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A minimalistic and general weighted averaging method for inconsistent data
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Y nstitut des NanoSciences de Paris, CNRS, Sorbonne Université, F-75005 Paris, France
(Dated: December 21, 2024)

The weighted average of inconsistent data is a common and tedious problem that many scientists
have encountered. The standard weighted average is not recommended for these cases, and different
alternative methods are proposed in the literature. Here, we discuss a method first proposed by Sivia
in 1996 that is based on Bayesian statistics and keeps the number of assumptions to a minimum.
We propose this approach as a new standard for calculating weighted averages. The uncertainty
associated with each input value is considered to be just a lower bound of the true unknown uncer-
tainty. The resulting likelihood function is no longer Gaussian, but has smoothly decreasing wings,
which allows for a better treatment of scattered data and outliers. The proposed method is tested
on a series of data sets: simulations, CODATA recommended value of the Newtonian gravitational
constant, and some particle properties from the Particle Data Group, including the proton charge
radius. A freely available Python library is also provided for a simple implementation of the proposed

averaging method.

I. INTRODUCTION

The standard method for combining different indepen-
dent evaluations x; of the same quantity is to use the
weighted average
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that employs the inverse of the square of the associated
uncertainties o; as weights. The corresponding uncer-

tainty is given by
1
= = 2
7\ e .

The big advantage of such a procedure is the analy-
tical and simple formula that anyone can easily apply
to any data set. In addition, it is statistically well jus-
tified with a very small number of simple assumptions.
More importantly, the method is sufficiently universal to
be considered as a standard procedure in the scientific
community and can be found in any basic data analysis
lecture.

However, the inverse-invariance method, referred to in
the following pages simply as standard, has a drawback.
As we can see from Eq. , the final uncertainty depends
only on the data uncertainties o;, but not on the data
spread, which could be larger than the values of o; (see,
e.g., [1] for a more detailed discussion). This is, however,
a common scenario in science, possibly caused by an un-
controlled systematic effect in the measurement proce-
dure or by different biases in measurements conducted
in different laboratories and/or with different methods.
Common questions that arise are how to take into ac-
count such information on the data dispersion in the cal-
culation of a weighted average and how to treat outliers.

(1)
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To answer such questions, several approaches have
been proposed in the literature. In the case of incon-
sistent data sets, a very common and basic method is to
use the standard weighted average while artificially in-
creasing its associated uncertainty. But how should one
choose objectively the uncertainty expansion factor? The
most common method has been proposed by Birge [2] al-
most one hundred years ago. It is based on the x? value
obtained by the difference between the standard weighted
average and the single input values. The uncertainty ex-
pansion factor Rgirge, the Birge ratio, is applied to the
single uncertainties ¢; = Rpirge0i, With
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where n is the number of x; data points. In this way,
the final value of the reduced x?2 is adjusted to be close
to unity, as expected for consistent data sets. The use
of the Birge ratio is indeed one of the pillars of the sta-
tistical treatment employed by the Task Group on Fun-
damental Constants of the Committee on Data of the
International Science Council (here simply abbreviated
by CODATA) and the Particle Data Group (PDG). A
modified version of the Birge ratio has been proposed
in past works based on Bayesian statistics. The scaling
factor R between the estimated uncertainty o; and the
real uncertainty o} is considered unknown but common
to all data points [I, BH5]. Assuming a non-informative
Jeffreys’ prior probability p(R) o 1/R and marginalising
over the possible values of R, a final probability distri-
bution is obtained with an average value (the mode of
the final probability distribution) equal to the standard
weighted average. The uncertainty corresponds to an ex-
pansion of the standard weighted average uncertainty by
a factor equal to RBayes = /(7 — 1)/(n — 3) RBirge. Vari-
ations of this approach are discussed in Refs. [6] [7].

