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A minimalistic and general weighted averaging method for inconsistent data
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(Dated: June 12, 2024)

The weighted average of inconsistent data is a common and tedious problem that many scientists
have encountered. The standard weighted average is not recommended for these cases, and different
alternative methods are proposed in the literature. Here, we introduce a new method based on
Bayesian statistics for a broad application that keeps the number of assumptions to a minimum. The
uncertainty associated with each input value is considered just a lower bound of the true unknown
uncertainty. By assuming a non-informative (Jeffreys’) prior for true uncertainty and marginalising
over its value, a modified Gaussian distribution is obtained with smoothly decreasing wings, which
allows for a better treatment of scattered data and outliers. The proposed method is tested on
a series of data sets: simulations, CODATA recommended value of the Newtonian gravitational
constant, and some particle properties from the Particle Data Group, including the proton charge
radius and the mass of the W boson. For the latter in particular, contrary to other works, our
prediction lies in good agreement with the Standard Model. A freely available Python library is also
provided for a simple implementation of our averaging method.

I. INTRODUCTION

The standard method for combining different indepen-
dent evaluations xi of the same quantity is to use the
weighted average

µ̂ =

∑
i xi/σ

2
i∑

i 1/σ
2
i

, (1)

that employs the inverse of the square of the associated
uncertainties σi as weights. The corresponding uncer-
tainty is given by

σµ̂ =

√
1∑

i 1/σ
2
i

. (2)

The big advantage of such a procedure is the analy-
tical and simple formula that anyone can easily apply
to any data set. In addition, it is statistically well jus-
tified with a very small number of simple assumptions.
More importantly, the method is sufficiently universal to
be considered as a standard procedure in the scientific
community and can be found in any basic data analysis
lecture.

However, the inverse-invariance method, referred to in
the following pages simply as standard, has a drawback.
As we can see from Eq. (2), the final uncertainty depends
only on the data uncertainties σi, but not on the data
spread, which could be larger than the values of σi (see,
e.g., [1] for a more detailed discussion). This is, however,
a common scenario in science, possibly caused by an un-
controlled systematic effect in the measurement proce-
dure or by different biases in measurements conducted
in different laboratories and/or with different methods.

∗ martino.trassinelli@insp.jussieu.fr

Common questions that arise are how to take into ac-
count such information on the data dispersion in the cal-
culation of a weighted average and how to treat outliers.
To answer such questions, several approaches have

been proposed in the literature. In the case of incon-
sistent data sets, a very common and basic method is to
use the standard weighted average while artificially in-
creasing its associated uncertainty. But how should one
choose objectively the uncertainty expansion factor? The
most common method has been proposed by Birge [2] al-
most one hundred years ago. It is based on the χ2 value
obtained by the difference between the standard weighted
average and the single input values. The uncertainty ex-
pansion factor RBirge, the Birge ratio, is applied to the
single uncertainties σ̃i = RBirgeσi, with

RBirge =

√
1

n− 1

∑
i

(xi − µ̂)2

σ2
i

=

√
χ2

n− 1
, (3)

where n is the number of xi data points. In this way,
the final value of the reduced χ2 is adjusted to be close
to unity, as expected for consistent data sets. The use of
the Birge ratio is indeed one of the pillars of the statistical
treatment employed by the Task Group on Fundamental
Constants of the Committee on Data of the International
Science Council (here simply abbreviated by CODATA)
and the Particle Data Group (PDG). A modified version
of the Birge ratio has been proposed in past works based
on Bayesian statistics. The scaling factor R between the
estimated uncertainty σi and the real uncertainty σ′

i is
considered unknown but common to all data points [1, 3–
5]. Assuming a non-informative Jeffreys’ prior probabil-
ity p(R) ∝ 1/R and marginalising over the possible values
of R, a final probability distribution is obtained with an
average value (the mode of the final probability distri-
bution) equal to the standard weighted average, and an
uncertainty that corresponding to an expansion of the
standard weighted average uncertainty by a factor equal
to RBayes =

√
(n− 1)/(n− 3)RBirge. Variations of this
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approach are discussed in Refs. [6, 7].

