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Abstract—The upcoming sixth generation (6G) networks present
significant security challenges due to the growing demand for
virtualization, as indicated by their key performance indicators
(KPIs). To ensure communication secrecy in such a distributed
network, we propose an intelligent zero trust (ZT) framework
that safeguards the radio access network (RAN) from potential
threats. Our proposed ZT model is specifically designed to cater
to the distributed nature of 6G networks. It accommodates secrecy
modules in various nodes, such as the base station, core network,
and cloud, to monitor the network while performing hierarchical
and distributed threat detection. This approach enables the
distributed modules to work together to efficiently identify and
respond to the suspected RAN threats. As a RAN security use
case, we address the intrusion detection issues of the 6G-enabled
internet of drones. Our simulation results show the robustness
of our ZT framework, which is based on distributed security
modules, against potential attacks. The framework exhibits low
detection time and low false positives, making it a reliable solution
for securing 6G networks. Furthermore, the ZT model enables the
accommodation of secrecy modules in various nodes and provides
the needed enhanced security measures in the network.

I. INTRODUCTION

As the fifth generation (5G) standardization getting matured,
Release 19 shed lights on the the sixth generation (6G) design
that enables the interoperability in hybrid systems. To improve
the load balancing and provide the necessary resources, the
6G radio access network (RAN) should handle the heavy
computation load on behalf of the devices with reduced
capabilities, such as the internet of things (IoT) devices, to
drastically reduce the communication latency.

As shown in Fig. 1, the flexibility granted to 6G RAN
allows for a better computation load distribution, enabling
extra resources to the devices, automotive and drones, to handle
the needed quality of experience. Furthermore, lightening the
computational load of the devices will allow for more data
collection and faster communications with RAN. The later is
being prepared to support new and emerging technologies, such
as virtual and augmented reality, which require large bandwidth
and reduced latency.

The development of 6G networks is also expected to bring
significant improvements in terms of energy efficiency and
sustainability. This is particularly important given the rapid
growth of IoT devices and their associated energy consumption.
The ability of 6G RAN to handle heavy computational loads
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Fig. 1. 6G RAN-enabled computation offloading

will reduce the overall energy consumption of IoT devices,
making them more sustainable and cost-effective in the long
term. Furthermore, the new 6G requirements enabling for the
interoperability of hybrid systems and supporting emerging
technologies while improving the energy efficiency and sus-
tainability open the doors for a promising area of research
and development [1]. Moreover, the virtualization concept is
ever inspiring, leading to new challenges on security. Threats
such as jamming, false base station (BS) attacks, and denial of
service attacks can pose a serious risk to RAN operations [2].
To address these threats, the security community has turned
to Zero Trust Architecture (ZTA) as a cyber security solution
that can accurately protect networks from known and unknown
attacks, whether they originate from inside or outside the
network.

The National Institute of Standards and Technology (NIST)
has identified several key processes for securing critical
infrastructure from cyber and network attacks. These processes
include authentication, authorization, monitoring, and detection
mechanisms, which are essential for ensuring the security and
reliability of RANs to mitigate the security threats [3].



Implementing ZTA can provide several benefits for RAN
security [4]. First, it can help to prevent unauthorized access
to the network by requiring all users and devices to be
authenticated before being granted access. Second, it can
improve visibility into network activity, allowing for more
effective monitoring and detection of potential threats. Third,
it can enable more fine-grained access control, ensuring that
each user or device is limited to the needed resources for their
specific tasks.

Besides ZTA, there are other measures that can be taken
to improve RAN security. These include encryption, regular
security audits, and employee training to raise awareness about
security best practices. By adopting a comprehensive approach
to RAN security that includes both technological and human
awareness, organizations can better protect themselves against
cyber and network attacks. Thus, as virtualization continues
to grow in popularity in 5G and beyond, it is becoming
increasingly important to prioritize RAN security. ZTA, along
with other security measures, can help to ensure that networks
remain secure and reliable.

Contributions – This paper aims to address the attack
detection and decision-making issues in 6G by proposing a
robust zero trust framework. Our proposed framework complies
with distributed architectures and applies a set of security
modules at different nodes, including BS, core networks and
cloud nodes, to ensure efficient secrecy RAN communication
while considering internal and external threats. However, as
the proposed framework is designed for hybrid inter-operable
systems with multiple devices, comprising operating systems,
network functions and security modules, it faces significant
challenges.

To assess the performance of our proposed framework,
we analyze the required attack detection time, false positive
and decision-making metrics. Our simulation results show a
significant decrease in false positive rates, while reducing the
needed detection time to accurately overcome cyber threats.
Specifically, the detection time required by our proposed
framework does not exceed 15 seconds, which is a significant
improvement over existing solutions. Moreover, we compare
the performance of our framework with the state-of the art
security frameworks, and showed that our proposed framework
outperforms the existing works in terms of decision-making
rate.

Paper Organisation – This paper is organised as follows.
Section II presents the related work. Sections III and IV intro-
duce the proposed framework and detail the main procedures
at different levels. Section V discusses the Internet of Drones
(IoD) use case along with its performance assessment. Finally,
we draw conclusions in Section VI.