In principle, because of the common scaling factor for
each measurement result, the Birge ratio and its modi-
fied versions discussed above are not well suited for inter-
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laboratory averages, where very different systematic ef-
fects can occur. To compensate partially for such an
issue, past works [3], [7] proposed to assign a random bias
0B; to each measurement, with a common mean value and
standard deviation oyp;,s for the entire ensemble of mea-
surements. Here, a double marginalisation over the ;
values and their shared uncertainty oy;.s is required, for
which a prior probability has to be chosen, typically a
non-informative Jeffreys’ prior. An evolution of such an
approach has been proposed [8]. It consists of organising
the input values into clusters, each with a different op;as
value, and subsequently performing a Bayesian model av-
erage, in which each model corresponds to a different
clustering choice.

An alternative approach, which like the Birge ratio
avoids formulating any hypothesis on the nature of the
missing systematic uncertainty, consists of estimating the
uncertainty directly from the data dispersion with no par-
ticular assumption about the associated probability dis-
tribution [3, [9]. Datum-by-datum, the associated uncer-
tainty &; is obtained by a quadratic sum 6; = \/o? + d?
of the known uncertainty o; and the estimated missing
uncertainty obtained from the difference d; = x; — i be-
tween the input value x; and the standard weighted av-
erage itself. Since [ is thus present in both the left and
right expressions of Eq. , the final average is obtained
recursively. Like the original formulation of the Birge ra-
tio, this method lacks statistical foundations but has the
benefit of being very simply formulated.

All the previously described methods share the implicit
assumption that the uncertainty o; is a lower bound of
the real uncertainty of. This simple and clear statement
has been translated into formulas by Sivia and Skilling in
2004 [10], avoiding common scaling factors (like Rgirge)
or random bias dispersion (like Spias), but considering
for each point a modification of the Gaussian distribu-
tion by the marginalisation over o}. For this approach, a
prior probability p(c}) for o} has to be chosen. The nat-
ural choice would be the non-informative Jeffreys’ prior
p(o}) < 1/0}. If not constraint by an upper bound, this
choice causes divergence because of the non-integrability
of the resulting final probability distribution associated
to each datum. To avoid this problem, a modified prior
p(o}) oc 1/(c})? has been proposed and discussed in
Refs. [6 10, TI]. Alternatively, the inverse-gamma dis-
tribution, which is integrable but introduces additional
parameters, is proposed as a prior distribution [I} [12].
Other more complex approaches with no lower bounds
for o] can be found in Refs. [I1 [10].

Another approach involves the assumption of a likeli-
hood that is not Gaussian. For example, Dose [13] pro-
poses using Laplace and hyperbolic cosine likelihoods in
addition to the Gaussian likelihood and averaging the
three distributions by applying Bayesian model selection.

Here, we consider an approach with very few assump-
tions, similar to the work of Sivia and Skilling [I0], but
adopt the Jeffreys’ non-informative prior, like in Sivia’s
earlier work [T4]. Our intent is not to propose an auto-

matic approach to replace the work of data selection, but
to offer an easily implementable method as a common ref-
erence for averaging, while avoiding the issues associated
with the standard weighted average. For these reasons,
like the standard weighted average, we keep the basic as-
sumptions simple and very general, with the risk of being
too conservative in the estimation of the final uncertainty
in certain cases. To facilitate the application of the pro-
posed method in daily data analysis, a Python code is
provided.

Details on the derivation of the method are presented
in Sec. [[Ml In Section [Tl the proposed method is com-
pared to the other methods in a series of cases using sim-
ulated and real data. In section [V} the Python library
based on the introduced method is presented. The final
section is devoted to the discussion and conclusion.

II. DERIVATION OF THE WEIGHTED AVERAGE FOR
INCONSISTENT DATA

A. General considerations

The standard weighted average of independent mea-
surements x; with uncertainties o; is obtained by max-
imising the total probability of the mean value p, which
results from the product of the single probabilities for
each (assumed independent) measurement, with

p(ul{zi, 0i}) = Hp(xi\u, i) p()- (4)

When a Gaussian distribution is considered for each z;
together with a flat prior probability for u (a Jeffreys’
prior), the most probable value fi is given by the stan-
dard weighted average, i.e., Eq. . The associated un-
certainty o, given in Eq. is simply derived by the
uncertainty propagation in i = f(x1,xa,...) of the un-
certainty of the single x; values (see e.g. [15] [16]).

