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Distilling Before Refine: Spatio-Temporal Transfer
Learning for Mapping Irrigated Areas Using

Sentinel-1 Time Series
H. Bazzi , D. Ienco , N. Baghdadi, M. Zribi, and V. Demarez

Abstract— This letter proposes a deep learning model to
deal with the spatial transfer challenge for the mapping of
irrigated areas through the analysis of Sentinel-1 data. First,
a convolutional neural network (CNN) model called “Teacher
Model” is trained on a source geographical area characterized
by a huge volume of samples. Then, this model is transferred
from the source area to the target area characterized by a
limited number of samples. The transfer learning framework is
based on a distill and refine strategy, in which the teacher model
is first distilled into a student model and, successively, refined
by data samples coming from the target geographical area.
The proposed strategy is compared with different approaches
including a random forest (RF) classifier trained on the target
data set and a CNN trained on the source data set and directly
applied on the target area as well as several CNN classifiers
trained on the target data set. The evaluation of the performed
transfer strategy shows that the “distill and refine” framework
obtains the best performance compared with other competing
approaches. The obtained findings represent a first step toward
the understanding of the spatial transferability of deep learning
models in the Earth observation domain.

Index Terms— Deep learning, knowledge distillation, satellite
image time series, Sentinel-1 (S1), transfer learning.

I. INTRODUCTION

IRRIGATION, nowadays, plays a significant role in agricul-
tural production in order to meet the global food require-

ment [2]. Due to this fact, a better management of irrigation
policies is required to deal with the high demand of food with
the increase in the global population [4]. To support such poli-
cies, accurate information on the irrigated area extent is essen-
tial to manage water resources or evaluate irrigation water
requirements. Unfortunately, the extent and distribution of
irrigated areas remain indefinite and the large-scale mapping of
such a property remains a challenge for modern remote sensing
analysis. Recent works have pointed out that the synthetic
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aperture radar (SAR) signal seems to be more suitable to map
different agricultural irrigated areas [3]. The main assumption
is related to the fact that the radar signal is sensitive to the
water content of the soil due to a positive correlation between
the dielectric constant and the soil water content. Following
this direction, time series of SAR information acquired via
the recently Sentinel-1 (S1) SAR constellation provides an
effective tool for large-scale area mapping and monitoring due
to their high revisit period (six days revisit time).To perform
such mapping, machine (and deep) learning-based techniques
are becoming the standard tools, since they allow large-scale
analysis and they provide acceptable results [8], [14]. One
of the key questions about the adoption of machine learning-
based solution is related to their ability, given a particular
task, to be spatially transferred from a geographical area
to another spatially uncorrelated one. Considering the task
of mapping irrigated areas [1], the challenge is to build a
predictive model from a rich set of labeled samples avail-
able on a particular area and, successively, adapt this model
on another geographical area, with a limited set of labeled
samples. This adaption could be crucial to conceive large-
scale monitoring systems in an operational scenario. With the
aim to tackle this issue, we propose a deep learning [14]
framework capable to adapt a predictive model trained from
a source data set (characterized by a large volume of labeled
samples) to deal with the irrigation mapping on a target data
set (characterized by a limited number of labeled samples).
To this end, we propose a distill before refine framework in
which first a teacher model is learned on a source data set, then
a smaller student model is distilled from the teacher model,
and, finally, the student model is fine-tuned to deal with the
classification task on the target data set. Here, the challenge
behind our framework is that models with a huge number of
parameters are difficult to fine-tune (refine) on classification
tasks where a very limited number of labeled samples are
available. The innovative component of our framework is
associated with the use of knowledge distillation [5] to distill
a new smaller model that can be easily fit with new limited
labeled samples on the target study area. In the general context
of fine-tuning approaches [11], [13], the model learned on the
source data is directly fine-tuned on the target data without
considering the issues related to scarce or limited information.
To the best of our knowledge, we are not aware about any
other research work that adopts a similar pipeline to deal with
spatial transfer learning in the field of remote sensing. The
proposed methodology is implemented on mapping irrigated
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areas in which the classification problem involves Irrigated
versus Non Irrigated area detection. The experiments are
conducted considering a source study area from the Catalonia
region of north east Spain where a time-consuming and cost-
intensive field campaign was conducted collecting around
193 000 labeled samples and a target study area, from the West
Occitanie region of South France, where the reference data are
constituted of less than 500 examples.

