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Abstract

This paper models and solves the Dynamic Vehicle Routing Problem with Fair
Profits and Time Windows (DVRP-FPTW). The objective is to dynamically
optimize routes for a fleet of vehicles serving customers within assigned time
windows, aiming at fair and efficient solutions. The proposed DVRP-FPTW
model builds upon VRP-FPTW by López et al. [1], ensuring adherence to cus-
tomer demand, vehicle capacities, and autonomies, extending it to accommodate
unforeseen events during fleet operation, such as customers’ cancellations, or ve-
hicle breakdowns. The model incorporates mandatory (previously assigned to
operational vehicles) and optional (not assigned) customers, ensuring that op-
tional ones are integrated into operational vehicle routes while not worsening
their profits. The proposed distributed Multi-Agent System (MAS) solution ap-
proach utilizing asynchronous column generation heuristics dynamically adapts
to unforeseen events. Systematic Egalitarian social welfare optimization is em-
ployed to iteratively maximize the profit of the least profitable vehicle, defined
as the difference between the revenue earned from the visited customers and
the travel cost. By prioritizing less profitable vehicles, we ensure fair treatment
across the fleet considering unforeseen events, a significant improvement over ex-
isting dynamic and multi-period VRP models that rely on advance knowledge of
demand changes. Our approach allows vehicle agents to maintain privacy while
sharing minimal local data with a fleet coordinator agent. We propose publicly
available benchmark instances for both static and dynamic VRP-FPTW. Sim-
ulation results demonstrate the ability of our DVRP-FPTW model and MAS
solution approach to coordinate large, dynamically evolving cooperative fleets
fairly, efficiently, and effectively in close to real-time.
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1. Introduction

In agriculture cooperatives, where individual rationality meets mutual com-
petition among farmers managing fragmented and dispersed lands with precision
farming, there arises an ever-growing need for fair and efficient coordination of
shared agriculture vehicles. This demand becomes pronounced as farmers aim
to enhance their competitiveness across the industry and is particularly evi-
dent in sharing expensive autonomous tractor and agricultural robot (hereafter
referred to as vehicle) fleets.

Agricultural cooperatives, on the other hand, as member-owned and con-
trolled organizations, pursue common goals for both individual and mutual eco-
nomic or social benefits. These organizations operate on principles that promote
democratic control, active member participation, and equitable distribution of
benefits for all members and, thus, inherently balance collective efforts and in-
dividual profit motives. In agricultural cooperatives, while the primary goal is
collaborative work, an inherent tension exists between the collective efforts of
the group and each farmer’s pursuit of maximizing individual profits within the
cooperative’s regulations and value system. This inherent discord is addressed
through the foundational values statement, which encapsulates the cooperative’s
core principles and code of ethics. Given the natural conflict between collective
objectives and individual profit motives, farmers, driven by individual rational-
ity, choose to cooperate within the cooperative framework when the benefits
outweigh those of competition. Furthermore, they are inclined to retain auton-
omy and control of their operational and financial decisions rather than handing
over such authority to external entities.

In this context, we study the capacitated Vehicle Routing Problem with
Profits (VRPP) [2, 3] where a vehicle fleet services (e.g., delivers goods to) a
set of geographically dispersed customers (tasks). Each customer is associated
with a revenue collected by the vehicle that serves them. Vehicle profit is de-
fined as the difference between the revenue earned from the visited customers
and its travel cost. The pivotal question we address in this paper is how to dy-
namically optimize a cooperative fleet’s profits. The challenge lies in balancing
efficiency and fairness, considering both the cooperative’s commitment to equi-
table distribution and operational efficiency and the occurrence of unexpected
events during fleet operation. Such events (encompassing, e.g., task alterations,
vehicle additions, breakdowns or in-operation repairs) may necessitate prompt
and flexible route adjustments.

Therefore, the study at hand models and solves the Dynamic Vehicle Routing
Problem with Fair Profits and Time Windows (DVRP-FPTW) in this complex
context, addressing the challenge of dynamically optimizing fleet profits while
accommodating unforeseen events. Additionally, it adheres to vehicle capacity
and autonomy constraints, preventing any vehicle from exceeding the capacity
and maximum allowed distance between two depot visits, while also meeting
customer demands within specified time windows.
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The proposed DVRP-FPTW model incorporates mandatory and optional
customers. Mandatory customers are those that, before the disruption event,
were assigned to vehicles that remain operational after the event, while optional
customers are those left unassigned following the event. Contrary to current
models in the literature that do not oblige to visit each customer (e.g., [3]),
our proposed model ensures the servicing of all mandatory customers. It in-
corporates optional customers into operational vehicle routes only when their
inclusion does not negatively impact the profit of the vehicles.

The DVRP-FPTW is a computationally complex and intrinsically distributed
problem; thus, we decompose it and apply a column generation method that
initiates with a small set of variables corresponding to an initial set of routes.
It iteratively generates additional variables (columns) when necessary to en-
hance the current solution, ultimately converging towards the optimal solution.
This approach is seamlessly integrated into the Distributed Multi-Agent System
(MAS) Architecture proposed in this paper, that we name DIMASA, comprising
a fleet coordinator and vehicle agents, to produce a scalable and computationally
efficient solution suitable for real-world application.

To ensure both fairness and efficiency in dynamic environments, we propose
a systematic egalitarian social welfare optimisation approach that aims to it-
eratively maximize the profit of vehicles’ routes in a non-decreasing order of
vehicle profitability across the fleet. In addition, the column generation method
maintains the solution quality and guarantees to find an optimal solution if we
integrate it into a Branch and Price method. It allows for a distributed, paral-
lel, and asynchronous computation, particularly useful for routing of large-scale
real-world cooperative vehicle fleets in close-to real-time and avoids the need to
share private vehicle data.

The paper is structured as follows. In Section 2, we give an overview of
the state of the art. Section 3 presents the DVRP-FPTW problem formulation
where we decompose the problem using a column generation (also called pric-
ing) approach to incorporate it into the proposed DIMASA architecture. This
new architecture together with our proposed distributed and scalable solution
approach for the DVRP-FPTW problem is presented in Section 4. In Section
5, we give a use-case example and assess the performance of our approach on
a set of publicly available benchmark instances that we propose in this paper
for the static and dynamic versions of the VRP-FPTW. Here, we present the
setup and results of simulation experiments with related discussion. We close
the paper in Section 6 with conclusions and future work.

2. Related work

In the domain of collaborative vehicle routing problems, the sole pursuit of
maximum overall benefit for the fleet is complemented by considerations for
service quality, equity, and fairness (e.g., [4, 5, 6]).

In our previous work [7], we introduced the Agriculture Fleet Vehicle Routing
Problem (AF-VRP), a novel problem that, to the best of our knowledge, deviates
from any previously studied versions of the Vehicle Routing Problem. Uniquely
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characterized by its intrinsic dynamism and decentralization, and with a specific
focus on agriculture cooperatives, our approach necessitates the consideration
of fundamental concepts such as fairness and equity. Our investigation delves
into the exploration of how vehicles can collaborate to optimize their profits
while ensuring an equitable distribution of profits.

Soriano et al. [8] investigate how to solve the Multi-Depot Vehicle Routing
Problem (MDVRP) with added profit fairness constraints. They consider each
depot as an independent partner with its fleet and propose a bi-objective opti-
mization problem that minimizes the total cost and maximizes the fairness of
profit distribution. A multi-objective optimization approach focusing on max-
min fairness was proposed in [9] aiming to maximize the level of satisfaction for
the least satisfied owner. Furthermore, [10] introduces a novel vehicle routing
problem with vector profits, where each customer’s revenue is linked to multiple
stakeholders, aiming at maximizing the total profit while prioritizing the least
satisfied stakeholder. The authors adopted a column-generation approach to
solve the problem.

Fairness between customers is another important consideration in addition to
the fairness between vehicles. Stavropoulou et al. [11] study a Vehicle Routing
Problem (VRP) with profits and consistency constraints that uses a mixed set of
mandatory and optional customers to visit. They determine profitable vehicle
routes that maximize the net profit, while satisfying vehicle capacity, route
duration and consistency constraints. Mancini et al. [12] and Rodŕıguez-Mart́ın
et al. [13] considered the distribution of customers’ requirements over multiple
days with added driver consistency constraints where customers must be served
by the same vehicle over time.

The Dynamic Vehicle Routing Problem (DVRP) is a widely studied problem,
which adapts to demand and traffic conditions that vary over time (e.g., [14, 15]).
The solution methods to DVRP can be classified into heuristics, exact methods
and hybrid methods. Most exact methods are based on Mixed Integer Linear
Programming (MILP) models, which find an optimal solution for the current
state. However, they may not remain optimal or even feasible as conditions
evolve. Therefore, exact methods generally solve small instances or are used in
conjunction with heuristics to obtain good-quality solutions for more complex
problems (e.g., [16, 17, 18, 19, 20, 21]).

Distributed solution approaches to the DVRP generally utilize multi-agent
systems (MAS) where autonomous agents interact to achieve a common goal
[21, 22]. These systems enable decentralized dynamic vehicle routing, where
autonomous agents coordinate decisions in response to the evolving conditions of
the problem. While MAS approaches to the DVRP can manage large instances
and dynamic scenarios, solution quality is not always guaranteed (e.g., [23, 22,
21]).