An alternative derivation of Eq. (2) can be ob-
tained from the second derivative of the logarithm of
p(pl{x;,0:}) by supposing that the final probability dis-
tribution can be well approximated by a Gaussian distri-

bution, where
_1
2
"
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In line with standard methods, we consider the av-
erage as the value i that maximises Eq. (assuming
the Jeffreys’ prior p(u) = const.), with its uncertainty
given by Eq. (f). The single probabilities p(x;|u,0;)
are no longer Gaussian, but are instead obtained by as-
suming certain hypotheses on the priors and performing
marginalisations.

As wrote above, our final goal is to provide the scien-
tific community with a new accessible tool to obtain a
robust weighted average that can be easily understood.

op = (—;lﬂlog[p(M{%Uz‘})]



Two prerogatives are thus essential: to propose some-
thing very general and to consider a minimal number of
assumptions. The generality is particularly important to
treat very common but different scenarios of inconsistent
data averaging: i) from measurements obtained with the
same apparatus (with a common uncontrolled system-
atic effect) or ii) from different types of measurements in
different laboratories (with possible uncorrelated biases).
For these purposes, we adopt a pessimistic framework
where the uncertainty o; is regarded as a lower bound of
the real uncertainty o}, without any additional assump-
tions on the possible biases and relations influencing the
available data set (similarly to Refs. [10, [17]). Any sys-
tematic error is considered to be included in the unknown
uncertainty o;.

Because of the unknown value of o} of each measure-
ment x;, the associated probability distribution is ob-
tained by marginalising over o:

o
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If only pairs (x;,0;) of measured values and associated
uncertainties are available, following the maximum en-
tropy principle, a Gaussian distribution p(x;|u, 0;) can be
assumed for each datum. A choice for the prior probabil-
ity distribution p(o}|o;) for o} has to be made. The nat-
ural choice is a Jeffreys’ prior, which is a non-informative
prior that is invariant under reparametrisation, to avoid
introducing other possible biases, with

1 1
o) — -
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0 otherwise.

p(xilp, o9)p(ojlos)do;. (6)

/ max
for o] < o; < o,

(7)
The problem of such a prior is the introduction of an
additional parameter o}"** for each data point. Indeed,
if one tries to eliminate such additional parameters by
considering the limit o*** — oo, p(o}|o;) is no longer a
proper probability distribution, i.e. normalised to unity,
because f;o 1/oido} = oco. Two alternative solutions to

this issue are presented in the next paragraphs.

B. Sivia and Skilling’s conservative weighted average

To avoid the introduction of additional parameters
o®* required for the normalisation of Jeffreys’ prior, a
conservative formulation has been proposed by Sivia and
Skilling for general regression problems [10]. It consists
of the modified version of the Jeffreys’ prior

olloy) = . 3

p( z| Z) (0_2)2 ( )

Keeping the assumption of a Gaussian distribution for
p(zilp, o}) and combining Egs. @ and , we obtain

(wi—m)?
o |1—e 29
p(wilp, 0:) = Var | (z — p)? (9)

== Gaussian
- Conservative
— Jeffreys' prior

Value of x;

FIG. 1. Comparison between the different assumed probabil-
ity distribution for each datum for p = 0,0; = 1.

Compared with a Gaussian distribution, as visible in
Fig. [1} the above expression is characterised by a signif-
icantly larger spread, with tails proportional to 1/(x;)?.
Once plugged into Eq. , such slowly descending tails
supply sufficient flexibility to be tolerant of inconsistent
data. Unlike the standard weighted average, the max-
imising value ji and its associated uncertainty o, have
no analytical form, but can be easily determined with
numerical methods. Now, both fi and o; depend on the
data spread. Note that, because of the presence of the
tails, even for consistent data sets, the final uncertainty
of the weighted average is generally greater than the one
obtained by the standard method.