II. RELATED WORK

In this section, we provide an overview of the related works
that have investigated or proposed ZTA. Recent works proposed
zero trust frameworks for specific networks such as cloud

computing, wireless sensor networks, and IoT. The authors
in [5] proposed a zero trust security model for IoT that involves
the use of multi-factor authentication, network segmentation,
and traffic monitoring to prevent unauthorized access and data
breaches. Moreover, more recent works have focused on the
effectiveness of zero trust models in different contexts. The
authors in [4] analyzed the zero trust approach for securing
enterprise networks and showed that it can significantly improve
security by enforcing strict access control policies. Moreover,
the authors in [6] focused on heterogeneous networks in a
multiuser context. To improve the security of the considered
architecture, the authors proposed the use of ZTA to assist the
mobility management. The simulation results showed that an
improved version of ZTA, incorporating a dynamic trust model
and a decentralized authentication process, can better mitigates
the security risks (internal and external threats, including denial
of service (DoS) and zero-day attacks) in such a distributed
system. However, the authors did not considered external
attacks from malicious wireless devices, which could seriously
compromise the system trustworthiness. Therefore, further
investigations are still needed to evaluate the effectiveness of
the proposed ZTA scheme against such external attacks. In [7],
Sedjelmaci et al. proposed a collaborative ZTA to secure the 6G
edge computing from intruders targeting the IoT devices and
edge servers. The proposed ZTA is based on a set of security
agents activated at IoT and edge levels to monitor the network
with a goal to detect the malicious device and malicious server.
The attack detection techniques used by the security agents
are using collaborative machine learning algorithms such as
federated learning and reinforcement learning algorithms. To
further increase the detection accuracy, specifically against the
complex attacks such zero-day attacks, the authors develop a
dynamic ZTA adapted to the 6G architecture. The dynamic
ZTA based on a non-cooperative game concept switches from
local detection to collaborative detection, and vice versa, to
react efficiently against the suspected attacks. According to the
simulation results, the proposed collaborative and dynamic ZTA
approach exhibits a high accuracy detection while requiring low
computation cost to achieve a high level of network security.
However, more security components should be deployed within
the 6G RAN to secure the network against attacks targeting
the radio access, such as false BS attack.

Moreover, the authors in [8] included different AI-based
techniques into their proposed 6G architecture to further
enhance the security provided by their zero-trust system. By
using unsupervised learning algorithms, the authors employed
the k-nearest neighbors method to effectively detect any
anomaly or attack that may occur within the system. The
zero-trust framework implemented in the study aimed to
accurately evaluate the trust level of the monitored target, thus
ensuring that any potential threat would be timely detected and
efficiently processed. However, the authors in [9] considered
a different context and proposed hierarchical and cooperative
attack detection framework to safeguard the 6G-enabled IoT
from internal and external network attacks. The proposed
framework relies on a federated learning algorithm, which
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Fig. 2. Secure and resilient zero trust framework for 6G RAN.

considers 6G primary metrics, such as energy consumption,
latency, end-to-end connectivity, and network latency. The
simulation results showed high accuracy in attack detection
under low computation overhead. Overall, both [8] and [9]
did to consider the fooling actions that malicious security and
monitoring agents could perform. This oversight leaves the
system vulnerable to severe security breaches.

Table I showed that literature already investigated several
promising zero trust architectures for different networks.
However, some drawback still exist to be addressed to increase
the 6G network trustworthiness. For example, more security
components should be deployed within the 6G RAN to secure
the network from attacks targeting the radio access. Moreover,
the fooling actions, that malicious security and monitoring
agents could perform, should be considered to prevent severe
security breaches.

III. CYBER DEFENSE FOR 6G NETWORK

In this section, we present the 6G network architecture
that we need to protect from the cyber-threats and intruders
along with the cyber-attack model that is targeting the 6G
infrastructure. Subsequently, we introduce the main cyber-
defense modules, that constitute our ZTA, performing the
defense monitoring and attack detection.

A. Network Architecture

A depicted in Fig. 2, we present a 6G network that consists
of four layers: IoT, 6G RAN, 6G core network, and the cloud
network. The IoT connects a huge number of devices, sensors,
and machines such as smart thermostats, security cameras,
and wearable devices. The 6G RAN, including small cells
and advanced antenna technologies such as massive MIMO
(mMIMO), provides wireless access to the 6G users (e.g
smartphones, laptops, and tablets) [11].

The 6G core network is managing the network resources,
services, and security using advanced technologies such as
network slicing and artificial intelligence. Finally, the cloud
network serves as a centralized control and management

platform for the entire 6G network, enabling operators to
monitor, optimize, and orchestrate the network performance
and services using tools such as network management systems
and orchestration platforms.

B. Attacker Model

In a 6G network, an attacker could potentially target any
layer of the network, from the IoT devices to the cloud network.

For the IoT layer, an attacker is able to compromise devices
such as smart thermostats or security cameras, which may
have vulnerabilities that could be exploited to get access to
the network [12]. Once inside the network, the attacker could
launch various attacks, such as distributed denial of service
(DDoS) attacks, which could overwhelm the network capacity
and make it unavailable to legitimate users. At the 6G RAN
layer, an attacker is able to target wireless communications
by intercepting, modifying, or blocking data transmissions
between devices and the network. For example, an attacker
could use rogue base stations or jamming devices to disrupt
communications or steal sensitive data.

The 6G core network layer is managing the network
resources, services, and security. An attacker targets this layer
by exploiting vulnerabilities in the network infrastructure, such
as routers or servers, or by compromising the software used
to manage the network services. This could allow the attacker
to gain unauthorized access to sensitive data or to manipulate
network resources for their own purposes.

Finally, the cloud network serves as a centralized control and
management platform for the entire 6G network. An attacker
targets this layer by compromising the cloud infrastructure
or exploiting vulnerabilities in the software used to manage
the network. This could allow the attacker to gain access to
sensitive information or to manipulate the network performance
and services.

We aligned our view with Dolev and Yao model [13] and
we distinguish two main adversaries, where each of them
may target any layer of the network to get unauthorized
access, disrupt communications, steal sensitive information,
or manipulate the network resources. The attacker is
then able to READ, DROP and SEND valid messages. A
READ activity alludes to getting or capturing messages.
In the mean time, a SEND activity alludes to producing
and replaying messages. A DROP activity alludes to separating.