Barbucha [24, 25] proposes a multi-agent approach to the DVRP where
agents address continuous customer requests by reallocating vehicles using a
Variable Neighborhood Search method. Lujak et al. [26] confront dynamic task
allocation in large, open, and collaborative vehicle fleets, using MAS to assign
agent-represented vehicles to dynamically appearing tasks. In addition to these
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methods, auction-based methods address larger-scale problems [27, 28]. For ex-
ample, customers’ demand can be bundled and auctioned off to carriers who
bid for the right to serve them. These approaches, although without quality of
solution guarantees, offer flexible resource allocation and can manage large-scale
scenarios within limited computation times.

Robust Vehicle Routing Problems address uncertainties in customer de-
mands, travel times, and service times (e.g., [29]). Agra et al. [30] apply math-
ematical programming to ensure route feasibility within time windows across
all travel times. Duan et al. [31] employ robust multi-objective particle swarm
optimization to handle disturbances. The periodic VRP with service time un-
certainty is addressed using a Variable Neighbourhood Search algorithm based
on the worst case in [32]. Guo et al. [33] propose a two-phase method including
optimal robust routes for all customers in the first phase and a multi-objective
particle swarm optimization for dynamically appearing customers in the second
phase.

The previous approaches do not account for the possibility of vehicle break-
downs, which, in real-world scenarios, can significantly disrupt the routing plans
and result in delays, missed appointments, and additional costs. Seyyedhasani
et al. [34] propose a re-optimization algorithm for the DVRP to address un-
expected changes in field conditions or machinery management, transitioning
from a single-depot to a multi-depot VRP to accommodate in-progress vehicle
locations and capabilities. They propose a Dynamic VRP and change the initial
VRP with one depot to a Multi-Depot VRP where each new depot corresponds
to the current position of the vehicles when something goes wrong. A similar
idea is the one we use in this article, although with a distributed approach in
which the coordinator does not know where the vehicles are. This information
is handled only by the vehicles themselves and they calculate their routes based
on their current characteristics.

Contribution of the paper. Led by the open challenges identified in agriculture
fleet vehicle routing, as presented in [7], in this paper, we propose the dynamic
VRP-FPTW model that extends the static model from [1] by integrating mech-
anisms to adjust pre-determined routes in response to unforeseen events. The
proposed problem and related distributed multi-agent based solution approach
are a continuation of our previous works ([1, 35, 36]), where we proposed deter-
ministic offline models for balancing fairness and efficiency of vehicle routes for
the (static) multiple Travelling Salesman Problem and the static VRP-FPTW.

3. Dynamic VRP-FPTW

In this Section, we first provide a short description of the static VRP-FPTW,
followed by the description of its dynamic counterpart. The objective is to de-
velop a decomposed approach for the Dynamic VRP-FPTW that can be in-
tegrated into the DIMASA architecture composed of a fleet coordinator and
vehicle agents, which we propose in this paper.
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3.1. Static VRP-FPTW

Consider a complete arc-weighted digraph G = (V,A), where V = {0, . . . ,
|V | − 1} is the vertex set of size |V |, and A is the set of arcs (i, j) ∈ V × V
with i ̸= j representing the shortest paths between any two distinct vertices i
and j in a transportation network embodied by graph G. Let dij denote the
distance of arc (i, j) ∈ A, and let vertex 0 ∈ V be designated as the depot. The
customer (task) vertices, represented by set N = {1, . . . , |V | − 1} are the nodes
to be visited or serviced.

Each customer i ∈ N has an associated demand qi to be satisfied and a
nonnegative revenue ri, with the depot assigned a revenue of r0 = 0. Customers
are to be serviced within a specific time window [li, ui], where li and ui denote
the earliest and latest allowable visit times, respectively. A fleet K consisting of
|K| potentially heterogeneous vehicles is initially stationed at the depot vertex 0
whose time window [l0, u0] determines the start and the end time of the mission,
respectively. Each vehicle k ∈ K has distinct characteristics: travel speed spk,
autonomy (maximum travel distance) Dk, resource carrying capacity Qk, and
travel cost per unit of distance travelled ok. The travel time tijk from vertex
i to j for vehicle k is computed as tijk = dij/spk and the corresponding travel
cost is cijk = dij × ok.

The objective of the (static) VRP-FPTW, as detailed in [1], is to find a set
of routes, one for each vehicle, that maximize the profit of the worst-off vehicle.
This profit is calculated as the difference between the cumulative revenue from
the visited customers and the total cost of the route. The fleet’s mission is to
visit each customer within their specified time window exactly once by exactly
one vehicle, while fully meeting their demand. The fleet must start from and
return to the depot after completing the service. The constraints include ad-
herence to the vehicles’ autonomy and carrying capacity. Specifically, the total
travel time and resource demands of the customers to be visited, represented
by the length of the route (dicycle) and the load carried, must not exceed the
autonomy and load capacity of any vehicle.

For the self-completeness of this work, in the following, we give the Static
Restricted Master Problem (SRMP) of the Static VRP-FPTW formulation (11)-
(15) in [1] whose aim is to find the values of binary decision variables λp

k if route
p ∈ Ωk is assigned to vehicle k, where Ωk is the set of feasible routes of vehicle
k.

max y (1)

s.t.
∑
k∈K

∑
p∈Ωk

apjkλ
p
k = 1, ∀j ∈ N, (2)

∑
p∈Ωk

wp
kλ

p
k ≥ y, ∀k ∈ K, (3)

∑
p∈Ωk

λp
k = 1, ∀k ∈ K, (4)

y ∈ R, λp
k ∈ {0, 1}, ∀k ∈ K,∀p ∈ Ωk. (5)
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where parameter apjk = 1 if the customer j ∈ N is visited on route p by vehicle k,

and 0 otherwise, while parameter wp
k is the profit obtained on route p by vehicle

k. Constraints (2) are the one-on-one vehicle-customer assignment constraints.
Fairness constraints (3) fix the minimum profit for each vehicle to y; vehicle
constraints (4) guarantee the use of all vehicles, while constraints (5) define
variable domains. The objective function (1) maximizes profit y of the worst-off
vehicle. More details can be found in [1].

The static VRP-FPTW model is designed to accommodate both heteroge-
neous and homogeneous vehicle fleets. It imposes no restrictions on the structure
of the transportation graph, nor on the number of vehicles or customers. How-
ever, the model operates under the assumption that there is a sufficient number
of vehicles to meet all customers. Thus, there may be instances where no feasi-
ble solution exists due to too restrictive constraints of the problem. To address
this, we recommend implementing data pre-processing techniques that are es-
sential for identifying such scenarios where the constraints of vehicle capacity,
customer demand, and time windows might render the problem infeasible.

3.2. Dynamic VRP-FPTW formulation

The Dynamic VRP-FPTW (DVRP-FPTW) addresses the limitations of
static routing in environments where conditions can change unpredictably. We
define a disruptive event e as an unforeseen occurrence or change that impacts
the routing solution established beforehand. The disruptions include fluctua-
tions in customer demand, unforeseen vehicle breakdowns and unexpected de-
lays, rendering visits to customers within their designated time windows infea-
sible as well as new vehicle additions to the fleet, among others.

Let ze ∈ [l0, u0] be the time of such an event. We assume that the time
is synchronized throughout the fleet’s vehicles. Let K ′ represent the set of
post-disruption operational vehicles, including any possible new vehicle(s) and
excluding the ones that are not operational. We define mutually exclusive sub-
sets of customers N at time z: N1 (already visited customers), N2 (current
locations of operational vehicles after disruption), N3 (mandatory customers,
i.e., the customers to be visited and previously assigned to set K ′ of operational
vehicles after disruption), and N4 (optional customers, i.e., both new customers
and the customers that had been assigned to the vehicles that were impacted
by a disruptive event and have not been operational afterwards). For simplicity,
we assume that if a vehicle that is operational after disruption is en route to
customer i ∈ N at time z of the event, it is considered at i’s location after
disruption.

Encompassing these changes, the revised routing problem is modelled on a
new complete arc-weighted digraph (V’, A’) where V ′ = {0}∪N2∪N3∪N4 and
A′ is the set of arcs (i, j) ∈ V ′ × V ′. The notation is summarized in Table 1.