II. DATA

In this section, we introduce the geographical areas involved
in this article: the source data set over the Catalonia region
and the target data set over the West Occitanie (South of
France) region. We also introduce the S1 SAR satellite images
involved in this article and detail the different preprocessing
steps performed to obtain the S1 time series backscattering
coefficients at plot scale.

We point out that, in terms of climate, both studied zones
(Catalonia and West Occitanie) are extremely different. In fact,
the climate of the Catalonia region is typically Mediterranean,
where the average annual precipitation is around 376 mm.
On the other hand, the climate in West Occitanie is humid to
oceanic with an average annual precipitation of 1200 mm.
In both regions, irrigation mainly occurs in the summer
season between May and October of each year. However,
the summer season in Catalonia is very dry with rare rainfall
events, whereas the summer season in West Occitanie is more
humid with an average precipitation of 300 mm between
May and October.

A. Catalonia Data Set

Over the Catalonia region of north east Spain [Fig. 1(a)],
the Geographic Information System for Agricultural Parcels
(SIGPAC) data are provided by the General Direction of
Rural Development of the Generalitat of Catalonia. The
SIGPAC data represent the agricultural plots digitized using
the orthophotograph images of 25-cm spatial resolution at
scale 1:2000. Each plot in the provided data set is identified
by a unique identification code, surface area, land use, and an
irrigation coefficient (0 for nonirrigated and 100 for irrigated).
Each year, an update of the database is provided based on an
annual large field campaign in order to maintain the credibility
of the data set (mainly irrigation information and crop
type). In our study, a total of 193 000 plots covering an area
of 3795 km2 of different crop types and irrigation management
have been used to develop the later called the teacher model.
Among different land cover types, only agricultural crops
(summer and winter crops) were considered for the irrigation
classification. Forests, urban, and orchards plots were
eliminated. In general, winter cereals such as wheat, oat, and
barely are rarely irrigated with some exceptions. On the other
hand, irrigated plots mainly include alfalfa, maize, grassland,
beans, rapeseed, and rice. Among the total number of plots,
126 000 are nonirrigated, whereas 67 000 plots are irrigated.

B. West Occitanie Data Set

Over the western part of the Occitanie region of South
France [Fig. 1(b)], a terrain campaign was conducted over

Fig. 1. Location of the source and the target study sites. (a) Catalonia region
of North East Spain. (b) Western Occitanie region of South France.

different summer crop plots in 2017. In this field campaign,
the existence or absence of irrigation activity over the summer
crops was registered for each visited plot. The land cover of the
plot was also recorded. Finally, a total of 451 plots including
300 nonirrigated and 151 irrigated plots were registered for
the agricultural season of summer 2017. The dominant crop
types of the collected plots are maize and soybeans.

C. S1 Time Series

Over the Catalonia region, a total of 82 C-band (5.405 Ghz)
SAR images acquired by S-1A and S-1B satellites were used
for the period between September 2017 and December 2018.
Over the West Occitanie region, the collected irrigation infor-
mation corresponds to the year 2017. Thus, the same number
of images (82 images) was collected over this region for
the period between September 2016 and December 2017.
The 164 images (82 for Catalonia and 82 for Occitanie)
are acquired in the interferometric wide (IW) mode in both
VV and VH polarizations. These S1 images are of Level-1
ground range detected (GRD) product with a pixel spacing
of 10 m × 10 m and six days revisit time. The S1 tool-
box1 (S1TBX) developed by the European Spatial Agency
(ESA) was used to calibrate the S1 images. This calibration
converts the digital number of downloaded SAR images into
backscattering coefficients in linear units and orthorectifies the