Below, we detail the considered attackers:
• External adversaries — malicious actors may attempt

to compromise the main security properties of a 6G
network, such as data confidentiality, integrity, and network
service availability [14]. In addition, they may attempt
to degrade the 6G network key performance indicators
(KPIs) by increasing latency, exhausting network resources,
generating overhead, or altering signal strength intensities,
among other methods. These attacks could take various
forms, such as DoS, man-in-the-middle attacks, black hole
attacks, eavesdropping, and poisoning. The attacks could
target various components of the 6G network, including



TABLE I
COMPARISON OF RECENT RELATED WORKS ON ZERO TRUST ARCHITECTURES

Solution Network Type Security Features Weaknesses
Mehraj et al. [4], [5], [10] IoT networks Multi-factor authentication, Network segmentation, Traffic monitoring Not specifically designed for 6G networks.

Chen et al. [6] Heterogeneous networks ZTA on top of the management layer, DoS and zero-day attack mitigation, Does not consider external attacks from malicious wireless devices.
Sedjelmaci et al. [7] 6G edge computing Collaborative and dynamic ZTA , High accuracy detection, Low computation cost Does not consider attacks targeting the radio access.

Bao et al. [8] 6G architecture K-nearest detection method, Accurate trust level evaluation Does not consider the fooling actions of malicious agents.
Sedjelmaci et al. [9] 6G-enabled IoT Hierarchical framework, High accuracy detection, Low computation overhead Does not consider the fooling actions of malicious agents.

virtualization functions, network configuration modules,
and artificial intelligence algorithms for quality of service
(QoS) management. Protecting against such attacks will
be critical for ensuring the security and performance of
6G networks.

• Internal adversaries — these include malicious network
equipment and edge servers. Once infected, these de-
vices can target network and machine learning (ML)
configurations [15]. Additionally, they may engage in
misbehavior such as dropping neighbor’s packets and
injecting malicious messages into the network. Defending
against these internal adversaries is critical for maintaining
the integrity and security of the whole network.

Both internal and external adversaries, may implement
known or unknown attack methods. Known attacks involve
previously identified security threats that are recognized within
the security community and can be detected by their attack
signatures. These attacks can take various forms, including
traditional attack vectors such as malware, phishing, DoS
attacks, and ransomware. In contrast, unknown attacks, also
known as zero-day exploit attacks, are novel or previously
unreported attacks that are more difficult to defend against
since there is no existing knowledge of them. Protecting against
unknown attacks requires proactive measures for identifying
and responding to security incidents. By incorporating both
known and unknown attack types into the security model, we
can establish a comprehensive approach to securing the network
against potential threats.

C. Proposed ZTA: Defense Monitoring and Attack Detection
The proposed ZTA framework aligns with the NIST guide-

lines [3], which recommend incorporating features such as
trust evaluation, target monitoring and attack detection, data
integrity, and protection against both internal and external
attacks. Our proposal consists of three distinct cyber defense
modules, depicted in Fig. 2. These modules are responsible for
ensuring comprehensive security monitoring at various points
in the 6G RAN architecture. The first module, called the BS
Defense Module (BDM), monitors security at the base station.
The second module, referred to as the Core Defense Module
(CDM), focuses on security in the core network. Finally, the
Cloud Defense Module (ODM) monitors security at the cloud
server. By collaborating effectively, these defense modules can
accurately detect internal and external attacks targeting the
6G RAN. Furthermore, these modules can also identify and
prevent suspicious activities that originate from BS or within
the core network to identify the malicious BDM and CDM. In
the following, we will provide more details on each of these
defense modules.

• BDM. This proposed defense module, acts as a monitoring
agent responsible for supervising the behaviors of target
IoT devices that fall within the radio communication
range of the BS. These devices include drones, underwater
vehicles, and sensors. Given the large amounts of data
processed within the 6G RAN network, the sensor-enabled
nodes and devices are vulnerable and require continuous
monitoring [16]. Therefore, the BDM plays a critical
role in ensuring the security and trustworthiness of the
network by detecting any suspicious activities or behavior
that could potentially compromise the system integrity. In
a nutshell, the BDM serves as the first line of defense
against internal attacks .
It is important to note that the signal intensity distribution
can be a significant feature to identify distributed jamming
attacks [17], and false BS. This is because jamming attacks
and false BS aim to disrupt the wireless communication
by broadcasting a high-intensity signal, leading to the
reduction of the signal quality at the receiver side. By
monitoring the signal intensity, the BDM can identify if a
distributed jamming attack and/or false BS are occurring,
and take appropriate measures to prevent it.

• CDM. This second defense module is responsible for
detecting and mitigating various types of attacks on the
network. For this purpose, CDM operates a multi-class-
based attack detection module that takes as input the attack
features delivered by the BDM. These attack features are
generated by the malicious IoT device. To ensure a more
robust filtering process, CDM employs a Reinforcement
Learning (RL) algorithm [18] that continuously learns
from the network data and improves the accuracy of the
new attack detection mechanism, even for zero-day attacks.
This is especially important in a dynamic network such
as an Internet of Drones where new types of attacks
can emerge frequently. Moreover, CDM verifies whether
the attack features delivered by the BDM correspond
to a network attack or not. The module monitors the
trustworthiness of the BS where BDM is activated. The
objective is to ensure that the BDM is not compromised,
and the attack features are genuine. This is crucial as a
false alarm could result in the disruption of legitimate
network activities.

• ODM. This third defense module collects information from
both the CDM list of detected malicious IoT devices and
the BDM list of malicious devices and blacklisted BDMs.
The ODM module employs a collaborative RL algorithm
that enhances the robustness and efficiency of making
final decisions regarding the detected attacks in the RAN,



building upon the processing of both BDMs and CDMs.
The final decision-making process determines whether
the suspicious IoT devices exhibit malicious behavior or
whether the monitoring BDM and/or CDM should be
categorized as malicious agents.