3.2.1. Centralized formulation for the DVRP-FPTW

The DVRP-FPTW is formulated as a mixed-integer linear program. The
model includes binary variables xijk indicating whether the route of vehicle k
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Table 1: Parameters and decision variables of the DVRP-FPTW

Parameters Symbol Description

Shared fleet information G
Vertices V ′ Set of vertices, V ′ = {0} ∪N2 ∪N3 ∪N4

Arcs A′ Set of arcs (i, j) ∈ V ′ × V ′

Depot 0 Depot vertex, 0 ∈ V ′

Visited customers N1 Set of visited customers
Current locations N2 Set of vertices where the vehicles are

currently located
Mandatory customers N3 Set of pending mandatory customer vertices
Optional customers N4 Set of pending optional customer vertices
Distances dij Travel distance of arc (i, j) ∈ A′

Revenue ri Nonnegative revenue obtained by visiting
customer i ∈ N3 ∪N4

Demand qi Nonnegative demand associated with
each customer i ∈ N3 ∪N4

Time window [li, ui] Time window for visiting customer i ∈ N3 ∪N4

Vehicles K ′ Updated set of operational vehicles k ∈ K ′

Private information I for each vehicle k ∈ K ′

Travel cost ok travel cost of vehicle k per unit of distance
travelled

Travel time tijk Travel time of vehicle k on arc (i, j) ∈ A′

Autonomy D′
k Remaining autonomy of vehicle k in terms of

maximum traveling distance
Capacity Q′

k Remaining capacity of vehicle k
Post-disruption locations sk Post-disruption vertex location of vehicle k
Disruption time zk Disruption time of vehicle k at vertex sk
Profit yk Accumulated profit of vehicle k

Decision variables

Route-arc assignment xijk xijk = 1 if vehicle k ∈ K travels arc (i, j) ∈ A′

and 0 otherwise
Customer visit time vi Time of the visit of customer i

8



passes through arc (i, j) ∈ A′, continuous variables vi representing the arrival
time of a vehicle at vertex i ∈ V ′ and a continuous variable y associated with
the profit of the worst-off vehicle’s route. We propose next the (centralized)
formulation of the DVRP-FPTW.

max y (6)

s.t.
∑
k∈K′

∑
i∈V ′

xijk = 1 ∀j ∈ N3 (7)∑
k∈K′

∑
i∈V ′

xijk ≤ 1 ∀j ∈ N4 (8)∑
i∈V ′

xijk −
∑
h∈V ′

xjhk = 0 ∀j ∈ (N3 ∪N4),∀k ∈ K ′ (9)∑
j∈V ′

xsjk = 1 ∀k ∈ K ′, s = sk (10)

∑
j∈V ′

xj0k = 1 ∀k ∈ K ′ (11)

∑
i∈V ′

∑
j∈V

dijxijk ≤ D′
k ∀k ∈ K ′ (12)

∑
i∈V ′

∑
j∈V ′

qjxijk ≤ Q′
k ∀k ∈ K ′ (13)

vi + tijk ≤ vj +M(1− xijk) ∀(i, j) ∈ A′, j ̸= 0,

∀k ∈ K ′ (14)

vs = zk ∀k ∈ K ′, s = sk (15)

li ≤ vi ≤ ui ∀i ∈ V ′ (16)

y ≤ yk +
∑
i∈V ′

∑
j∈V ′

(ri − cijk)xijk ∀k ∈ K ′ (17)

xijk ∈ {0, 1} ∀(i, j) ∈ A′,∀k ∈ K ′. (18)

The proposed DVRP-FPTW model (6)–(18) aims to incorporate set N4 of
optional customers into the routes of the operational vehicles that must service
their mandatory customers in N3 while striving to maintain or improve each
vehicle’s profit by including into their routes optional customers.

Objective function (6) maximizes the profit of the worst-off vehicle. Manda-
tory customer constraints (7) ensure that each mandatory customer in N3 is
visited once by exactly one vehicle, while optional customer constraints (8)
ensure that every optional customer in N4 is visited at most once. Flow conser-
vation constraints (9) state that if a vehicle visits a customer vertex, it should
also leave it. Constraints (10) and (11) ensure that each vehicle leaves its actual
vertex and returns to the depot, respectively. Vehicle k’s adjusted parameters
are remaining autonomy D′

k, remaining capacity Q′
k and profit yk accumulated

at the time of the disruptive event. Constraints (12) and (13) ensure that the
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total travel time and resource demands of the customers to be visited by each
vehicle k ∈ K ′ do not exceed its remaining autonomy D′

k nor capacity Q′
k, re-

spectively. Constraints (14) set the arrival time at each vertex and eliminate
subtours.

Each vehicle k ∈ K ′ starts its revised route at time z from its current location
sk ∈ N2 where N2 = {sk : k ∈ K ′}. We use a potentially different starting time
for each vehicle k since a vehicle may have been on the way to the current
customer.

THE DESCRIPTION OF CONSTRAINTS (15) IS MISSING.
Constraints (16) ensure that customer time windows are satisfied. We take

in consideration the vehicles’ profits accumulated before the disruptive event
and do not reassign already serviced customers in set N1. Fairness constraints
(17) keep track of the worst-off vehicle’s profit y. Each vehicle k’s profit yk
accumulated from the customers visited before the disruptive event is added to
the profit of its customers to be visited in the newly found route. In this way
we balance the efficiency and fairness of the routes considering overall profit
received by each vehicle in time horizon [l0, u0].

3.2.2. Decomposed formulation for DVRP-FPTW

Next, we present a decomposed mathematical program designed for a multi-
agent system, consisting of a coordinator agent and a fleet of vehicles with
computation and communication capabilities.

Applying Dantzig-Wolfe decomposition [37, 38], the dynamic centralized
model (6)-(18) is restructured into a Dynamic Restricted Master Problem (DRMP)
formulation of the DVRP-FPTW. Each vehicle k ∈ K ′ is considered with a set
of feasible routes Θk, starting at the current location sk and finishing in the
depot 0.

We let apjk be a binary parameter equal to 1 if route p ∈ Θk of vehicle k visits

vertex j, and let wp
k be the profit obtained in route p ∈ Θk by vehicle k ∈ K ′.

Moreover, we let δpk be the decision variable that equals 1 if route p ∈ Θk is
selected for vehicle k. The dynamic restricted master problem (DRMP) of the
DVRP-FPTW is then:

max y (19)

s.t.
∑
k∈K′

∑
p∈Θk

apjkδ
p
k = 1, ∀j ∈ N3, (20)

∑
k∈K′

∑
p∈Θk

apjkδ
p
k ≤ 1, ∀j ∈ N4, (21)

∑
p∈Θk

wp
kδ

p
k + yk ≥ y, ∀k ∈ K ′, (22)

∑
p∈Θk

δpk = 1, ∀k ∈ K ′, (23)

y ∈ R, δpk ∈ {0, 1}, ∀k ∈ K ′,∀p ∈ Θk, (24)
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Objective function (19) maximizes the profit y of the worst-off vehicle. Con-
straints (20) assure visiting each mandatory customer j ∈ N3. Constraints (21)
assure that all optional customers j ∈ N4 are visited at most once. Fairness
constraints (22) keep track of the minimum profit of the entire fleet K ′ after dis-
ruption. Constraints (23) guarantee that all post-disruption operational vehicles
(K ′) are assigned a route.

The mathematical model (19)–(24) is used by the coordinator agent for the
dynamic vehicle-route assignment and the computation of shadow prices (dual
variables). The shadow prices are obtained by solving the linear relaxation of
the DRMP. They may be interpreted in economic terms as the opportunity cost
of resources and can be positive or negative. Specifically, assignment constraints
(20) and (21) generate πj ∈ R for each customer j ∈ N3 ∪ N4, indicating the
marginal cost of including customer j in a route. Likewise, fairness constraints
(22) and fleet utilization constraints (23) produce shadow prices µk ≤ 0 and
αk ∈ R, respectively, for each vehicle k ∈ K ′, representing the marginal cost
associated with each vehicle’s operation. The column generation subproblem
associated with the DRMP is the Elementary Shortest Path Problem with Re-
source Constraints (ESPPRC) [39].

4. DIMASA: Distributed Multi-Agent System Architecture for the
DVRP-FPTW

We propose next a new decision-making architecture for the DVRP-FPTW,
leveraging a distributed MAS that we name DIMASA. Illustrated in Figure
1, this architecture includes a Coordinator Agent and multiple Vehicle Agents
that mutually collaborate to find best vehicle routes. The optimization process
involves solving both the restricted master problem and dedicated column gen-
eration subproblems through a distributed and asynchronous implementation of
the column generation approach, aligning with methodologies in ([40, 41]).

4.1. Coordinator agent

The coordinator agent ensures an equitable distribution of profit and effi-
ciency across the fleet through systematic optimization of egalitarian social wel-
fare for VRP-FPTW that we propose in this paper and that extends the model
for the multiple Travelling Salesman Problem (mTSP) from [35, 36]. This ap-
proach prioritizes vehicle performance optimization in non-decreasing order of
vehicle routes’ profits.

The coordinator’s decision-making process involves two iterative phases: the
assignment of customer routes to the fleet’s vehicles, before the start of the fleet’s
operation (phase 1), and the adaptation of these routes when unexpected events
occur during operation (phase 2), Figure 1. Phase 1 assigns a set of customers
N to the fleet set K based on the static VRP-FPTW model (1)-(5) following
the Systematic Coordinator Agent Algorithm – SYSCA (Algorithm 1), while
phase 2 considers sets of customers in N3 and N4 for the assignment among
available vehicles in set K ′ by solving the DRMP model (19)-(24), following the
Dynamic Systematic Coordinator Agent Algorithm – DSYSCA (Algorithm 3).
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Figure 1: DIMASA architecture for the Static/Dynamic VRP-FPTW.
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Algorithm 1: SYSCA Algorithm

Input: N - Set of customers, K - Set of vehicles.
Output: For all vehicles k ∈ K: Send routes p, where (k, p) ∈ S.