C. Limit solution with Jeffreys’ prior

A criticism that could be directed at Eq. (@ is that
the choice of the prior probability distribution of o} in
Eq. does not respect the non-informative criterion
of Jeffreys’ prior. A possible solution to keep Jeffreys’
prior without introducing any new parameters is given by
Sivia in Ref. [I4]. It considers the limit case o]*** — oo.
The divergence of the resulting probability distribution
is circumvented by considering only its maximum and
the second-order log-derivative for the estimation of the
limit value of the weighted average and the associated
uncertainty, respectively.

When the Jeffreys’ prior from Eq. is adopted,
Eq. @ becomes

1 erf (f‘ﬁ;’j ) —erf (ﬁé&)

P (T, 04) = max
(@il 1) = o o 2@ =)

(10)
Compared to Eq. @[), we can note that the distribution



tails decrease even more smoothly than in the conser-

vative approach, with a dependency of 1/z; instead of
1/22, which can tolerate the presence of outliers even

better. These more pronounced tails are well visible in

Fig. [ The logarithmic form of the total probability
p(pl{x;, 0i, 0***}) is thus given by

log[p(ul{zi, 04, 57"*})]

erf (y:) erf ( ﬁ;“)
2(zi — )

= Z]Qg —07 (11)

i
where there is now a dependency on {o/***}, and

C =3 logllog(o"™/a7)]. (12)

This constant term does not play a role in the search
for fi, as C' depends only on the boundary values ¢; and
omex,

The limit 0}"** — oo of the above equation is

loglp(ul{ws, o)l =  lim log[p(ul{zi, i, 03" })]

max

it (V) _o=, (13)
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where the constant C° = limgmax o0 C = oo is indeed
divergent, but for more than one data point the distribu-
tion is integrable, and the variance is finite for more than
two data points. In particular, the position of the maxi-
mum and the value of the second derivative and thus the
weighted average and its uncertainty are well defined. As
in the case of the conservative weighted average, no ana-
lytical solution is available for {i and o, so the solution
must be found numerically.

We consider the formulas presented in this section as a
new reference method for the weighted average. In fact,
the conservative approach of Sec. still involves some
arbitrariness in the choice of the prior for the average.
This is not the case for the above formulas, where the
universal choice of the Jeffreys’ prior is adopted. In the
following section, we will refer to this approach as the
Jeffreys’ weighted average.

III. SOME APPLICATIONS

In this section, we present a series of applications for
common data analysis cases. In the first subsection, we
will study simulated data with known theoretical values
of mean and standard deviation. In the second subsec-
tion, an analysis of the different values of the Newtonian
gravitational constant from past CODATA compilations
is proposed. The third subsection is dedicated to fun-
damental particle properties, including the controversial
data set of the proton charge radius. Additional calcu-
lations of the Jeffreys’ weighted average for inconsistent

— Jeffreys' average
—— Standard average
1.5F 9
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=
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FIG. 2. Standard and Jeffreys’ weighted averages of different
simulated data sets: data randomly sampled from a normal
distribution (top), and with the addition of a random bias
(middle) or an outlier (bottom).

data measured using the same experimental apparatus
can be found in Ref. [18].

A. Synthetic tests

Different simulated data sets are considered for com-
paring the different averaging methods:

1. The first set of values x; is obtained by a normal
distribution with a mean value of ;x = 1 and a stan-
dard deviation equal to 0 = 0.1. For each data
point, the uncertainty o; = o is considered.

2. The second set simulates inconsistent data. It is
derived from set 1 by adding a random bias, with



TABLE I. Weighted average values with corresponding un-
certainties for the synthetic data set 1 (data shown in Fig. [2]

top).