IV. AN ADAPTIVE ZTA TO HARDEN THE SECURITY OF 6G
RAN

This section details the main security functions of the
proposed adaptive trust architecture enforced at each layer.
The adaptive trust monitors the network, targets to detect mis-
behavior executed by the attacker, and proactively acts before
they execute an attack, i.e., zero-day attack. With an adaptive
trust architecture, the proposed ZTA is continuously evaluating
the vulnerabilities, detecting and reacting automatically using
AI against the suspected malicious behaviors.

A. Collaborative AI Techniques for ZTA

As highlighted in subsection III-C, the cyber defense systems,
BDM, CDM and ODM running within the ZTA, rely on
collaborative AI techniques that use RL algorithms to secure
the 6G RAN against the cyber threats.

1) BDM’s AI Detection: Rules-based Game Approach:
In the following, we outline the BDM-based process of
our proposed ZTA framework. To identify both known and
unknown attack features, the BDM adopts a rules-based
non-cooperative game approach that models two competitor
players: security and attack players. Each player aims to
maximize its own utility function while minimizing the utility
function of the other player [19]. By adopting this approach,
the BDM can effectively detect potential attacks and accurately
assesses the trustworthiness of the IoT devices within its
radio communication range. Additionally, this approach allows
the BDM to differentiate between intentional attacks and
unintentional anomalies, which can further improve the overall
security of the 6G RAN.

The game involves two players: the security player 𝑋𝑖 ,
representing the BDM, and the attack player 𝑌 𝑗 , representing
the suspected IoT device. The sets of players are denoted as
𝑋𝑖 |𝑖 = 1, ..., 𝑛 and 𝑌 𝑗 | 𝑗 = 1, ..., 𝑚, where 𝑛 is the number of
BDMs in the 6G RAN and 𝑚 is the number of suspected
IoT devices connected to the BS. We assume that all 𝑋𝑖
players are activated. The strategies of the security and attack
players are represented by the sets 𝛾1

Security = 𝛾1
1 , ..., 𝛾

1
𝐿

and
𝛾2

Attack = 𝛾2
1 , ..., 𝛾

2
𝐹

, respectively. Here, 𝐹 is the number of
attacks executed by the malicious IoT device 𝑌 𝑗 , while 𝐿 is
the number of attacks detected by the BDM 𝑋𝑖 . Suppose we
have a security game involving a security player 𝑋𝑖 and an
attack player 𝑌 𝑗 . Let 𝜙1

𝑖
be the probability that 𝑋𝑖 detects the

known attack features, and 𝜙2
𝑖

be the probability that 𝑋𝑖 detects
the unknown attack features. The probability that 𝑋𝑖 provides
a false detection of the attack features is represented by the
complement of 𝜙𝑖 , which is (1 − 𝜙𝑖).

Similarly, let 𝜔1
𝑗

be the probability that 𝑌 𝑗 launches a known
attack, and 𝜔2

𝑗
be the probability that 𝑌 𝑗 launches a new attack.

A known attack is detected using the known attack features,
while a new attack is detected using the unknown attack features.
Thus, the complement of 𝜔 𝑗 is the probability that 𝑌 𝑗 did not
launch an attack, which is (1 − 𝜔 𝑗 ).

The expected utility functions of 𝑋𝑖 and 𝑌 𝑗 depend on the
probabilities 𝜙1

𝑖
, 𝜙2
𝑖
, 𝜔1

𝑗
, 𝜔2

𝑗
, (1 − 𝜙𝑖) and (1 − 𝜔 𝑗 ), as defined

by Eqs. 1 and 2, where 𝜙1
𝑖
, 𝜙2
𝑖
, 𝜔1

𝑗
, 𝜔2

𝑗
, 𝜙𝑖 and 𝜔 𝑗 are all in the

range [0, 1]. Note that the expected utility functions of both
players depend on the probabilities of the other player, which
creates a non-cooperative environment for the game, given by

𝑈Security (𝛾1
Security, 𝛾

2
Attack) = 𝜔

1
𝑗𝜙

′ + 𝜔2
𝑗𝜙

′′ + (1 − 𝜔 𝑗 ), (1)

𝑈Attack (𝛾2
Attack, 𝛾

1
Security) = 𝜙

1
𝑖𝜔

′ + 𝜙2
𝑖𝜔

′′ + (1 − 𝜙𝑖), (2)

where 𝜙′ = 𝜙1
𝑖

𝜙1
𝑖
+𝜔1

𝑗

, 𝜙′′ = 𝜙2
𝑖

𝜙2
𝑖
+𝜔2

𝑗

, 𝜔′ =
𝜔1

𝑗

𝜙1
𝑖
+𝜔1

𝑗

, and 𝜔′′ =
𝜔2

𝑗

𝜙2
𝑖
+𝜔2

𝑗

.

In this non-cooperative game, the objective of each BDM
is to identify the relevant attack features carried out by the
malicious IoT devices and subsequently forward them to
CDM for further detection. On the other hand, each malicious
IoT device aims to launch an attack against the RAN while
deceiving the BDM. The Nash equilibrium corresponds to the
max-min functions given by Eqs. 3 and 4 as follows:

𝑈∗
Security (𝛾

1∗
Security, 𝛾

2∗
Attack) =

max
𝜙1
𝑖
,𝜙2

𝑖

min
(1−𝜔 𝑗 )

𝑈Security (𝛾1
Security, 𝛾

2
Attack)

(3)

𝑈∗
Attack (𝛾

2∗
Attack, 𝛾

1∗
Security) =

max
𝜔1

𝑗
,𝜔2

𝑗

min
(1−𝜙𝑖 )

𝑈Attack (𝛾2
Attack, 𝛾

1
Security)

(4)

The functions 𝑈∗
Security and 𝑈∗

Attack represent the expected
utility functions of the BDM and the malicious IoT device,
respectively in the Nash equilibrium state.