1 K ′′ = K ;
2 N ′′ = N ;
3 S = ∅ ;
4 while K ′′ ̸= ∅ do
5 P = V RP − FTPW (N ′′,K ′′); // (Algorithm 2)

6 (kmin, pmin) = argmink∈K′′,p∈P {wk} ;
7 Send AssignedRoute(kmin, pmin) to vehicle kmin ;
8 K ′′ = K ′′ \ {kmin} ;
9 N ′′ = N ′′ \ Customers(pmin) ;

10 S = S ∪ {(kmin, pmin)} ;
11 end

DIMASA architecture supports six types of messages between the coordi-
nator and vehicle agents to manage information exchange: ‘GraphInfo’, ‘Vehi-
cleEvent’, ‘AssignedRoute’, ‘ShadowPrices’, ‘RouteProposals’, ‘Acknowledged(k,msg)’,
and ‘StopRouteFinding’. Updated shared fleet information from Table 1 is found
inside the ‘GraphInfo’ messages, required by the vehicles to update their graph
information. ‘VehicleEvent’ message informs of a breakdown or addition of a
vehicle into the fleet. An ‘AssignedRoute’ message sent by the coordinator indi-
cates the route that a vehicle should follow. Also, private shadow prices µk and
αk are sent by the coordinator only to the corresponding vehicle k ∈ K together
with (shared) marginal costs πj for each customer j ∈ N3 ∪ N4 in a ‘Shadow-
Prices’ message. A‘RouteProposals’ message sent from a vehicle agent to the
coordinator agent contains a set of pairs {(k, p, wp

k)} with feasible routes with
negative reduced costs p and their related profit wp

k, if any. Ultimately, while the
asynchronous nature characterizes the proposed column generation approach, it
is essential to note the presence of a synchronization point within the devised
solution strategy. This point of convergence is strategically facilitated through
the utilization of a specific message, namely, ‘StopRouteFinding’.

4.1.1. Phase 1

In Phase 1, the coordinator agent uses the SYStematic Coordinator Agent
(SYSCA) Algorithm (Algorithm 1) to iteratively assign a route to each vehicle
across the fleet prioritizing the vehicles with the least profit.

SYSCA Algorithm (Algorithm 1). Initially, the coordinator agent receives the
information about the set of customers N and vehicles K (Input). SYSCA runs
over |K| optimization iterations where the auxiliary sets N ′′ and K ′′ represent
the pending unassigned customers and vehicles in each iteration, respectively.

In each iteration, the coordinator agent solves the static VRP-FPTW model
by employing Algorithm 2 (CA Algorithm from [1]). This is done in collabora-
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Algorithm 2: VRP-FPTW Algorithm

Input: N - set of customers, K - set of vehicles
Output: P = {(k, p, wk),∀k ∈ K} - set of assigned routes

1 Send GraphInfo() to all vehicles k ∈ K;
2 Initialize routes;
3 Calculate shadow prices (∀j ∈ N : πj , ∀k ∈ K : µk and αk) in SRMP;
4 Send ShadowPrices(πj ,∀j ∈ N ;µk, αk) to all vehicles k ∈ K;
5 repeat
6 if new ‘RouteProposals’({(k, p, wp

k)}) received from any k ∈ K then
7 Ωk = Ωk ∪ {(k, p, wp

k)};
8 Calculate shadow prices (∀j ∈ N : πj , ∀k ∈ K : µk and αk) in

SRMP;
9 Send ShadowPrices(πj ,∀j ∈ N ;µk, αk) to all vehicles k ∈ K;

10 end

11 until Termination criteria;
12 Send StopRouteF inding() to each vehicle k ∈ K ;
13 {(k, p),∀k ∈ K}= SRMP({Ωk,∀k ∈ K}, N);
14 P = {(k, p, wk),∀k ∈ K};
15 Return P

tion with operational vehicle agents in K, where each one runs in parallel its
own copy of the DRGV Algorithm (Algorithm 5)).

Based on the promising routes received from the vehicle agents, the coor-
dinator agent selects a route for each one of the vehicles aiming at the max-
imization of the profit of the worst-off vehicle. Then, vehicle kmin with the
minimum profit of its route pmin is selected and the coordinator sends an
AssignedRoute(kmin, pmin) message to that vehicle indicating its assigned route.
Vehicle kmin and customers (Customers(pmin)) that are part of its route pmin,
are removed from sets K ′′ and N ′′, respectively. This process is repeated in
subsequent iterations, to select the routes for the next worst-off vehicle (one by
one) until all |K| vehicles in the fleet are assigned a route.

CA Algorithm (Algorithm 2). For self-sufficiency of this work, we explain the
VRP-FPTW solution approach – Algorithm 2 (CA Algorithm from [1]). This
algorithm finds a route for each vehicle k ∈ K by only focusing on the maxi-
mization of the profit of the worst-off vehicle.

The input to the algorithm is composed of a set of customers N and a set of
vehicles K while the output is a set of vehicle routes P = {(k, p, wk) | k ∈ K}
where the profit of the worst-off vehicle is maximized.

First, the coordinator sends a GraphInfo() message containing customers in
N to all vehicles k ∈ K (line 1). The routes are initialized on line 2 by creating
an artificial solution for the SRMP model (1)-(5), where a single artificial vehicle
visits all the customers obtaining a large (infinitely) negative profit. Thanks to
this artificial solution, the linear relaxation of the model can be carried out.
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Next, the coordinator calculates shadow prices by solving the linear relaxation
of the SRMP (line 3), and sends a ‘ShadowPrices’ message to each vehicle
agent with its dedicated private information, thus maintaining the privacy in
the system (line 4).

Whenever the coordinator receives any vehicle’s new routes with negative
reduced costs, it adds them into the set Ω = {Ωk,∀k ∈ K} of columns for
the SRMP (line 7) and updates and sends shadow prices to all vehicles k ∈ K
(lines 8 and 9). This asynchronous and iterative process is repeated until the
Termination criteria are met (line 11).

Choosing appropriate termination criteria is a crucial algorithmic decision in
column generation, as there exists no formula that works well for all instances
[42, 41]. Termination criteria based on the number of iterations is not reli-
able in this context, since the messages exchanged among the vehicles and the
coordinator agent are asynchronous, they can arrive at different iterations, so
termination criteria based on the computation time or the number of columns
are more suitable.

The criteria we implement in our solution approach include the receipt of
an empty route proposal by all vehicles k ∈ K (implying that vehicles cannot
find any new routes with negative reduced costs), or when a given time limit is
reached.

Based on the features and the analysis of our problem [1], we have fixed the
time limit for the coordinator agent to 10 min for the static case and 1 min in
the dynamic case, and for vehicle agent in 1 min and 10 seconds, respectively.
However, in all the performed experiments, our algorithm finished before the
time limit was reached, which shows its effectiveness.

However, there may exist vehicles that have not finished the computation
process for finding their routes with negative reduced cost within this time limit.
Thus, the coordinator agent sends to all vehicles a ‘StopRouteFinding’ message
(line 12) to ensure that they are informed of the termination of Algorithm 2.
Finally, the coordinator agent solves the SRMP (line 13) and the algorithm re-
turns a set of routes P = {(k, p, wk)} (line 15). At termination, in the best case,
every vehicle k ∈ K is assigned route p, terminating the phase 1, after which,
phase 2 starts. However, if the original artificial solution with the negative profit
is found in the final assignment, the algorithm has not found a solution.

Thanks to the systematic optimization of egalitarian social welfare, the val-
ues of the worst-off profit y in one iteration may surpass the profit from the
previous iteration(s). By adopting this iterative method, we ensure both eq-
uity and efficiency for all vehicles. The advantage of computing the systematic
egalitarian social welfare in this way is that the solution of the SRMP takes
advantage of the previously computed routes to produce new shadow prices and
reiterate the process.

4.1.2. Phase 2

In phase 2, the coordinator agent assumes an idle state awaiting a disruptive
event denoted as e within the operational timeframe z ∈ [l0, u0].
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Upon a disruptive event, the coordinator triggers the Dynamic Systematic
Coordinator Agent Algorithm (DSYSCA) as delinated in Algorithm 3.

Algorithm 3: DSYSCA Algorithm

Input: K ′ - set of vehicles, N3 - set of pending mandatory customers,
N4 - set of pending optional customers, e - disruptive event

Output: For all vehicles k ∈ K ′: Send new routes p, where(k, p) ∈ S′.
1 if e: New customer {n} then
2 N3 ← N3 ∪ {n} ;
3 end
4 if e: New vehicle {k} then
5 K ′ ← K ′ ∪ {k} ;
6 end
7 if e: Vehicle breakdown {k} then
8 K ′ ← K ′ \ {k} ;
9 N4 ← N4 ∪Nk ;

10 end
11 N ′

3 = N3, N
′
4 = N4 ;

12 S′ = ∅ ;
13 K ′′ = K ′ ;
14 while K ′′ ̸= ∅ do
15 P ′ = DV RP − FPTW (N ′

3, N
′
4,K

′′) ; // (Algorithm 4)

16 (kmin, pmin) = argmink∈K′′,p∈P ′ wk ;
17 Send AssignedRoute(kmin, pmin) to vehicle kmin ;
18 K ′′ = K ′′ \ {kmin} ;
19 N ′

3 = N ′
3 \ Customers(pmin) ;

20 N ′
4 = N ′

3 \ Customers(pmin) ;
21 S′ = S′ ∪ {(kmin, pmin)}
22 end

DSYSCA Algorithm (Algorithm 3). After classifying event e, Dynamic SYS-
tematic Coordinator Agent (DSYSCA) Algorithm updates the set of available
vehicles K ′, mandatory customers N3, and optional customers N4 as follows: a
new customer n and a new vehicle k are added to subset N3 and K ′, respectively
(lines 2 and 4); a broken down vehicle k is removed from the fleet K ′ (line 8)
and set Nk ⊂ pk of its unvisited customers are added to optional customers in
N4 (line 9).