1https://step.esa.int/main/toolboxes/snap/
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Fig. 2. Overview of our distill and refine pipeline. (1) Complex deep learning
approach (teacher) is learned on a certain study area involving a large volume
of labeled samples. (2) Smaller (student) model is distilled from the teacher
one. (3) Student model is finally fine-tuned with the limited labeled samples
available on the target study area.

images using a 30-m digital elevation model of the Shuttle
Radar Topography Mission (SRTM). The temporal series of
the S1 SAR backscattering coefficients over each agricultural
plot in each region was then obtained by averaging the σ 0

values of all pixels within each plot at each available date and
at both VV and VH polarizations.

III. CONTRIBUTIONS

In this section, we describe our Distill before refine frame-
work devoted to deal with spatio-temporal transfer learning
over different geographical areas. Converse to other scenarios
in which the transfer is made between different classification
problems or considering different types of data [6], [12],
the process here focuses on the transfer between two distinct
geographical areas fixing the classification problem (irrigation
mapping) as well as the type of considered data (S1 time series
data). Fig. 2 visually depicts the different steps of our proposed
pipeline.

First, a model is trained from scratch on the source data
set that is characterized by a large volume of labeled samples
[Step (1) in Fig. 2]. Such a model, considering knowledge
distillation literature [5], [9], is commonly denoted as the
teacher model. Second, a lighter model (commonly named
student) is distilled from the teacher model [Step (2) in Fig. 2].
The distillation step allows transferring the knowledge from
the teacher to the student model. More in detail, during this
step, we are trying to synthesize the teacher behavior in a
usually smaller network that should behave similar to the
bigger one. Once the knowledge is distilled in the student
network, such a model is finally fine-tuned considering the
limited labeled samples coming from the target study area
[Step (3) in Fig. 2].

The main ratio behind our framework is as follows: models
involving a huge number of parameters such as the teacher
model can hardly be fine-tuned on a target data set charac-
terized by a scarce number of labeled samples. Conversely,
smaller and lighter models such as the student one, which
behave similar to bigger ones, can be adapted more easily
in the presence of scarce training data, since they involve a
smaller number of parameters to modify.

TABLE I

ARCHITECTURES OF THE TEACHER AND STUDENT CNNS

Considering the classical framework of knowledge distilla-
tion [5], given a teacher T and a student S networks, the main
objective is to distill the knowledge of T inside the network
S. Usually, the common assumption is that the network T is
much bigger than the network S in terms of parameters. To
deal with the knowledge distillation task, [5] proposes to learn
the student network considering the following loss function L:

L = 1

|X |
∑
xi∈X

α ∗ L1 + (1 − α) ∗ L2

L1 = LC E (Softmax( fS(xi)), yi )

L2 = K L

(
Softmax

(
fS(xi )

τ

)
, softmax

(
fT (xi)

τ

))
(1)

where the main loss (L) is a linear combination of two other
task-specific losses (L1 and L2) and the linear combination is
weighted by the parameter α. The first task-specific loss (L1) is
the classical cross-entropy loss usually employed in the multi-
class classification task. The second loss (L2) is the Kullback–
Leibler divergence between the predicted output distribution of
the teacher and the student. xi ∈ X (resp. yi ) is an example
of the data set (resp. the associated label). Hinton et al. [5]
employed a temperature scaling factor τ to smooth the last
output layer of the neural models before performing the
softmax normalization. We remind that fT (·) and fS(·) are
the presoftmax outputs for the teacher and student model,
respectively (the Softmax2 operator is a standard component of
the modern neural network classification model). The objective
of the loss L2 is to force the student model to simulate the
output of the teacher model with the aim to distill the teacher
behavior into the student network.