After reaching an equilibrium, we can observe that the payoff
for the attack player, 𝑌 𝑗 , is the same whether they launch
an attack using strategy 𝛾2

Attack or a different strategy 𝛾2∗
Attack.

Similarly, the payoff for the security player, 𝑋𝑖 , is the same
whether they activate strategy 𝛾1

Security or a different strategy
𝛾1∗

Security and categorize 𝑌 𝑗 as a malicious IoT device. As a
result, 𝑋𝑖 sends a list of attack features used by 𝑌 𝑗 to the CDM
for further detection and analysis. In the following section, we
describe the processing carried out by the CDM.

2) CDM’s AI Detection: RL Approach: The CDM utilizes
BDM delivery provided by attack features made by 𝑌 𝑗 as
its input. As highlighted in subsection III-C to enhance the
filtering process and improve the accuracy of detection, CDM
employs a RL algorithm. Additionally, the CDM module
verifies whether the delivered attack features correspond to a
network attack or not, and monitors the trustworthiness of the
BS where BDM is activated.



At the beginning of training process, the security experts
interact with the RL algorithm by providing a relevant infor-
mation related to new attack behaviors with goal to allow
the machine learning algorithm to classify the new incoming
data as normal or malicious. The RL algorithm relies on three
security parameters: states, actions, and a payoff function. The
RL states corresponds to attack features used by RL algorithm
to model the normal and malicious behaviors during the training
process and classify the suspected device as normal device
or an intruder. The RL actions is the decisions initiated by
CDM about the behaviors of BS and the monitored IoT device,
such as detecting the BDM (activated at the BS) as malicious
agent that provides false verdict against the monitoring target,
and identifying an IoT device launching a cyber attack. The
CDM computes an RL payoff, 𝜓′

𝑖
for each monitored BDM

and associated BS, where the payoff functions depends on
the following security parameters, \𝐶 , \𝐹 and \𝑇 as showed
in in Eq.5. \𝐶 and \𝐹 are the correct and false identification
rates, respectively and \𝑇 is the attack identification cost. Here,
𝑖′ = 1, . . . , 𝑛′, where 𝑛′ is the total number of activated BDMs
to monitor the RAN segment.

𝜓′
𝑖 = 𝛼1\

𝐶 − (𝛼2\
𝐹 + 𝛼3\

𝑇 ) (5)

where \𝐶 ∈ [0, 1] is computed as the number of attacks
correctly identified by the monitoring CDM (by using as inputs
the attacks features provided by 𝐵𝐷𝑀𝑖′ ) over the number of
BDMs, attached to the CDM. The coefficients 𝛼1, 𝛼2, and
𝛼3 ∈ [0, 1] weight these parameters differently. Specifically,
𝛼1 emphasizes the importance of correct identification, while
𝛼2 and 𝛼3 penalize false identification and identification
costs, respectively. The values of these coefficients may vary
depending on the specific context of the attack identification
task. Similarly, \𝐹 ∈ [0, 1] is computed as the number of false
detection (i.e., false positive and false detection) provided by
𝐵𝐷𝑀𝑖′ against the legitimate target and identified by 𝐶𝐷𝑀
over the number of deployed BDMs. We define \𝑇 ∈ [0, 1] as
the average time required by 𝐵𝐷𝑀𝑖′ to compute and collect
the relevant features of monitored attacks occurring within
the RAN segment. Notably, \𝑇 approaches 1 when a high
computation time is needed to determine the relevant attack
features. Conversely, \𝑇 approaches 0 when a low computation
time is needed.

CDM monitors the payoff function 𝜓′
𝑖

for each monitored
𝐵𝐷𝑀𝑖′ over time and makes the first decision regarding
the trustworthiness of 𝐵𝐷𝑀𝑖′ at the end of each iteration.
Specifically, if 𝐵𝐷𝑀𝑖′ has a false identification rate \𝐹 that
is much higher than its correct identification rate \𝐶 , as
determined by the inequality 𝛼2\

𝐹 ≫ 𝛼1\
𝐶 , then 𝐵𝐷𝑀𝑖′

is categorized as an untrusted defense system; otherwise, it is
categorized as a trusted defense system.

Once the trusted defense system 𝐵𝐷𝑀𝑠 have been deter-
mined, the RL algorithm transitions to an unsupervised training
process (i.e., without the intervention of security experts), using
the relevant attack features provided from these trusted sources
as input. CDM computes the total payoff function as the average
of the 𝜓′

𝑖
values for all 𝐾 iterations, denoted as (∑𝐾

𝑔=1 𝜓
′
𝑖
𝑔)/𝐾 ,

and makes the final decision regarding the monitored 𝐵𝐷𝑀𝑖′.
If the false detection rate of the selected 𝐵𝐷𝑀𝑠 is much
higher than their correct detection rate, as determined by the
inequality (𝛼2

∑𝐾
𝑔=1 \

𝐹
𝑔 )/𝐾 ≫ (𝛼1

∑𝐾
𝑔=1 \

𝐶
𝑔 )/𝐾, then CDM

blacklists 𝐵𝐷𝑀𝑖′ , preventing it from participating in the attack
detection process.