Next, similar to the SYSCA algorithm (Algorithm 1), the coordinator agent
instantiates auxiliary sets N ′

3, N
′
4, S

′, and K ′′ representing the pending manda-
tory and optional unassigned customers, the solution set, and operational vehi-
cles in each iteration, respectively (lines 11–13). The algorithm finds the routes
for the vehicles following the systematic egalitarian social welfare optimization
(lines 14–22). It performs |K ′| iterations where in each one, a route maximizing
the profit of the worst-off vehicle kmin is found considering customers from N3
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and N4. In each iteration, the coordinator solves the DVRP-FPTW (Algorithm
4), line 15.

DVRP-FPTW Algorithm (Algorithm 4). This algorithm follows the idea of
the VRP-FPTW Algorithm but solves the dynamic restricted master problem
(DRMP) (19)-(24) to find shadow prices (lines 3 and 8). The coordinator keeps
in its memory set Θk of feasible routes with negative reduced cost received from
each post-disruption operational vehicle k ∈ K ′.

Algorithm 4: DVRP-FPTW Algorithm

Input: N ′
3 - Set of mandatory customers, N ′

4 - Set of optional
customers, K ′ - Set of operational vehicles

Output: P ′ = {(k, p, wk),∀k ∈ K} - set of assigned routes
1 Send GraphInfo(N ′

3, N
′
4) to all vehicles k ∈ K ′ ;

2 Initialize routes;
3 Calculate shadow prices (∀j ∈ N ′

3 ∪N ′
4 : πj ; ∀k ∈ K ′ : µk and αk) ;

4 Send ShadowPrices(πj , µk, αk) to all vehicles k ∈ K ′);
5 repeat
6 if new ‘RouteProposals’({(k, p, wp

k)}) received from any k ∈ K ′ then
7 Θk = Θk ∪ {(k, p, wp

k)};
8 Calculate shadow prices (∀j ∈ N ′

3 ∪N ′
4 : πj ; ∀k ∈ K ′ : µk, αk) ;

9 Send ShadowPrices(πj ,∀j ∈ N ′
3 ∪N ′

4;µk, αk) to all vehicles
k ∈ K ′) ;

10 end

11 until Termination criteria;
12 Send StopRouteF inding() to each vehicle k ∈ K ′ ;
13 {(k, p),∀k ∈ K ′}= DRMP({Θk,∀k ∈ K ′}, N);
14 P ′ = {(k, p, wk),∀k ∈ K ′};
15 Return P ′

Whenever the coordinator receives any vehicle’s new routes with negative
reduced costs, it adds them into the set Θ = {Θk,∀k ∈ K} of columns for the
DRMP (line 7) and calculates and sends shadow prices to all vehicles k ∈ K
(lines 8 and 9). This asynchronous and iterative process is repeated until the
Termination criteria are met (line 11).

‘StopRouteFinding’ message (line 12) is sent to all vehicles k ∈ K ′ to inform
them of the termination of the algorithm.

Solution P ′ = {(k, p, wk),∀k ∈ K} found by solving the DRMP contains an
assigned route p for each vehicle k ∈ K ′ and its associated profit wp

k.
After an event is processed and new routes are obtained, the coordinator

returns to the idle state awaiting new events. Once all the pending customers
have been visited, the condition Operation finished? in Figure 1 returns “Yes”
to indicate that the operation is over.
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Algorithm 5: DRGV Algorithm followed by each vehicle k ∈ K ′

Input: G - shared fleet information, Ik - private vehicle information
Output: RouteProposals({(k, p, wp

k)}) sent to coordinator agent
1 InitializeESPRC(G, I);
2 terminate← False ;
3 while !terminate do
4 msg ←WaitMessage();
5 if msg == GraphInfo() then
6 Send Acknowledged(k,msg);
7 UpdateGraphInfo();

8 if msg == StopRouteFinding() then
9 Send Acknowledged(k,msg);

10 terminate← True;

11 if msg == AssignedRoute(k,p) then
12 Send Acknowledged(k,msg);
13 do in parallel
14 RunRoute(p)
15 if RouteFinished(p) then
16 Send RouteF inished(k, p) to coordinator agent
17 terminate← True

18 goto line 4

19 if msg==ShadowPrices(πj ,∀j ∈ N ;µk, αk) then
20 Send Acknowledged(k,msg);
21 CG ← UpdateReducedCosts(πj ,∀j ∈ N ;µk, αk);
22 {p} ← SolveESPPRC(G, I, CG);
23 Send RouteProposals({(k, p, wp

k)});

4.2. Vehicle agent

To generate new feasible routes with negative reduced cost (new columns
in the SRMP in phase 1 and the DRMP in phase 2) in response to updated
shadow prices received from the coordinator, each vehicle agent k ∈ K maintains
a message pool with the coordinator, wherein messages are retained until the
vehicle agent reads and responds to them. The decision making of each vehicle is
determined by the Distributed Route Generation by Vehicle (DRGV) Algorithm
(Algorithm 5) that sends messages to the coordinator.

DRGV Algorithm (Algorithm 5). The algorithm initializes by receiving from
the coordinator agent the shared fleet information G (Table 1). Each vehicle k
keeps in its memory its own private information I.

The algorithm runs iteratively. In each iteration, a vehicle reads and pro-
cesses the messages from the coordinator (lines 4-23). If the message is ‘GraphInfo’,
it updates its own graph (line 7). The algorithm terminates when it receives a
‘StopRouteFinding()’ message (line 8), which signals the termination of the
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algorithm. Upon receipt of the ‘AssignedRoute(k,p)’ message (line 11), by
RunRoute(p), the vehicle starts visiting the tasks in its route and, in paral-
lel, awaits messages for any route changes (line 18); if no messages are received
before the route is finished, the vehicle sends RouteF inished(k, p) message to
the coordinator (line 16) and the algorithm terminates.

Each time a vehicle receives a ‘ShadowPrices’ message with updated val-
ues µk, αk, πi for all i ∈ N (line 19), it updates its reduced costs in CG =
{ĉijk | (i, j) ∈ A} (line 21). These updates are made as follows:

• ĉijk = (πj + (ri − cijk) · µk), for all arcs (i, j) ∈ V ×N , representing the
revised reduced cost for arcs (i, j) ∈ V × N considering revenue ri and
cost cijk for vehicle k.

• ĉi0k = (ri − ci0k) · µk + αk, indicating the new reduced cost for all arcs
(i, 0), where i ∈ V returning to the depot 0.

In the SolveESPPRC(G, I, CG) function (line 22), each vehicle agent resolves
its own column generation subproblem, the Elementary Shortest Path Problem
with Resource Constraints (ESPPRC), which is an NP-Hard problem [39].

The ESPPRC aims at finding the best routes from the current location sk
of vehicle k to the depot 0, with negative reduced cost and without violating
any constraints. Because the ESPPRC is computationally expensive, we use
two different algorithms to find good routes with negative reduced costs: 1) a
heuristic algorithm based on the SPPRC (Shortest Path Problem with resource
constraints [43]), which avoids cycles and compares routes with simple domi-
nance based on the total reduced cost; 2) an exact algorithm that follows the
ESPPRC rules as seen in [44], which makes sure that we do not miss any promis-
ing routes. Given the complexity of the ESPPRC, we have imposed a time limit
within which the algorithm is expected to return a set of best solutions or an
empty route if none is found. Subsequently, in the ‘RouteProposals’ ({(k, p, wp

k)}
message (line 23), the vehicle agent transmits to the coordinator a set of its best
feasible routes {p} along with their associated profits wp

k, thus preserving vehicle
privacy.

The messages ‘GraphInfo’, ‘AssignedRoute’, ‘StopRouteFinding’, and ‘Ac-
knowledged’ are crucial for the synchronization between the coordinator and
the vehicle agents. These messages serve as synchronization points between
the asynchronous algorithms. The communication system must ensure that
these messages have been received timely and orderly before proceeding. If
the coordinator does not receive an ‘Acknowledged(k,msg)’ from a vehicle, it is
considered broken. The coordinator agent generates a ’Vehicle breakdown{k}’
event, adding its pending tasks to the set of optional customers N4.