In principle, because of the common scaling factor for
each measurement result, the Birge ratio and its modified
versions discussed above are not well adapted to inter-
laboratory averages, for which very different systematic
effects can occur. To compensate partially for such an
issue, past works [3, 7] proposed to assign a random bias
βi to each measurement, with a common mean value and
standard deviation σbias for the entire ensemble of mea-
surements. Here, a double marginalisation over the βi

values and their shared uncertainty σbias is required (for
which a prior probability has to be chosen, generally a
non-informative Jeffreys’ prior). An evolution of such an
approach has been proposed [8]. It consists of organising
the input values into clusters, each with a different σbias

value, and subsequently performing a Bayesian model av-
erage, in which each model corresponds to a different
clustering choice.

An alternative approach that, like the Birge ratio,
avoids formulating any hypothesis on the nature of miss-
ing systematic uncertainty consists of estimating the un-
certainty directly from the data dispersion with no par-
ticular assumption about the associated probability dis-
tribution [3, 9]. Datum-by-datum, the associated uncer-

tainty σ̃i is obtained by a quadratic sum σ̃i =
√

σ2
i + d2i

of the known uncertainty σi and the estimated missing
uncertainty obtained from the difference di = xi − µ̂ be-
tween the input value xi and the standard weighted av-
erage itself. Since µ̂ is thus present in both the left and
right expressions of Eq. (1), the final average is obtained
recursively. Like the original formulation of the Birge ra-
tio, this method lacks statistical foundations but has the
benefit of being very simply formulated.

All the previously described methods share the implicit
assumption that the uncertainty σi is a lower bound of
the real uncertainty σ′

i. This simple and clear statement
has been translated into formulas by Sivia and Skilling in
2004 [10] avoiding common scaling factors (like RBirge)
or random bias dispersion (like βbias), but considering,
for each point, a modification of the Gaussian distribu-
tion by the marginalisation over σ′

i. For this approach, a
prior probability p(σ′

i) for σ
′
i has to be chosen. The nat-

ural choice would be the non-informative Jeffreys’ prior
p(σ′

i) ∝ 1/σ′
i. If not constraint by an upper bound, this

choice causes divergence because of the non-integrability
of the resulting final probability. To avoid this prob-
lem, a modified prior ∝ 1/(σ′

i)
2 has been proposed and

discussed in Refs. [6, 10, 11]. Other more complex ap-
proaches with no lower bounds for σ′

i can be found in
Refs. [1, 10].

Here, we consider the conservative approach with very
few assumptions proposed by Sivia and Skilling [10].
Unlike Sivia and Skilling and other more recent works
[6, 10, 11], we adopt a purely Jeffreys’ distribution for
σ′
i, taking some precautions to avoid possible divergences.

This is obtained by studying the limit case of σmax
i → ∞

with σmax
i indicating the upper bound of σ′

i. The final
probability distribution associated with each datum xi

is no longer Gaussian, implying significant modifications
of the final weighted average. The consequences of such
modifications are discussed and compared to other meth-
ods in Section III, using practical cases with simulated
and real data. Details on the derivation of the method
are presented in Sec. II. In section IV, the Python library
based on the introduced method is presented. The final
section is devoted to the conclusion.

II. DERIVATION OF THE WEIGHTED AVERAGE FOR
INCONSISTENT DATA

A. General considerations

The standard weighted average of independent mea-
surements xi with uncertainties σi is obtained by max-
imising the total probability of the mean value µ obtained
by the product of the single probabilities for each (as-
sumed independent) measurement, with

p(µ|{xi, σi}) =
∏
i

p(xi|µ, σi) p(µ). (4)

When a Gaussian distribution is considered for each xi

together with a flat prior probability for µ (a Jeffreys’
prior), the most probable value µ̂ is given by the stan-
dard weighted average, i.e., Eq. (1). The associated un-
certainty σµ̂ given in Eq. (2) is simply derived by the
uncertainty propagation in µ̂ = f(x1, x2, . . .) of the un-
certainty of the single xi values (see e.g. [12, 13]).
An alternative derivation of Eq. (2) can be ob-

tained from the second derivative of the logarithm of
p(µ|{xi, σi}) by supposing that the final probability dis-
tribution can be well approximated by a Gaussian distri-
bution, where

σµ̂ =
∂2

∂µ2
log[p(µ|{xi, σi})]

∣∣∣∣
µ=µ̂

. (5)