3) ODM AI Detection: Hybrid Learning Approach: The
collaborative RL executed by ODM is based on a hybrid
RL processing, which involves a combination of a local RL
process and a multi-agent RL process, which will be further
elaborated hereafter.

a) Local RL process —: The local RL algorithm is
trained in a supervised manner, with input provided by the
operator or security expert in the central cloud computing who
periodically feeds the algorithm with relevant features related
to the new attack behavior. The primary aim is to accurately
detect new types of attacks, including zero-day attacks that
exhibit an unknown malicious behaviors. To this end, the
ODM performs further detection against the suspected IoT
devices detected by BDM and CDM as malicious devices. In
this local RL approach, ODM evaluates the trustworthiness of
monitoring CDM. Furthermore, only trusted CDMs, which
have shown a high level of accuracy in detecting attacks, are
allowed to be one of the defense agent that cooperate in the
multi-agent RL process. The ODM calculates a reputation
score for each CDM, based on 𝛽1`

𝐶 − 𝛽2`
𝐹 , where 𝛽1 and

𝛽2 are weight parameters that fall within the range [0,1]. The
reputation score is based on the fraction of correctly detected
attacks by the CDM that are confirmed by the ODM over
the number of interactions between CDM and ODM (`𝐶 ), as
well as the fraction of false positives generated by the CDM
that are detected by the ODM over the number of interactions
between those defense modules (`𝐹). If the product of 𝛽1
and `𝐶 is significantly greater than the product of 𝛽2 and
`𝐹 , the monitored CDM is classified as a trusted defense
agent. Otherwise, it is deemed to be an untrusted defense agent.

b) Multi-agent RL process —: The trusted CDMs feed
ODM with features related to detected attacks (defined as RL’s
states), the decision-making processes employed by CDMs
to handle malicious BSs and IoT devices (defined as RL’s
actions) and the results of a number of an accurate detection
provided by the BDM against the monitored devices (defined
as RL’s payoffs). During the training process, the ODM uses
as an inputs these information to build a global training model
by aggregating the RL’s states related to each malicious IoT
devices, while taking into account the RL’s payoffs associated
with each BDM that identifies cyber attack occurred within the
RAN. During the attack detection process, the ODM selects
the CDMs that provide the same detection as ODM, i.e., ODM
confirms the attacks executed by the monitored targets identified
by CDMs. Furthermore, ODM requests the CDMs that persist
on providing false detection to switch from multi-agent RL
process to local RL process. To reduce further the false positive
and false negative that could be generated by the ODM, the



cyber security experts update the global training model of
ODM with new attack features.

B. Collaborative cyber resilience based on GAN approach

The Trustworthy defense systems, BDMs and CDMs that
ODM selects as described in subsection IV-A3, will collaborate
together during the cyber-resilience process to secure the
6G RAN against new incoming threats. The cyber resilience
layer aims to further enhance the security of the whole
system and prevent the critical attacks to reach the RAN
components. The trusted BDMs and CDMs with ODM run a
hierarchical GAN algorithm [20] to further enhance the cyber
security of the proposed adaptive ZTA. The proposed GAN
algorithms are based on a two-tiered security system, with
two security components, a generator and a discriminator. The
first security component, the generator, provides suspected
inputs to the discriminator. The second security component,
the discriminator, categorizes this latter as normal, attack, or
anomaly. In the first GAN algorithm, the BDMs play the role of
the generator, while the CDMs play the role of the discriminator.
In the second GAN algorithm, the CDMs play the role of the
generator, while the ODMs play the role of the discriminator.

The process of training and classification performed by the
generators and discriminators is highlighted in Algorithm 1
and detailed as follows:

• The generator is responsible for generating synthetic data
that resembles the real data. This data is then provided to
the discriminator for classification.

• The discriminator is responsible for classifying the data as
real or synthetic. If the discriminator is able to correctly
classify the data, then the generator is updated to generate
more realistic data.

This process is repeated until the generator is able to
generate data that is indistinguishable from real data. The
discriminator is then used to classify the suspected inputs
as normal, attack, or anomaly. The two-tiered security
system provides a number of advantages over traditional
security systems. First, it is more robust to adversarial attacks.
Adversarial attacks are designed to fool the discriminator into
classifying synthetic data as real data. However, the two-tiered
security system is able to detect and mitigate these attacks
efficiently. While the traditional security systems require a
large amount of data to train the discriminator, the two-tiered
security system only requires a small amount of data to train
the generator. This is due to the generator that was able
to learn the distribution of the real data from the CDMs.
Furthermore, the two-tiered security system is more scalable
while the traditional security systems can be difficult to scale
to large datasets. However, the proposed system is able to
scale to large datasets by training multiple generators and
discriminators in parallel.

During the training process, in the first GAN algorithm, a
CDM’s discriminator uses as input the attack features (related
to the malicious IoT devices, 𝑌 𝑗) detected by BDMs and
confirmed by CDM. Specifically, the CDM’s discriminator,

which is based on a RL algorithm, considers those attack
features as the main state to increase its utility function.
Furthermore, each BDM sends to the attached CDM its rule
weight W𝑘 , 𝑘 ∈ 1, ..., 𝐿, where L is the total number of
trustworthy BDMs that activate their generators. Afterwards,
the CDM’s discriminator aggregates all the rules weights
which is computed as

∑𝐿
𝑘=1 (𝑊𝑘 )
𝐾

and CDM sends back the
aggregation results to the BDMs’ generators. Similarly as
the first algorithm, in the second GAN algorithm the CDMs’
generators and ODM’s discriminator collaborate between each
other on sharing the learning parameters and enhance the global
training model. W′

𝑘′ represents the training parameter of RL
algorithm executed by CDM generator 𝑘 ′, 𝑘 ′ ∈ 1, ..., 𝐿′, where
L’ is the total number of CDM generators. ODM discriminator
aggregates the training parameters send by CDM and send

the aggregation results which is equal to
∑𝐿′

𝑘′=1 (𝑊
′
𝑘′ )

𝐾 ′ to the
distributed CDMs’ generators.

During the classification process, the discriminators’ compo-
nents activated at CDM and ODM levels collaborate with the
security experts to refine the classification (i.e., decrease the
false positive), and they categorize the new attacks detected by
the generators’ components as an attacks, normal or anomaly,
based on training models and parameters obtained during the
training process, W𝑘 and W′

𝑘′ . Furthermore, in case when
the suspected attacks are detected as an anomaly or normal
node by the discriminators, these latter request the generators,
that provide the false detection, to update their training process
considering the new attacks’ features provided by the security
experts.