5. Use case and functional experiments

In this Section, we first demonstrate the functioning of the proposed dis-
tributed MAS approach for DVRP-FPTW through a use case example and then
discuss its computational complexity and demonstrate its scalability through
extensive functional experiments.
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5.1. Use case example

Consider the scenario illustrated in Figure 2. Suppose we have a set of 10
customers (tasks) that must be visited. The fleet is composed of 3 homogeneous
vehicles initially positioned at the depot {0}, as shown in Figure 2a. In phase 1
of the DIMASA architecture, an initial routing plan is found. This plan assigns
each vehicle to a specific set of customers, resulting in the following:

• Vehicle 1: Route [0, 4, 6, 10, 8, 0] with a profit of 97.31.

• Vehicle 2: Route [0, 5, 9, 3, 1, 0] with a profit of 165.78.

• Vehicle 3: Route [0, 2, 7, 0] with a profit of 106.35.

Vehicle 1 starts its route, but at time ze = 20, while it is visiting customer
6, it breaks down and does not send the Acknowledged(1,msg) message after
receiving the GraphInfo() message from the coordinator agent, Figure 2b. The
coordinator agent generates a V ehicle breakdown{1} event This event triggers
adding the vehicle 1’s pending customers [8, 10] into the set of optional customers
N4. The coordinator removes vehicle 1 from the set of functioning vehicles K ′.

In this scenario, the customer sets are N1 = [4, 6, 5, 9, 2, 7], N2 = [9, 7],
N3 = [3, 1] and N4 = [8, 10], and the private information of the vehicles is:

• Vehicle 1: s1 = 6, v6 = 21.12, y1 = 50.00, D′
1 = 75.32, Q′

1 = 37.0

• Vehicle 2: s2 = 7, v7 = 22.04, y2 = 121.22, D′
2 = 77.95, Q′

2 = 32.0

• Vehicle 3: s3 = 9, v9 = 24.04, y3 = 118.97, D′
3 = 90.87, Q′

3 = 41.0

The coordinator agent solves the DRMP (19)-(24) considering the previous
routes of the remaining operational vehicles K ′ = {2, 3}, Figure 2c, aiming at
finding appropriate route modifications. The phase 2 of our distributed MAS-
based solution approach obtains the solution illustrated in Figure 2d:

• Vehicle 2 was added tasks 10 and 8 into its new route [7, 10, 8, 0] with a
profit of 167.33.

• Vehicle 3 had no tasks added, maintaining its pending route [9, 3, 1, 0] with
an initially planned profit of 165.78.

As may be seen from this example, the proposed DIMASA architecture
enables us to effectively manage unexpected events, such as a vehicle breakdown.

The proposed solution approach is designed to solve a class of problems that
are known as NP-hard, which means that there is no efficient way to find the
optimal solution in general, nor is there a termination criterion that ensures
finding a solution. However, in practice, the DIMASA architecture works very
well and can find the solutions in a relatively short amount of time, which is
shown next in the functional experiments.
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(a) Initial planning. (b) Tasks done until time ze = 20 of vehicle 1
breakdown event

(c) Vehicle 1 breaks down. (d) Reassignment of the tasks of vehicle 1 to
other vehicles.

Figure 2: Example of the execution of the dynamic approach when vehicle 1 breaks down in
the middle of its route.
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5.2. Functional experiments

In this Section, we evaluate the performance of the proposed DIMASA ar-
chitecture (in phase 1, SYSCA and VRP-FPTW Algorithm for the coordinator
that interacts with the DRGV algorithm implemented in each of the vehicle
agents, and in phase 2, the coordinator’s DSYSCA and the DVRP-FPTW Al-
gorithm in interaction with the DRGV algorithm in each of the vehicle agents.
We compare the performance of the two phases with the solution of the central-
ized model (Centr.) of the proposed DVRP-PFPTW problem.

The results of the centralized model are found by Gurobi 10.0.2 solver with
gurobipy Python library with the time limit of one hour. We run the simulation
experiments on an Intel Xeon Gold 6226R1 virtualised cluster with 16 CPUs,
32 GB of RAM and clock frequency 2.9 GHz.

The proposed DVRP-PFPTW is a new problem that was not studied pre-
viously. Therefore, there are no relevant state-of-the-art benchmarks. Conse-
quently, in this Section, we provide the strategy for creating them as well as a
set of publicly accessible2 benchmark instances together with a set of relevant
Key Performance Indicators for the DVRP-FPTW problem.

Inspired by the generation of benchmark instances in [8, 45, 46], we con-
sider a 2-dimensional Euclidean space of dimensions [0, 100] × [0, 100], with a
single depot located in the centre of this space, i.e., at (50, 50) and multiple
customer vertices (customers) distributed uniformly randomly over the same.
The distance matrix d = {dij |(i, j) ∈ A} is created based on the Euclidean
distance between each pair of vertices in the given space. For simplicity, we
assume that the cost and travel times matrix for each vehicle is equal to the
distance matrix. The parameters related to customers include their coordinates,
demand, revenue and time windows. Customer demand is uniformly randomly
distributed between 1 and 10 and customer revenue between 10 and 100. The
vehicle parameters include the number of vehicles, the cost, velocity, autonomy
and capacity.

5.2.1. Benchmark instances for the static VRP-FPTW

Feasibility and binding constraints. In the creation of benchmark instances, we
ensure that the autonomy, capacity, and timing constraints are binding by specif-
ically adjusting the values of time windows [li, ui] for each customer i as well
as autonomy Dk and capacity Qk for each vehicle k. Defining these values is
still an open challenge for the capacitated VRP [46]. This is essential since if
the problem is too constrained, it might not be feasible, while if it is too loose,
the constraints that distinguish this problem from the general constrained VRP
will not be considered. Thus, the parameters of the proposed instances are
determined in such a manner that they strike a balance between being suffi-
ciently restrictive to enforce the binding nature of associated constraints and

1https://www.intel.es/content/www/es/es/products/sku/199347/intel-xeon-gold-6226r-
processor-22m-cache-2-90-ghz/specifications.html

2https://github.com/aitorls/DVRP-PFPTW-instances.git
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(a) A random graph in 2D space. Blue-
customers, green-depot. Coordinates (x,y).

(b) Partition of the graph depends on the ve-
hicles.

(c) Optimal TSP solution in the partitioned
space.

Figure 3: Example of generation of the parameters for the VRP-FPTW with 9 consumer
vertices and 3 vehicles.

yet guaranteeing the presence of a feasible solution.
The procedure we follow is the following. First, the region of interest is

partitioned into |K| sections, where |K| is the number of vehicles. The partition
is made similarly to a cake-cutting approach, starting from the depot in the
centre and adding |K| equidistant rays where the angle between the rays is
360/|K| and the depot belongs to every created partition, as seen in Figure 3.
Then, we compute the optimal route for visiting all the customer vertices from
the depot 0 by a single vehicle in each of these sections by applying the travelling
salesman problem (TSP). Note that these routes only take into account the
distances, but not the vehicle autonomy and capacity nor the customer time
windows. The information related to each of the |K| found TSP routes leaving
from and returning to the depot 0 includes a sequence of customer vertices, the
time needed to visit each of them, the total distance travelled, and the route’s
accumulated customer demand. The route with the maximum accumulated
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(a) Optimal solution given by (1)-(10) in [1]. (b) Optimal Phase 1 solution.

Figure 4: Examples of optimal solutions for a given instance with the Phase 1 algorithms.

demand among all routes defines the capacity and similarly, the route with the
maximum distance among all routes defines autonomy for each vehicle. To set
the time windows for each customer, we first determine the centre of their time
window as the arrival time in the TSP route found previously. Next, we define
the time window limits for each customer vertex in the same order as the one
along each found TSP route. Specifically, the first visit time li for each customer
i ∈ {1, . . . , |V | − 1} is set as the centre time of the previous visited vertex and
ui is set as the centre time of the next vertex. In the case of the first customer
vertex leaving from the depot, li is set to the departure time from the depot, and
in the case of the last customer vertex i in the route before the depot, ui is set
to the arrival time at the depot. We set the first visit time l0 of the depot to 0
while its last visit time u0 is the maximum of the last visit times of any customer
plus the time to return from this customer to the depot u0 = maxi∈N{ui+ti0k},
where vehicle k is the one that visits customer i.

In this way, we make sure that the problem has at least one feasible solution
and that the autonomy, capacity, and timing constraints are binding. We give
an example in Figure 3, with a randomly generated graph in 2-dimensional
space in Figure 3a, the resulting partitioning of the space in Figure 3b, and the
optimal TSP solution for such partitioned space in Figure 3c. Moreover, for
the same instance in Figure 3, we give the optimal solution of (1)-(10) in [42],
found by Gurobi solver in Figure 4a. Additionally, in Figure 4b, we provide the
solution for that instance found by the proposed phase 1 algorithms.

The presented benchmark specification is used for the creation of the in-
stances that are named SFPTW N K X, where S stands for static, FPTW is
the proposed kind of the VRP problem, N is the number of customers vertices
25, 50, 75 and 100, K is the number of vehicles 5, 10, 15 and 20 and X ranges
from 1 to 10 representing an instance number. The number of vehicles is chosen
to maintain the N/K ratio, that is, the vertices of average customers served with
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a vehicle. The proposed instances are publicly accessible on GitHub 3.