In line with standard methods, we consider the average
as the best value µ̂ of µ that maximises Eq. (4) (assum-
ing the Jeffreys’ prior p(µ) = const.), with its uncer-
tainty given by Eq. (5), but where the single probabil-
ities p(xi|µ, σi) are no longer Gaussian, but are instead
obtained by assuming certain hypotheses on the priors
and performing marginalisations.
Our final goal is to provide the scientific community

with a new tool to obtain a robust weighted average that
can be easily understood and, more importantly, easily
implemented as an alternative to the standard weighted
average. Two prerogatives are thus essential: to pro-
pose something very general and to consider a minimal
number of assumptions. The generality is particularly
important to treat very common but different scenar-
ios of inconsistent data averaging: i) from measurements
obtained with the same apparatus (with a common un-
controlled systematic effect) or ii) from different types
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of measurements in different laboratories (with possi-
ble uncorrelated biases). For these purposes, we adopt
a pessimistic framework where the uncertainties σi are
regarded as a lower bound of the real uncertainty σ′

i,
without any assumptions on the possible biases and re-
lations influencing the available data set (similarly to
Refs. [10, 14]). Any systematic error is considered to
be included in the global and unknown uncertainty σ′

i.
Because of the unknown value of σ′

i of each measure-
ment xi, the associated probability distribution is ob-
tained by marginalising over σ′

i:

p(xi|µ, σi) =

∫ ∞

σi

p(xi|µ, σ′
i)p(σ

′
i|σi)dσ

′
i. (6)

If only pairs (xi, σi) of measured values and associated
uncertainties are available, following the maximum en-
tropy principle, a Gaussian distribution p(xi|µ, σi) can be
assumed for each datum. A choice for the prior probabil-
ity distribution p(σ′

i|σi) for σ
′
i has to be made. The nat-

ural choice is a Jeffreys’ prior, which is a non-informative
prior that is invariant under reparametrisation, to avoid
introducing other possible biases, withp(σ′

i|σi) =
1

log(σmax
i /σi)

1

σ′
i

for σ′
i ≤ σi ≤ σmax

i ,

0 otherwise.

(7)
The problem of such a prior is the introduction of an
additional parameter σmax

i for each data point. Indeed,
if one tries to eliminate such additional parameters by
considering the limit σmax

i → ∞, p(σ′
i|σi) is no longer a

proper probability distribution, i.e. normalised to unity,
because

∫∞
σi

1/σ′
idσ

′
i = ∞. Two alternative solutions to

this issue are presented in the next paragraphs.

B. Sivia and Skilling’s conservative weighted average

To avoid the introduction of additional parameters
σmax
i required for the normalisation of Jeffreys’ prior, a

conservative formulation has been proposed by Sivia and
Skilling for general regression problems [10]. It consists
of the modified version of the Jeffreys’ prior

p(σ′
i|σi) =

σi

(σ′
i)

2
. (8)

Keeping the assumption of a Gaussian distribution for
p(xi|µ, σ′

i) and combining Eqs. (6) and (8), we obtain

p(xi|µ, σi) =
σi√
2π

1− e
(xi−µ)2

2σ2
i

(xi − µ)2

 . (9)

Compared with a Gaussian distribution, the above ex-
pression is characterised by a significantly larger spread,
with tails proportional to 1/(xi)

2. Once plugged into
Eq. (4), such slowly descending tails supply sufficient

flexibility to be tolerant of inconsistent data. Unlike the
standard weighted average, the maximising value µ̂ and
its associated uncertainty σµ̂ have no analytical form like
the standard weighted average (Eqs. (1),(2)), but can be
easily determined with numerical methods. Now, both µ̂
and σµ̂ depend on the data spread. Note that because
of the presence of the tails, even for consistent data sets,
the final uncertainty of the average is generally greater
than the one obtained by the standard method.

C. Limit solution with Jeffreys’ prior

A criticism that could be directed at Eq. (9) is that the
choice of the prior probability distribution of σ′

i in Eq. (8)
does not respect the non-informative criterion of Jeffreys’
prior. The solution proposed here to keep Jeffreys’ prior
without introducing any new parameters is to consider
the limit case σmax

i → ∞. The divergence of the resulting
probability distribution is circumvented by considering
only its maximum and the second-order log-derivative for
the estimation of the limit value of the weighted average
and the associated uncertainty, respectively.
When the Jeffreys’ prior from Eq. (7) is adopted,

Eq. (6) becomes

p(xi|µ, σi) =
1

log(σmax
i /σi)

erf
(

xi−µ√
2σi

)
− erf

(
xi−µ√
2σmax

i

)
2(xi − µ)

.