V. USE CASE STUDY: INTERNET OF DRONES

This section, we first define the considered use case under
study. Then, we discuss the different conducted experiments’
results.

A. Use Case: Internet of Drones

The development of 6G-based Internet of Drones (IoD)
networks is expected to revolutionize various industries by
enabling fast, reliable, and autonomous drone-based services
[21]. However, the dynamic characteristics of the IoD network,
such as the dynamic topology, mobility, and heterogeneity of
devices, pose significant security challenges that require novel
security modules to address. In an IoD network, security is a
crucial factor in ensuring the reliable and safe operation of
drones. As drones are expected to perform various critical
tasks, such as surveillance, inspection, and delivery, any
security breach could result in significant consequences,
such as data leakage, loss of control, or physical harm.
Furthermore, the IoD network KPIs, such as latency, reliability,
and throughput, are closely dependent of the employed
security measures. For instance, encryption and authentication
protocols can significantly affect the network latency, while
intrusion detection and prevention systems can improve the
network reliability and throughput.



Algorithm 1 Cyber Resilience Layer Processing
Require: 𝑏𝑑𝑚𝑠: A list of trusted BDMs,

1: 𝑐𝑑𝑚𝑠: A list of trusted CDMs,
2: 𝑜𝑑𝑚: The ODM,
3: 𝑒𝑝𝑜𝑐ℎ𝑠: The number of epochs

Ensure: Aggregated tuples and classification results
4:
5: BDM vs CDM training process
6: Initialize the discriminator and generator models.
7: for epoch in range(epochs) do
8: for CDM in 𝑐𝑑𝑚𝑠 do
9: Get the attack features 𝑌 𝑗 detected by BDMs.

10: Train the CDM’s discriminator on the attack fea-
tures.

11: end for
12: for BDM in 𝑏𝑑𝑚𝑠 do
13: Set L to the total number of trustworthy BDMs

that activate their generators.
14:
15: for 𝑘 ∈ 1, ..., 𝐿 do
16: BDM sends its rule weights W𝑘 to the attached

CDM.
17: end for
18: end for
19: for CDM in 𝑐𝑑𝑚𝑠 do
20: Compute 𝐴𝑔𝑔 =

∑𝐿
𝑘=1 (𝑊𝑘 )
𝐾

21: Send 𝐴𝑔𝑔 to the BDMs.
22: end for
23: end for
24:
25:
26: CDM vs ODM training process
27: for epoch in range(epochs) do
28: Get the attack features 𝑌 ′

𝑗
detected by CDMs.

29: Train the ODM’s discriminator on the attack features.
30: for CDM in 𝑐𝑑𝑚𝑠 do
31: Set L’ to the total number of associated CDM.
32:
33: for 𝑘 ′ ∈ 1, ..., 𝐿′ do
34: CDM sends W′

𝑘′ to ODM.
35: end for
36: end for
37: Compute 𝐴𝑔𝑔′ =

∑𝐿′
𝑘′=1 (𝑊

′
𝑘′ )

𝐾 ′

38: Send 𝐴𝑔𝑔′ to the CDMs.
39:
40:
41: Detection process
42: for CDM in 𝑐𝑑𝑚𝑠 do
43: Set 𝐼𝑁 to the incoming attack features.
44: Apply 𝐴𝑔𝑔 on 𝐼𝑁 and set 𝑜𝑢𝑡 to the classification

result.
45: Apply 𝐴𝑔𝑔′ on 𝐼𝑁 and set 𝑜𝑢𝑡′ to the result.
46:
47: if 𝑜𝑢𝑡 ≠ 𝑜𝑢𝑡′
48: Update the discriminator models
49: end if
50: end for
51: end for
52:
53: RETURN W𝑘 , W′

𝑘′ and 𝑜𝑢𝑡.

Compared to the IoT, the IoD network has some unique
security challenges due to its dynamic and heterogeneous
nature. The mobility of drones, which can fly at high speeds
and access remote locations, makes them vulnerable to
physical attacks, such as interception and jamming. Moreover,
the drones’ small size and limited processing power can
make them vulnerable targets for cyber-attacks, such as
spoofing and denial-of-service attacks. On the other hand,
compared to the Internet of Vehicles (IoV), the IoD network
poses some different security challenges due to the drones’
unique characteristics. For instance, drones operate in
three-dimensional space, which requires different security
measures than vehicles that operate on two-dimensional roads.
Moreover, drones can operate autonomously, which increases
the risk of malfunction and misbehavior due to hardware or
software failures.

In terms of security requirements, the IoD network has
some specific KPIs that need to be considered. For instance,
the latency requirement for drone-based services is much
lower than that of traditional IoT devices due to the real-
time nature of drone operations. Furthermore, the reliability
is critical for drones, as any security breach could result in
significant consequences, such as loss of control or physical
harm. Therefore, the security mechanisms employed in the
IoD network need to be highly efficient and capable of
addressing the unique security challenges of this network. These
mechanisms should provide end-to-end security, including
secure communication, secure storage, and secure processing,
to safeguard the drones and their data from various threats and
attacks. Furthermore, the security mechanisms should be highly
adaptable to the dynamic and heterogeneous nature of the IoD
network, allowing for fast and efficient security updates and
upgrades.

B. Performance Assessement

In this section, we evaluate the performance of the proposed
ZTA framework for the IoD use case by analyzing its detection
efficiency and false positive metrics.