5.2.2. Benchmark instances for the DVRP-FPTW

In the benchmark creation for the dynamic VRP-FPTW problem, we use the
same structure as in the previous instances but extend it with dynamic events
that happen throughout the route. The two possible events that we consider in
the experiments are the appearance of new customers and vehicle breakdowns
that can occur at any time t ≤ u0. When a vehicle breaks, we assume that it
does not get repaired in the considered time horizon. New customers are defined
by their coordinates (x, y), demand q, revenue r and time windows [l, u]:

New customer :< name, t, (x, y), q, r, [l, u] >,

while the vehicles that break down with :

V ehicle breakdown :< k, t > .

Usually, the addition of new customers occurs in batches, as in real-world scenar-
ios where customers often accumulate before being introduced into the system.
In this paper, we carry out experiments only on the breakdown of a functional
vehicle, because this case involves the removing of the associated customers’
vertices from the mandatory customers set and adding them to the optional set.
The benchmark instances for the DVRP-FPTW are named DFPTW N K X,
where N, K, and X represent the number of customers, vehicles and problem
instances, respectively. These instances are similar to the static case, but they
also include a list of predetermined events that take place during the execution
of the simulation.

As presented in Section 3.2, the proposed DVRP-FPTW model considers
mandatory customers that are part of the taken route, and optional customers
that might be considered for inclusion in the route if and only if they bring
benefit to a vehicle. Thus, if a new customer appears close to the maximum
return time to the depot u0, the remaining vehicles may not have enough time
to accommodate them. Similarly, if the capacity and/or autonomy of a vehicle
is too limited, they may not be able to service this customer. To show the
effectiveness of our Dynamic VRP-FPTW algorithm, we allocate the events
of vehicle breakdown at the beginning of the execution plan. This allows for
flexibility in the reassignment of customers to vehicles.

Specifically, we differentiate between scenarios where the best-off (highest
profit) vehicle, the worst-off vehicle and a random vehicle suffers a breakdown.
By examining these three different cases, we evaluate the performance and
adaptability of our algorithm in different profit-based scenarios.

To validate that the proposed approach is able to reassign the optional cus-
tomers while not worsening the vehicles’ profits, within the time and autonomy

3https://github.com/aitorls/DVRP-PFPTW-instances
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constraints, we compare our real-time dynamic algorithm with the exact so-
lution, considering a one-hour computation time limit. The objective of this
comparison is to evaluate the impact of having more time to reassign vehicles,
where an hour of waiting to recalculate the route is not applicable in dynamic
environments. This allows us to evaluate the effectiveness of our algorithm’s ap-
proach to react to unpredicted events, thus, achieving a dynamically adaptable
real-time solution. We also compare our approach by increasing the revenue
of the optional customers (extra revenue). With this experiment, we motivate
vehicles to visit optional customers if autonomy and time window constraints
allow it.

5.2.3. Experimental results

Next, we present the comparison of the phase 1 and phase 2 algorithms with
the benchmark centralized models.

Comparison of the MAS-Phase 1 algorithms with the centralized model. The
results obtained for the benchmark instances of the static VRP-FPTW are pre-
sented in Tables 2 and 3. In these tables, we show the outcomes achieved by
the two models within a one-hour time limit. For each instance and method,
we provide the instance name (Name), the worst-off vehicle profit among all
the vehicles (Worst-off), the computation time in seconds (Time) or a start (*)
if the one hour limit is reached, the best upper bound for the worst vehicle’s
profit (UB) which is the value of the linear relaxation of the models, and the
overall profit collected for all the vehicles (Overall). Optimal solutions, where
the worst profit and the upper bound value are equal, are highlighted in bold.
In Table 2, we observe that for instances with 25 customers and 5 vehicles,

the exact centralized model (Centr.) achieves the optimal solution for all 10
instances with an average computation time of 3.3 seconds, while our proposed
Phase 1 algorithms achieve the optimal solution in 9 out of 10 instances with
an average computation time of 0.8 seconds. In the instances with 50 customers
and 10 vehicles, the centralized approach only obtains the optimal solution in
3 instances (SFPTW 50 10 [0,7,8]) after an average computation time of 1814
seconds. On the other hand, the DIMASA Phase 1 obtains the optimal solution
in these same 3 instances, but in an average time of 8 seconds. For the rest of the
instances with 50 customers, the centralized approach yields an average of 14.2%
higher profit for the worst-off vehicle compared to our DIMASA Phase 1 solu-
tion. However, DIMASA finds the solution with an average computation time of
15.748 seconds, while the average computation time of the centralized approach
is 3064 seconds. In 3 out of 10 instances with 75 customers and 15 vehicles, the
centralized approach does not get any solution in one hour of computation time,
Table 3. This is the case for instances SFPTW 75 15 1 [0,2,6]. Finally, when
we increase the number of customers to 100, the centralized approach does not
find any solution for these instances. In these cases, the centralized approach
can only provide us the best bound obtained through linear relaxation.

The DIMASA Phase 1, on the other hand, always finds a solution in less
than 2 minutes for instances with 75 customers with the average computation
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Table 2: Static FPTW benchmark results

Name Algorithm Worst-off UB Overall Time

SFPTW 25 5 0 Centr. 78.38 78.38 525.16 6.54
Phase 1 78.38 — 534.43 0.42

SFPTW 25 5 1 Centr. 120.69 120.69 662.09 15.38
Phase 1 118.42 — 718.72 0.84

SFPTW 25 5 2 Centr. 51.61 51.61 672.36 0.83
Phase 1 51.61 — 677.58 0.60

SFPTW 25 5 3 Centr. 74.68 74.68 649.80 6.61
Phase 1 74.68 — 633.42 1.18

SFPTW 25 5 4 Centr. 97.80 97.80 718.65 0.58
Phase 1 97.80 — 713.80 0.49

SFPTW 25 5 5 Centr. 17.21 17.21 533.99 0.40
Phase 1 17.21 — 550.16 0.86

SFPTW 25 5 6 Centr. 97.05 97.05 651.54 0.89
Phase 1 97.05 — 651.57 1.68

SFPTW 25 5 7 Centr. 58.45 58.45 487.85 0.51
Phase 1 58.45 — 466.95 0.65

SFPTW 25 5 8 Centr. 91.02 91.02 829.23 0.36
Phase 1 91.02 — 829.23 0.76

SFPTW 25 5 9 Centr. 103.52 103.52 838.70 0.93
Phase 1 103.52 — 840.28 0.70

SFPTW 50 10 0 Centr. 67.60 67.60 1273.24 2006.28
Phase 1 67.60 — 1287.87 8.48

SFPTW 50 10 1 Centr. 151.26 161.54 1574.17 *
Phase 1 137.50 — 1574.64 8.57

SFPTW 50 10 2 Centr. 141.98 147.38 1488.08 *
Phase 1 127.05 — 1564.56 9.59

SFPTW 50 10 3 Centr. 94.24 129.82 1232.44 *
Phase 1 55.60 — 1260.26 12.90

SFPTW 50 10 4 Centr. 142.29 175.51 1678.82 *
Phase 1 133.54 — 1661.76 53.82

SFPTW 50 10 5 Centr. 129.63 147.05 1386.70 *
Phase 1 111.65 — 1308.03 13.28

SFPTW 50 10 6 Centr. 112.04 166.62 1500.76 *
Phase 1 83.08 — 1577.97 22.09

SFPTW 50 10 7 Centr. 24.12 24.12 1406.72 64.25
Phase 1 24.12 — 1415.14 7.62

SFPTW 50 10 8 Centr. 53.02 53.02 1384.81 3372.55
Phase 1 53.02 — 1319.68 8.24

SFPTW 50 10 9 Centr. 141.55 149.51 1577.79 *
Phase 1 111.39 — 1595.87 12.89
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Table 3: Static FPTW benchmark results

Name Algorithm Worst-off UB Overall Time

SFPTW 75 15 0 Centr. — — — *
Phase 1 102.98 169.89 2313.25 56.77

SFPTW 75 15 1 Centr. 174.17 — 2760.73 *
Phase 1 162.77 203.91 2759.00 64.21

SFPTW 75 15 2 Centr. — — — *
Phase 1 124.38 178.36 2398.53 47.34

SFPTW 75 15 3 Centr. 116.58 — 2083.51 *
Phase 1 96.85 161.16 2089.09 72.39

SFPTW 75 15 4 Centr. 139.05 175.43 2339.88 *
Phase 1 123.82 — 2432.46 31.08

SFPTW 75 15 5 Centr. 139.74 — 2434.89 *
Phase 1 125.71 178.10 2375.72 51.61

SFPTW 75 15 6 Centr. — — — *
Phase 1 106.91 183.88 2398.75 73.47

SFPTW 75 15 7 Centr. 66.24 — 2164.58 *
Phase 1 62.00 170.01 2276.58 37.68

SFPTW 75 15 8 Centr. 137.24 — 2277.05 *
Phase 1 124.06 169.61 2304.81 59.13

SFPTW 75 15 9 Centr. 145.35 199.14 2597.43 *
Phase 1 145.90 — 2740.77 54.23

SFPTW 100 20 0 Phase 1 154.53 191.65 3456.50 233.09
SFPTW 100 20 1 Phase 1 158.34 218.35 3859.57 449.89
SFPTW 100 20 2 Phase 1 150.07 200.28 3503.05 609.41
SFPTW 100 20 3 Phase 1 125.13 182.87 3188.60 811.43
SFPTW 100 20 4 Phase 1 120.19 163.05 2961.78 204.06
SFPTW 100 20 5 Phase 1 80.48 206.47 3606.50 485.43
SFPTW 100 20 6 Phase 1 123.20 179.18 3327.81 101.37
SFPTW 100 20 7 Phase 1 132.61 200.05 3443.45 209.58
SFPTW 100 20 8 Phase 1 138.43 195.29 3376.28 152.66
SFPTW 100 20 9 Phase 1 148.77 193.61 3419.45 248.20
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time of 55 seconds, and less than 15 minutes for instances with 100 customers,
with the average computation time of 5.85 minutes. For the instances where
the solution of the centralized algorithm is unknown, we use the best-bound
value and determine that the theoretical gap between the obtained DIMASA
Phase 1 solution and the value of the linear relaxation is within 30%. This
is a theoretical bound that in practice might be significantly lower since, in
general, the optimum value is not known until the problem is NP-Hard. To
further improve this solution, the DIMASA Phase 1 may be introduced into a
branch-and-price algorithm to find the optimal solution. However, the average
gap between the DIMASA Phase 1 and the centralized method for the instances
for which the centralized solution did find a solution is less than 15%.