Weighted average type Average [i Unc. oz
Inverse-variance (standard) 1.015 0.022
Inverse-variance with Birge ratio 1.015 0.025%
Conservative 1.013 0.037
Jeffreys’ prior 1.013 0.047

“Birge ratio equal to 1.1

TABLE II. Weighted average values with corresponding un-
certainties for the synthetic data set 2 (data shown in Fig.
middle).

Weighted average type Average [i Unc. oz
Inverse-variance (standard) 1.041 0.022
Inverse-variance with Birge ratio 1.041 0.076*
Conservative 1.04 0.094
Jeffreys’ prior 1.031 0.124

“Birge ratio equal to 3.4

a standard deviation of oy, = 10 0 and a mean of
Ubias = 0, to each data point.

3. The third set is the same as the first, but with
the addition of an outlier at p + 50 that has an
uncertainty of oout = /3.

For the three sets, the standard weighted average, with
or without Birge ratio correction, is compared to the con-
servative and Jeffreys’ weighted averages. The results
are presented in Tables and in Fig. [2| (for the stan-
dard and Jeffreys’ weighted averages only) and Fig.
As we can see, for normal and inconsistent data with-
out outliers, the mean value is well reproduced by all
methods. Because of the pessimistic priors on o}, the
Jeffreys’ and conservative final uncertainties are gener-
ally larger than the standard uncertainty. For consistent
data (set 1), they are larger by a factor of about two.
As expected, for the inconsistent data (set 2), the uncer-
tainty associated with the standard weighted average is
significantly smaller than the others, with the Jeffreys’
uncertainty being the largest, followed by the conserva-
tive and the Birge uncertainties. Jeffreys’ weighted aver-
age uncertainty is almost six time larger than the stan-
dard weighted average uncertainty and double that of the

TABLE III. Weighted average values with corresponding un-
certainties for the synthetic data set 3 (data shown in Fig. [2]
bottom, detailed analysis in Fig. |3).

Weighted average type Average [i Unc. oz
Inverse-variance (standard) 1.166 0.019
Inverse-variance with Birge ratio 1.166 0.054
Conservative 1.019 0.037
Jeffreys’ prior 1.018 0.047

“Birge ratio equal to 2.9
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FIG. 3. Final likelihood distribution for the data set 3 to-
gether with the input values.

Birge-ratio-corrected uncertainty.

When an outlier is present, Jeffreys’ weighted average
values are quite different from the standard weighted av-
erage. The effect of the presence of an outlier (set 3) is
clearly visible in Fig. [3] where the final likelihoods are
plotted together with the data, and in the results pre-
sented in in Table [[T] As we can see, the effect on the
standard likelihood, obtained by the product of Gaus-
sian distributions, is drastic, with a shift in the direction
of the outlier. If the data uncertainties are regarded as
lower bounds only, the effect is greatly mitigated, result-
ing in just an asymmetry of the tails for the Jeffreys’ and
conservative priors, which have very similar final prob-
ability distributions. This behaviour looks quite similar
to other methods that utilize the deviation of the data
point from the calculated value fi to estimate the possible
missing uncertainty contributions [3, 9]. However, unlike
these past works, here the distributions are derived from
the initial assumptions on the uncertainties, for which
we consider a priori that the provided values o; are only
lower bounds of the real uncertainty.

B. The Newtonian constant of gravity

A significant example of an average between indepen-
dent and possibly inconsistent measurements is the de-
termination of the Newtonian constant of gravity, which,
due to the difficulties associated with its measurement,
has long been the fundamental constant with the high-



TABLE IV. Weighted average values with corresponding un-
certainties for the data set of the CODATA 1998 compilation
for the Newtonian gravitational constant and corresponding
recommended value.