The detection efficiency, denoted as 𝐸 , measures the average
time it takes to monitor the security modules to detect malicious
targets within its proximity. To calculate 𝐸 , we consider the
total number of security modules located within the malicious
targets neighborhood. The security modules include drones
equipped with sensors, control stations, and operation systems
that collaborate to detect and face the potential threats. On
the other hand, the false positive metric, referred to as 𝐹,
measures the number of false detection generated by the
security modules and detected by the higher security modules
over the total number of security modules detecting false
positives. False positives can occur due to various reasons,
such as environmental noise, faulty sensors, or errors in the
algorithms used to detect malicious behavior.

We carried out simulations and presented 𝐸 and 𝐹 metrics
as a function of the iterations involving the collaborative
efforts of drones, control stations, and operation systems in



detecting attacks. In the proposed robust ZTA, we assume
that some security modules may be compromised and act as
malicious agents. Thus, we compare the obtained results either
considering the eventual security modules acting as malicious
agents or not. The proposed framework provides an additional
layer of protection against potential attacks and ensures that
the system can operate even if some security modules are
compromised. We depict the robust trust framework in Figs 3
and 4. Under the weak trust framework, we assume that all
security modules are trusted agents and do not behave as
malicious agents. This framework may be suitable for low-risk
environments where the probability of malicious attacks is
low.

There are various attack datasets available in the literature,
specifically for IoT systems. In this study, we leverage the
IoT attack datasets proposed in [22] to assess the security
performance of our proposal in the context of IoD. These
datasets comprise normal traffic as well as malicious traffic
related to network attacks such as denial of service. The data
is categorized into two classes, which allows us to evaluate
how well our system can detect and respond to potential
attacks within the IoD ecosystem. By using these datasets, we
can evaluate the effectiveness of the proposed security solution
and validate its performance in simulated attack scenarios.

Fig. 3 displays the detection efficiency of our proposed
zero trust framework for IoD increases as function of the
number of iterations. It is note that, when the number
of iterations increases, the accuracy of attack detection
increases, specifically when the number of iterations reaches
40 iterations. Fig. 3 shows that a weak trust framework
demands a higher detection efficiency to protect the wireless
network as compared to a robust ZTA. This is due to the
collaborative detection process executed by trusted security
modules such as BDMs, CDMs, and ODM. In this process,
only trusted security modules are permitted to participate.
When untrusted security modules, such as malicious BDMs
and/or CDMs, are incorporated in the final decision-making
process performed by ODM against suspicious IoD devices,
the detection efficiency increases, particularly when the
number of malicious IoD devices is high. The untrusted
security modules aim to deceive the system by providing false
attack detection, i.e., wrongly categorize the legitimate target
as an attacker and vice versa. This mischief is intended to
force ODM to perform multiple verification on the suspicious
IoD devices, leading to the increase of detection efficiency.
This emphasizes the importance of our proposed robust zero
trust framework in ensuring the security of IoD systems by
detecting and responding to potential attacks, even in the
presence of malicious security modules.

In Fig. 4, we demonstrate that the proposed ZTA framework
for IoD shows a lower false positive rate than the weak
trust framework. This outcome is achieved by utilizing a
non-cooperative security game among BDMs to identify the

most distinguishable attack features. These features are then
forwarded to trusted CDMs for further attack detection. The
collaboration between trusted CDMs and ODM aims to detect
and eliminate any malicious BDMs and CDMs, which can
contribute to the occurrence of false positives. By identifying
and eliminating these malicious security modules, our proposed
framework ensures a higher level of security for IoD systems
and minimizes the probability of false alarms, which can be
detrimental to the performance of these systems.

Fig. 3. Efficiency detection

Fig. 4. False positive

In Fig. 5, we analyze the decision-making rate accuracy
(denoted by M), which are computed as the number of attacks
correctly detected by the distributed defense agents (in our
case, BDMs and CDMs ) and confirmed by centralized defense
agent (in our case ODM) over the total number of defense
agents. We vary the number of defense agents from 25 to
70 agents and compute the decision-making rate generated
by our adaptive ZTA. Furthermore, we compare the security
performance of the proposed ZTA, with current ZTAs [6], [7]
conceived to secure the 5G beyond and 6G networks. As shown
in Fig. 4, our adaptive ZTA and current zero trust framework
[7] exhibit a high decision-making rate as compared to the
zero trust framework [6], specifically when the number of
defense agents increase. This is due to the fact that, in [6], the
authors do not consider the fact that the security agents could
be hacked by the attacker and could behave as malicious agents.
Therefore, in [6], the number of false positive could increase



promptly. However, Fig. 5 shows that, when the number of
defense agents is equal or greater than 50 agents, the adaptive
ZTA shows a little improvement as compared to [7]. This result
is achieved thanks to the cyber resilience approach executed by
the defense agents, BDMs, CDMs and ODM to improve the
accuracy of attack detection. Furthermore, the defense agents
run the collaborative GAN algorithm during the resilience
process to prevent the new attacks on executing an intrusion
against the 6G RAN.

Fig. 5. Accuracy decision-making

VI. CONCLUSION

Cybersecurity is a critical aspect for the future 6G wireless
network, and advanced detection and prevention mechanisms
must be deployed to address the heterogeneity of devices in the
6G architecture and the increasing complexity of cyber-attacks.
ZTA has been identified as a promising security architecture
to safeguard critical network infrastructure from external and
internal cyber threats. This paper introduces a new distributed
and hierarchical zero trust framework that aims to protect the
6G RAN from network attacks attempting to penetrate the
core network. The proposed security framework is based on
distributed security modules deployed at base stations, core
network functions, and cloud servers to monitor the radio
access network and prevent external attacks from executing
internal attacks remotely. Simulation results demonstrate that
our proposed security framework achieves a low detection time
and a very low false positive rate.

Our future research perspective is to consider other 6G KPIs
during the experimental phase, we cite the network coverage,
throughput and connectivity’s degree.
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