þ
q� qj�1

qj � qj�1

: ð29Þ
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The value complementary to q(�; �) gives the fractional

volume Vf of the unit cell selected by the corresponding cutoff

level

Vf ¼ 1� qð�; �Þ ¼
Ngrid � Nð�Þ

Ngrid

’
Volumefxyz : �ðxyzÞ > �g

Volumefunit cellg
: ð30Þ

Scaling of crystallographic Fourier syntheses in fractional

volume has been described previously, for example by

Vernoslova & Lunin (1993).

Let Q(n) be a rank-scaled synthesis where each value �(n)

is substituted by the corresponding quantile rank using (28).

We split the nodes into M equal groups defined by the values

of the synthesis, with no relation to their position in the cell.

The first Ngrid points correspond to the lowest values of the

synthesis; the corresponding rank values are 0 < Q(n) < 1/M;

the next Ngrid/M points correspond to slightly higher values

with 1/M < Q(n) < 2/M etc. Then, for large enough M,

P
n

QðnÞ ’
Ngrid

M

1

M
þ

Ngrid

M

2

M
þ . . .þ

Ngrid

M

M

M

� �

¼
Ngrid

M

1

M
ð1þ 2þ . . .þMÞ

¼
Ngrid

M

1

M

MðM þ 1Þ

2
’

1

2
Ngrid: ð31Þ

Similarly,

P
n

Q2
ðnÞ ¼

Ngrid

M

1

M

� �2

þ
Ngrid

M

2

M

� �2

þ . . .þ
Ngrid

M

M

M

� �2

¼
Ngrid

M

1

M2
ð12
þ 22
þ . . .þM2

Þ

¼
Ngrid

M

1

M2

MðM þ 1Þð2M þ 1Þ

6
’

1

3
Ngrid: ð32Þ

The contour maps used in this work and shown in Figs. 1, 2

and 5 and in the Supporting Information were produced using
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