(10)
Compared to Eq. (9), we can note that the distribution
tails decrease even more smoothly than for the conser-
vative approach, with a dependency of 1/xi instead of
1/(xi)

2 that can even better tolerate the presence of
outliers. The logarithmic form of the total probability
p(µ|{xi, σi, σ

max
i }) is thus given by

log[p(µ|{xi, σi, σ
max
i })]

=
∑
i

log

erf
(

xi−µ√
2σi

)
− erf

(
xi−µ√
2σmax

i

)
2(xi − µ)

− C, (11)

where there is now a dependency on {σmax
i }, and

C =
∑
i

log [log(σmax
i /σi)] . (12)

This constant term does not play a role in the search for
µ̂, as it depends only on the σ′

i boundaries.
The limit σmax

i → ∞ of the above equation is

log[p(µ|{xi, σi})] = lim
σmax
i →∞

log[p(µ|{xi, σi, σ
max
i })]

=
∑
i

log

erf
(

xi−µ√
2σi

)
2(xi − µ)

− C∞, (13)

where the constant C∞ = limσmax
i →∞ C = ∞ is indeed

divergent, but the position of the maximum and the value
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TABLE I. Weighted average values with corresponding un-
certainties for the synthetic data set 1 (data shown in Fig. 1,
top).

Weighted average type Average µ̂ Unc. σµ̂

Inverse-variance (standard) 1.015 0.022
Inverse-variance with Birge ratio 1.015 0.025a

Conservative 1.013 0.037
Jeffreys’ prior 1.013 0.047

aBirge ratio equal to 1.1

of the second derivative, and thus the weighted average
and its uncertainty are still well defined. As in the case of
the conservative weighted average, no analytical solution
is available for µ̂ and σµ̂, so the solution must be found
numerically.

III. SOME APPLICATIONS

In this section, we present a series of applications for
common data analysis cases. In the first subsection, we
will study simulated data with known theoretical values
of mean and standard deviation. In the second subsec-
tion, an analysis of the different values of the Newtonian
gravitational constant from past CODATA compilations
is proposed. The third subsection is dedicated to fun-
damental particle properties, including the controversial
data sets of the W boson mass and the proton charge
radius. Additional applications of the proposed method
for high-resolution x-ray spectroscopy can be found in
Ref. [15].

A. Synthetic tests

Different simulated data sets are considered for com-
paring the different averaging methods:

Set 1: The first set of values xi is obtained by a normal
distribution with a mean value of µ = 1 and a stan-
dard deviation equal to σ = 0.1. For each data
point, the uncertainty σi = σ is considered.

Set 2: The second set simulates inconsistent data. It is
derived from set 1 by adding a random bias, with
a standard deviation of σbias = 10σ and a mean of
µbias = 0, to each data point.

Set 3: The third set is the same as the first, but with
the addition of an outlier at µ + 5σ that has an
uncertainty of σout = σ/3.

For the three sets, the standard weighted average, with
or without Birge ratio correction, is compared to the con-
servative and Jeffreys’ weighted averages. The results are
presented tables I–III and in Fig. 1 (for the standard and
Jeffreys’ averages only). As we can see, for normal and
inconsistent data without outliers, the mean value is well
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FIG. 1. Standard and Jeffreys’ weighted averages of different
simulated data sets: data randomly sampled from a normal
distribution (top), and with the addition of a random bias
(middle) or an outlier (bottom).

TABLE II. Weighted average values with corresponding un-
certainties for the synthetic data set 2 (data shown in Fig. 1,
middle).

Weighted average type Average µ̂ Unc. σµ̂

Inverse-variance (standard) 1.041 0.022
Inverse-variance with Birge ratio 1.041 0.076a

Conservative 1.04 0.094
Jeffreys’ prior 1.031 0.124

aBirge ratio equal to 3.4

reproduced by all methods. Because of the pessimistic
priors on σ′

i, Jeffreys’ and conservative final uncertainties
are generally larger than the standard one. For consis-
tent data (set 1), they are larger by a factor of about
two. As expected, for the inconsistent data (set 2), the
uncertainty associated with the standard weighted av-
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TABLE III. Weighted average values with corresponding un-
certainties for the synthetic data set 3 (data shown in Fig. 1,
bottom, detailed analysis in Fig. 2).