A. Teacher and Student Model Implementation

In our case, both the teacher and student models are imple-
mented as convolutional neural networks (CNNs). Table I
resumes the architecture of the teacher and student CNNs.
Each convolutional operation (Conv) is associated with a
successive batch normalization and dropout layer. The convo-
lution takes as input the number of filters (n f ), the kernel size
(k), the stride (s), and the activation (act). Our CNN follows
the idea of temporal CNN introduced in [8], where the con-
volution is performed on the time dimension. Considering the

2https://en.wikipedia.org/wiki/Softmax_function
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fully connected (FC) layer, we apply batch normalization and
dropout except for the output layer. The FC layer takes as
inputs the number of neurons (nn) and the activation function
(act). For all the layers, we adopt the rectifier linear unit [7]
except for the last output layer that is associated with a linear
function followed by the Softmax operator. Comparing the
teacher and student models, we can observe that the former
is deeper than the latter (11 versus 6 layers) and the teacher
model involves more than the double of the parameters of the
student model (about 1.69M versus 0.69M). Considering the
student network, we eliminate all the FC layers. Moreover,
the global average pooling (GAP) layer, at the end of the
convolutional layers, is directly connected with the output
layer. The GAP layer aggregates each feature maps via the
average operator, producing a layer with as many neurons as
the number of the feature maps at the precedent step.

IV. EXPERIMENTS

In this section, we evaluate our distill before refine frame-
work in the context of irrigation area mapping using S1 time
series data and the data sets introduced in Section II. We refer
to the Catalonia data set as the source data set and the West
Occitanie data set as the target data set. We compare the
performance of our proposal with respect to several competing
methods to pinpoint the benefits of compressing the deep
learning model before performing fine-tuning on a study area
characterized by a limited number of samples.

Experimental Settings: To assess the performances of the
different methods, we consider two standard metrics: Accuracy
and F-measure [10]. While the former is a standard metric
in remote sensing, the latter corresponds to the harmonic
mean between precision and recall, and it is well suited to
evaluate classification performances in an unbalanced scenario.
Considering the Teacher CNN model (trained on the Catalonia
region characterized by a large volume of labeled samples),
we consider 80% of the data set as the training data, while
the rest as the validation set to choose the best model.
More in detail, the model that achieves the best accuracy
on the validation set is the one that is retained for the
subsequent steps. Considering the fine-tuned step (trained on
the French area characterized by a limited number of labeled
samples), we adopt the following settings: we employ 33%
(150 samples) of the data as test set, 20% (60 samples) of
the data as the validation set, while we use the rest of the
samples as training data (240 samples). Regarding the training
set, given the validation and test set, we evaluate different
models considering different amounts of training samples:
{60, 120, 180, 240}. In this way, we can study the behavior
of the different approaches considering a varying amount of
training data to feed the learning process. For each method,
we repeat the procedure ten times and we report the averaged
value for each metric. For the different competing approaches,
we involve a Random Forest (RF) classifier learned directly
on the target study area (Occitanie) and we name such method
RF ; a CNN model with the same configuration of the teacher
network (resp. the same configuration of the student network)
learned from scratch directly on the target study area named

Fig. 3. (a) Accuracy and (b) F-Measure results considering the different
competing methods varying the amount of (target) train samples to learn the
model on the West Occitanie data set.

CNNT (resp. CNNS); and the teacher model directly fined
tuned on the target study area and we name such method
CNNtran. The proposed distill before the refine framework is
named CNNKD. For the RF models, we optimize the model
via the maximum depth of each tree (in the range {20, 40,
60, 80, 100}) and the number of trees in the forest (in the
set {100, 200, 300, 400, 500}). For the CNN models, we use
Adam to optimize the parameters weights with a learning rate
of 1 × 10−4. CNNs learned on the source data set (Catalonia)
are trained for 1000 epochs with a batch size equal to 256,
while the CNN models trained (or fine-tuned) on the target
data set (West Occitanie) are trained for 500 epochs with a
batch size equal to 2. For the CNNKD method, we empirically
set the α and τ values to 0.5 and 1, respectively.