In summary, the computation time of the proposed DIMASA Phase 1 is sig-
nificantly better than the one of the centralized model, especially as the number
of agents and/or tasks increases. Even more, the fleet as a whole on average,
receives a larger profit from the DIMASA Phase 1 than from the centralized and
exact VRP-FPTW model in Gurobi solver. Obtaining the exact solution with
the centralized model is intractable and already for 75 customers and 5 vehicles,
it does not find any solution in 1 hour in 3 out of 10 tested instances, while for
100 customers and 20 vehicles, it does not find a solution for any instance at all.
The proposed DIMASA Phase 1 approach, on the other hand, solves all tested
instances within less than 15 minutes efficiently with an average gap in relation
to the exact centralized model (where it found a solution) of less than 15%.

DIMASA Phase 2 results.. Tables 4, 5 and 6 show the results of the Dynamic
VRP-FPTW problem with 100 customers and 20, 30 and 40 vehicles, respec-
tively. For each experiment, we compare the DSYSCA solution, the centralized
dynamic solution, and the solution with more revenues in the optional cus-
tomers. We also report the information of the dynamic instance, such as the
static instance name SFPTW N K X where N, K and X are the number of
customers, vehicles, and instance number, the broken vehicle (B. vehicle), the
broken time (B. time), the finish expected time of the vehicle (exp. finish), the
last time to return to the depot for all the vehicles (u0), the current value of
the worst-off vehicle (Worst-off), the number of customers of the broken vehicle
that it planned to visit (Plan) and, lastly, the number of customers left without
visiting due to vehicle breakdown (Remain). The DIMASA Phase 2 solution
columns show the objective function value, that is profit of the worst-off vehicle
(Worst-off), the number of customers that can be reassigned to another vehicle
(Ressign) and the time to obtain the solution, expressed in seconds (Time). The
DIMASA Phase 2 (extra revenue) columns show that this approach increases
the revenues of the optional customers. Finally, the last set of columns is the
information about the centralized dynamic solution solving the constraints (6)-
(18) on Gurobi, it shows the same three columns as before as the columns of
DIMASA Phase 2.

The results show that the Phase 2 approach is very effective in handling
dynamic vehicle breakdown scenarios when the broken vehicle is the worst-off
vehicle in terms of profit. The Phase 2 approach can find a solution in less than
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Table 4: Comparison of the results between the DIMASA Phase 2 approach and the exact
centralized algorithm over the static instances SFPTW 100 20 X with 100 customers and 20
vehicles where X is the number of the instance.
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Table 5: Comparison results between the Phase 2 approach and the exact centralized algorithm
over the static instances SFPTW 100 30 X with 100 customers and 30 vehicles, where X is
the number of the instance.
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Table 6: Comparison results between the Phase 2 approach and the exact centralized algorithm
over the static instances instances SFPTW 100 40 X with 100 customers and 40 vehicles,
where X is the number of the instance.
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14 seconds on average, and the profit of the worst-off vehicle is only 5.9 % lower
than the centralized solution in one hour. Moreover, the Phase 2 approach can
reassign 38 % of the optional customers that could be reassigned, compared
with 44 % of the centralized solution.

We present the results for different numbers of vehicles in Tables 4, 5 and
6. For each number of vehicles, we report the error of the profit of the worst-off
vehicle, the percentage of optional customers that are reassigned, and the time
to obtain the solution. We can see that the error of the profit decreases as
the number of vehicles increases, from 7 % with 20 vehicles to 4.6 % with 30
vehicles and 4.7 % with 40 vehicles. The percentage of optional customers that
are reassigned also decreases as the number of vehicles increases, from 30 %
with 20 vehicles to 50 % with 30 vehicles and 40 % with 40 vehicles. The time
to obtain the solution increases as the number of vehicles increases, from 8.27
seconds with 20 vehicles to 9.12 seconds with 30 vehicles and 13.384 seconds
with 40 vehicles.

The results obtained by artificially increasing the rewards of the optional
customers are very illustrative, if we compare the value of the worst-off vehicle,
we can see that it is very similar, only 0.47 % higher. This means that increasing
the revenue of the optional customers does not significantly improve the revenue
of the worst-off vehicle. This is because, although the worst-off vehicle of the
previous iteration can obtain an optional customer and more revenue, there
are not enough optional customers for every vehicle, and the profits of the
next worst-off vehicles are very similar. On the other hand, when we look at
the average value of reassigned customers, it is more significant. With more
revenues in the optional customers, the algorithm can reassign 48 % of them.
This also implies that the other 52% of optional customers are not reachable
due to the constraints of autonomy, time or capacity. Thus, compared to the
original algorithm without extra revenue, the Phase 2 approach can reassign
38% of the optional customers, which means that it can reassign 80% of the
possible unassigned optional customers (38/48 = 0.79).

The main advantage of the Phase 2 approach is that it can quickly adapt
to the dynamic vehicle breakdown situation and generate a feasible solution in
real-time. This is a significant advantage over the centralized approaches that
have to start the planning from scratch. The Phase 2 approach can make timely
decisions and reduce the impact of unforeseen events on the overall performance
of the fleet.

6. Conclusions and future work

We proposed a novel mathematical model for the DVRP-FPTW that maxi-
mizes the profit of each vehicle in the fleet in a non-decreasing order of individual
profits along the routes. We also proposed a multi-agent architecture for the
static and dynamic VRP-FPTW, composed of vehicle agents and a coordina-
tor agent. The coordinator agent uses the SYSCA and DSYSCA algorithms
to optimize the egalitarian social welfare of the whole fleet. Our dynamic so-
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lution approach extends the static VRP-FPTW solution to handle real-time
contingencies, such as changes in customer requests or vehicle breakdowns.

We implemented our model and architecture in a distributed way, using a
multi-agent system that decompose the computation among the agents. This
makes our approach more private, flexible, robust, fast, and fair than a cen-
tralized one. This approach is ideal for cooperative vehicle-sharing scenarios,
accommodating intrinsically decentralized private information while avoiding
reliance on a unique decision maker.

We test our approach on a set of benchmark instances that we create for
the static and dynamic VRP-FPTW problem, and we show that it can achieve
high-quality solutions. As a future work, we plan to extend our model and
architecture to deal with open fleets, where vehicles can join or leave the sys-
tem dynamically. This would require some modifications in our algorithms and
communication protocols, which we will explore in our future research.

The communication between the coordinator and vehicle agents in the pro-
posed distributed multi-agent architecture was performed by a combination of
synchronous and asynchronous communication, thus speeding up the generation
of routes between vehicles. This can be implemented through message queues
and has the additional advantage that the system will become more robust with
regard to possible breakdowns in the communication channel or other contingen-
cies in the exchange of asynchronous messages. However, the solution approach
is heavily dependent on the quality of communication for the synchronous mes-
sages. The requirements for communication and tackling technical issues in the
real world are not the subject of this paper and will be addressed in future work.

In the presented solution approach, we focused on mutually exclusive vehicle
owners with limited funds and each one owning a single vehicle. The proposed
decomposed VRP-FPTW model and its related distributed multi-agent solution
approach is of concern for real-world dynamically changing agriculture coopera-
tive fleet scenarios focusing on both fairness and efficiency among vehicle owners
and farmers, where each vehicle disposes of private information that it should
not share with the other vehicles and where the decision-making time for the
generation of routes is relatively short. We showed through simulation that the
proposed MAS-based distributed solution approach is computationally efficient,
it is scalable and suited for large cooperative fleets, responding in close-to real
time to unpredicted contingencies on the terrain. In future work we will con-
sider also the cases where an owner owns multiple vehicles or the ownerships
mutually overlap among different owners. Also, we will focus on the receding
horizon control, so that the most disadvantaged vehicles in one period are pri-
oritised in the future ones and thus ensure both fairness and efficiency of the
fleet at long run.

Also, we will extend the proposed DVRP-FPTWmodel with vehicle tools for
the agriculture robotics setting where a robot or tractor requires a detachable
tool for task performance.
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