Weighted average type Average [i Unc. o
Inverse-variance (standard) 6.6827 0.0003
Inverse-variance with Birge ratio 6.6827 0.0063“
Conservative 6.6735 0.0006
Dose model average [13] 6.6746 0.0035
Jeffreys’ prior 6.6736 0.0008
CODATA 1998 [24] 6.673 0.010°

“Birge ratio equal to 23.6
bCorresponding scale factor equal to 37

est relative uncertainty. Such difficulties are mainly due
to the challenging experimental conditions, where very
small forces must be isolated from a noisy environment
[19, 20]. The official value is provided by CODATA with
a standard inverse-variance weighted average, and the
associated uncertainty is eventually multiplied by an ex-
pansion factor to maintain consistency between the final
result and the considered measurements.

Here, we apply the proposed averaging method to all
data sets included in the different editions of the CO-
DATA compilation [2IH30]. The results are presented
together with the official values in Fig. [d For each re-
ported CODATA value, the large error bar corresponds
to the recommended value of the uncertainty, and the
small one to the uncertainty calculated by the standard
weighted average. As we can see, the standard weighted
average is, for some years, several standard deviations
away from the most recent CODATA value from 2018
(the horizontal dashed line in the figure, which is the
same as the more recent CODATA 2022 value [30]), con-
sidered here as the reference value. Contrary to standard
procedures, one can see that the values obtained by the
Jeffreys’ weighted average are consistently in good agree-
ment, being less than one standard deviation away from
the most recent CODATA value, and are characterised
by a more plausible uncertainty.

The 1998 case is particularly difficult due to the in-
consistency within the data set, arising from one very
precise measurement [31] that differs significantly from
the average of the other measurements. The value was
later found to be affected by a large systematic error [32].
Details of the analysis of this specific case are presented
in Table [[V] and Fig. The CODATA recommended
value is obtained by the standard weighted average of all
values, excluding the suspicious measurement. The cor-
responding uncertainty is obtained by applying an ex-
pansion factor of 37 to the standard weighted average
uncertainty to reflect the presence of the outlier. More
precisely, the final uncertainty has been chosen to ensure
that the difference between the recommended value and
the outlier is four times larger than the final uncertainty.
Like in set 3 of the previous section, the Jeffreys’ weighted
average is only slightly affected by the outlier in this chal-

lenging case. Looking at Table[[V] one can note that the
Jeffreys’ weighted average has a significantly smaller un-
certainty than the method tested on the same data set by
Dose [13]. There, a Bayesian model average was applied
on different likelihood functions.

C. Particle properties

Another field that has to deal with very different mea-
surements to compile reference data is particle physics.
The Particle Data Group (PDG) [33], who is providing
the official reference values, implements a very well doc-
umented procedure, mainly based on the Birge ratio and
data selection. The goal of this selection is to minimise
possible correlations between considered data and to ex-
clude evident outliers. The muon magnetic anomalous
moment is an exception. No measurements are selected
except the one considered as unique reference from the
most recent experiment [34] (which is now in agreement
with the Standard Model predictions [35]).

In this section, we evaluate the Jeffreys’ weighted aver-
age of some particle properties, and compare the results
with the PDG recommended values. Moreover, to test
the robustness of the Jeffreys’ weighted average, we eval-
uate two sets:

A: the measurements selected by the PDG for the de-
termination of the recommended value.

B: the whole set of values listed by PDG.

For both sets, no correlations between the data have
been considered. This assumption is, however, not well
adapted to set B, where strongly correlated measure-
ments are present in some cases.

The obtained average values are compared with the
PDG values in Fig. [} Because of the very different
quantities, we normalise the difference of the Jeffreys’
weighted average to the PDG value by the uncertainty
provided by the PDG. It comes as no surprise that, when
the selected data are considered, the Jeffreys’ weighted
average is in good agreement with the PDG values. Sim-
ilar to the case of the simulated data sets, the associated
final uncertainty is generally larger than the PDG un-
certainty by at most a factor of 2.2. For set B, smaller
values of the final uncertainty can also be found because
of the larger set of considered data. For both sets, devi-
ations of less than two standard deviations are observed,
indicating the good robustness of the Bayesian method
even in difficult cases. The exception of the deviation of
K* meson mass for set B is caused by very strong corre-
lations between measurements. Moreover, the deviation
of the neutron asymmetry parameter B is caused by a
single additional value in set B, which is excluded by the
PDG (set A). Like the case of the Newtonian constant in
CODATA 1998, this very precise additional value has a
strong influence due to the lack of precise measurements.