A. Results

Fig. 3(a) and (b) resumes the Accuracy and F-Measure
results, respectively. Considering both metrics, the RF meth-
ods are quite stable over the considered range. No bigger dif-
ference can be noted between the smallest amount of training
samples (60) and the biggest one (240). Regarding the CNNT

and CNNS methods trained from scratch on the target data
set, as we can expect, they fail to be competitive considering
small amount of training data. We can observe that when
60 labeled samples are considered, the model performances are
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really poor compared with the competitors. On the other hand,
they achieve similar performances to the RF method when
bigger amounts of training samples are considered. Inspecting
the performance of the teacher model fine-tuned on the target
study area (CNNtran), it exhibits good performances starting
from a training size of the labeled examples that is equal
to 120, but it does not show any successive improvement for
larger training size. This is probably due to the fact that this
deep learning model would need more labeled information to
effectively modify the huge number of parameters it involves.
Such a behavior is highlighted regarding both evaluation
metrics.

In general, we can observe that the CNNKD obtains best (or
comparable) results for all the considered amount of training
samples regarding both Accuracy and F-Measure. Such a
difference is clearly visible when the number of training
samples is greater than or equal to 180. This behavior supports
our distill before refine framework in which a smaller network
distilled from a bigger one will be easier to adapt to a target
domain characterized by a very limited number of labeled sam-
ples. This result constitutes a preliminary experiment in which
the benefit of knowledge distillation is assessed to perform
transfer learning from a source data set (a geographical area)
to a target data set (another geographical area).

Both Accuracy and F-Measure depict almost the same
behaviors among the different competing methods. The only
point that changes between the evaluation of the two metrics
is related to the comparison between the two C N N models
trained from scratch (CNNT and CNNS) and the RF method
on the range 120-240. Here, we can observe opposite behavior.
Regarding the accuracy, it seems that the RF model slightly
outperforms the two C N N models, while the opposite happens
when F-Measure is considered. This is due to the fact that
the test data set, as the whole target data set, is unbalanced
with respect to the involved classes. The RF method is
biased toward the over-represented classes, and this is why it
achieves best (resp. worst) performances in terms of Accuracy
(resp. F-Measure). On the other hand, the two C N N models
trained from scratch deal better with the unbalanced scenario
achieving slightly better performance in terms of F-Measure,
since they are less biased toward the over-represented classes.
As an additional test, we also evaluate the performance of the
teacher model without any additional fine-tuning directly on
the test set of the target data set. In this experiment, we obtain a
value of Accuracy and F-Measure equal to 27.5% and 36.86%,
respectively. Considering that we are dealing with a binary
task, such performances are lower than the average random
performances we can obtain on such a task. This poor behavior
indicates that the data distribution associated with the source
(Catalonia area) and target (Occitanie area) data sets is really
different and a heavy distribution shift exists. Such a result
confirms once more the necessity to study and develop new
machine learning approaches to deal with shifts in data distrib-
ution (due to spatial or temporal autocorrelation) to cope with
the spatio-temporal model transfer for remote sensing data.
With the increasing availability of remote sensing data, coming
from large-scale monitoring systems (i.e., Copernicus data),

issues related to transfer models learned from a particular area
(resp. in a particular time period) to deal with data coming
from another geographical area (resp. another time period) will
get more and more attention in a near future and, probably,
greater effort will be made in this direction.

V. CONCLUSION

We have introduced a new distill before refine framework to
deal with spatial transfer between two geographical areas com-
ing from different countries. We have deployed the proposed
framework in the context of irrigation mapping leveraging
S1 time series data. Experimental evaluations have underlined
the effectiveness of the proposed framework in the context of
irrigated area mapping. As future work, we plan to investigate
more precisely the influence of the α and τ hyperparameters
in the knowledge distillation phase of our framework.
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