However, even if in good agreement with PDG values,
some results must be treated with caution. In contrast to
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the standard weighted average, typically associated with
a sharp (Gaussian) probability distribution, the probabil-
ity distribution for the Jeffreys’ prior may more readily
exhibit strong asymmetry and multimodality. As an ex-
ample, the deviation in the neutron lifetime in set B is

caused by an asymmetry in the final probability distri-
bution. Similar cases are found for the K* meson mass
(set A only), the neutron lifetime (set A only), neutron
asymmetry parameter A, muon mass, and the e~ mag-
netic moment anomaly. For the latter in particular, no
deviation from the PDG value is visible. T'wo typical ex-
amples are shown in Fig. [7] presenting the neutron life-
time and the charged kaon mass in detail. As we can see,
the use of any kind of weighted average is not appropriate
because it does not reflect the final probability distribu-
tion, which should be considered for further inferences
instead. These considerations are in complete agreement
with the PDG recommendations that for these non-trivial
cases point out possible issues with these sets and pro-
vide an ideogram corresponding to the combination of
the measurement results (assumed to be Gaussian with a
weight proportional to 1/0;, and not to 1/0? like for the
standard weighted average) to underline the importance
of the single values in the average. Unlike the standard
and PDG methods, such a conclusion can be directly de-
duced by looking at the final probability distribution for
the Jeffreys’ prior.

An extreme example of asymmetry and multimodality
in the final probability distribution is the case of the pro-
ton rms charge radius. For this quantity, very different
results are obtained from the Jeffreys’ weighted average
with respect to the recommended PDG value and the
standard weighted average (so different that they are not
reported in Fig. @ As we can see from the plot of the
probability distribution (Fig. , a pronounced bi-modal
distribution appears when evaluating the entire ensemble
of available data. In this situation, any weighted average,
for which we always assume unimodality of the associated
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FIG. 6. Top: Comparison between the values obtained by the Bayesian weighted average using Jeffreys’ prior and the official
PDG values of several particle properties [33]. All values are normalised to the PDG uncertainties. The two dashed horizontal

~PDG __

lines correspond to i — i =

ﬂ:UEDG, i.e. to £1 in the relative scale. Bottom: Ratio between the uncertainties obtained for

the Jeffreys’ weighted average and the official PDG uncertainties.

probability distribution, is not suitable. This situation is
similar to the case of a data set composed of only two
data points with different values but the same uncertain-
ties. Regardless of the chosen method, a weighted aver-
age will propose the midpoint between the data points
due to the symmetry of the problem. In such cases, as
written above, the whole probability distribution should
be taken into account.

IV. THE ASSOCIATED CODE

Despite the well-known problems of the standard
weighted average based on the inverse of the variance,
its still widespread use is undoubtedly largely due to
the simplicity of its formula, which can be easily em-
ployed by anyone. The method presented here, as well
as others proposed in the literature, has the disadvan-
tage of requiring numerical methods for determining the
weighted average and its uncertainty due to the complex-
ity of the associated analytical formulas. The need for
improved averaging methods is, however, prevalent, but

due to the implementation difficulties, such alternative
methods are generally quickly abandoned, sometimes in
favour of the simpler Birge ratio. To close this gap, we
provide a numerical tool for the proposed weighted av-
eraging method. More precisely, we propose the Python
library BAYESIAN_AVERAGE, which can be easily installed
in any Python environment using the pip command and
is also freely available via the GitHub repository [36]. In
addition to providing the weighted average based on the
Jeffreys’ and conservative method priors, the standard
inverse-variance method and its modified version with
the Birge ratio are included for comparison. A graphical
tool is available to plot the final weighted averages and
the associated final likelihood probability distributions
together with the input data. Figures [7 and [§] are
typical outputs from BAYESIAN_AVERAGE (with minimal
changes to the label of the axes).



1.75 v — Standard likelihood
: — |effreys' likelihood
1.50 1 — Jeffreys' average
- ' : —— Standard average
o ] —— PDG
21.25 L ~ Data
° ]
= 1.00 1
= :
$0.75 :
E l —_—
€ 0.50|
[e]
=2
0.25} ]
I
I
000 | | :I | | |
877 87 879 880 881 882
Neutron lifetime [s]
80 — standard likelihood H : i
— Jeffreys' likelihood : : :
— Jeffreys' average 1 1 1
o —— Standard average 1 1 1
o 60— PDG L : :
_8 i Data 1 1
S o
= L
- 40} 0
() 1 1
0 . 1
g P
s 20f l
=4 ]
1
1
0 | | | : L1
493.62 493.64 493.66 493.68 493.70

Charged kaon mass [MeV/c?]

FIG. 7. Final likelihood distribution (in linear scale) cor-
responding to the PDG measurement selection for the neu-
tron lifetime (top) and the charged kaon mass (bottom). In
these cases, the final probability distribution generated by
the Bayesian method is highly asymmetric and cannot be ap-
proximated by a Gaussian distribution. Therefore, the whole
probability distribution should be considered for further in-
ference analyses instead of any kind of weighted averages.

V. DISCUSSION AND CONCLUSIONS

We present a robust method for averaging inconsistent
data, originally proposed by Sivia [14]. We suggest to use
such a method as an alternative to the standard weighted
average based on the inverse of the variance. In addition,
we propose a Python package to easily calculate such a
weighted average.

Compared with other similar methods previously pro-
posed in the literature, the number of working hypotheses
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FIG. 8. Final likelihood distribution (in linear scale) cor-
responding to the PDG measurement selection for the pro-
ton radius. The PDG official value is also reported, which is
very close to the standard weighted average. Due to the bi-
modality of the final probability distribution, using a weighted
average is completely inappropriate.

is kept to the minimal requirements. The weighted av-
erage based on Bayesian statistics is proposed to avoid
formulating complex hypotheses on the nature and be-
haviour of the unknown component of the true uncer-
tainties. For each data point, a Gaussian distribution is
considered, but the provided uncertainty o; is regarded
as a lower bound of the true uncertainty value. Using
Bayes’ theorem and assuming a non-informative Jeffreys’
prior for o}, a new probability distribution is obtained
by marginalising over o} € [oy,0/**]. The new arbi-
trary parameters o;"** are eliminated by looking at the
asymptotic solution of the resulting weighted average fi.
Contrary to the final associated probability distribution
that diverges, the limit value of /i and the associated un-
certainty o, are well defined.

The proposed method based on the Jeffreys’ prior is
applied to a series of cases that show its reliability and
robustness. For this purpose, simulated data, CODATA
values of the Newtonian constant, as well as a series of
particle property values from PDG are considered. In
particular, for the CODATA 1998 case, where an outlier
was causing issues, the method has proven to be a very
robust tool. In the case of particle properties, different
scenarios are encountered. For the largest part of the
cases, the Jeffreys’ weighted average reproduces very well
the PDG recommended values, but with a slightly larger
uncertainty. In some cases, however, we show that a
weighted average procedure should be taken with caution
and the entire probability distribution should be consid-
ered instead, which is in agreement with the PDG recom-



mendations. This is particularly true for the case of the
proton radius, which shows a pronounced multimodality
in the corresponding final probability. With the proposed
method, these difficult cases are easily identified by look-
ing at the final probability distribution.

The focus of future developments will be on incorpo-
rating correlations between the input data for the calcu-
lation of the weighted average.
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Code availability

The weighted averages were calculated using the pub-
licly available code BAYESIAN_AVERAGE from the author,
which is accessible in the repository https://github.
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