Weighted average type Average µ̂ Unc. σµ̂

Inverse-variance (standard) 1.166 0.019
Inverse-variance with Birge ratio 1.166 0.054a

Conservative 1.019 0.037
Jeffreys’ prior 1.018 0.047

aBirge ratio equal to 2.9
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FIG. 2. Final likelihood distribution for the data set 3 to-
gether with the input values.

erage is significantly smaller than the others, with the
Jeffreys’ uncertainty being the largest, followed by the
conservative and the Birge uncertainties. Jeffreys’ aver-
age uncertainty is almost six time larger than the stan-
dard weighted average uncertainty and double that of the
Birge-ratio-corrected uncertainty.

When an outlier is present, Jeffreys’ average values are
quite different from the standard one. The effect of the
presence of an outlier (set 3) is clearly visible in Fig. 2,
where the final likelihoods are plotted together with the
data, and in the results presented in in table III. As we
can see, the effect on the standard likelihood, obtained
by the product of Gaussian distributions, is drastic, with
a shift in the direction of the outlier. If the data uncer-
tainties are regarded as lower bounds only, the effect is
greatly mitigated, resulting in just an asymmetry of the
tails for Jeffreys’ and conservative priors, which have very
similar final probability distributions (once normalised).
This behaviour looks quite similar to other methods that
utilize the deviation of the data point from the calculated

TABLE IV. Weighted average values with corresponding un-
certainties for the data set of the CODATA 1998 compilation
for the Newtonian gravitational constant and corresponding
recommended value.

Weighted average type Average µ̂ Unc. σµ̂

Inverse-variance (standard) 6.6827 0.0003
Inverse-variance with Birge ratio 6.6827 0.0063a

Conservative 6.6735 0.0006
Jeffreys’ prior 6.6736 0.0008

CODATA 1998 [21] 6.673 0.010b

aBirge ratio equal to 23.6
bCorresponding scale factor equal to 37

value µ̂ to estimate the possible missing uncertainty con-
tributions [3, 9]. However, unlike these past works, here
the distributions are derived from the initial assumptions
on the uncertainties, for which we consider a priori that
the provided values σi are only lower bounds of the real
uncertainty.

B. The Newtonian constant of gravity

A significant example of an average between indepen-
dent and possibly inconsistent measurements is the de-
termination of the Newtonian constant of gravity, which,
due to the difficulties associated with its measurement,
has long been the fundamental constant with the high-
est relative uncertainty. Such difficulties are mainly due
to the challenging experimental conditions, where very
small forces must be isolated from a noisy environment
[16, 17]. The official value is provided by CODATA with
a standard inverse-variance weighted average, and the
associated uncertainty is eventually multiplied by an ex-
pansion factor to maintain consistency between the final
result and the considered measurements.
Here, we apply our averaging method to all data sets

included in the different editions of the CODATA com-
pilation [18–26]. The results are presented together with
the official values in Fig. 3. For each reported CO-
DATA value, the large error bar corresponds to the rec-
ommended value of the uncertainty, and the small one
to the uncertainty calculated by the standard weighted
average. As we can see, the standard weighted average
is, for some years, several standard deviations away from
the most recent CODATA value from 2018 (the horizon-
tal dashed line in the figure, which is the same as the more
recent CODATA 2022 compilation [27]), considered here
as the reference value. Contrary to standard procedures,
one can see that the values obtained by the Jeffreys’ av-
erage are consistently in good agreement, being less than
one standard deviation away from the most recent CO-
DATA value, and are characterised by a more plausible
uncertainty.
The 1998 case is particularly difficult due to the incon-

sistency within the data set, arising from one very precise
measurement [28] that differs significantly from the av-
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FIG. 3. Comparison between the official CODATA values [18–26] of the Newtonian constant and the values obtained by the
Bayesian weighted average using Jeffreys’ prior. CODATA values obtained from single measurements are presented alone, as no
weighted average could be performed. The small error bar of the CODATA values indicates the uncertainty calculated by the
standard weighted average, and the large one indicates the recommended uncertainty. The horizontal dashed line corresponds
to the latest CODATA value (2022 edition [27], equal to the 2018 edition one).
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FIG. 4. Final likelihood distribution (in log-scale) of the mea-
surements of the Newtonian constant included in the CO-
DATA 1998 compilation [21]. The CODATA 1998 recom-
mended value is also reported (in gray), which differs from
the standard weighted average for the considered measure-
ments (in red).

erage of the other measurements. The value was later
found to be affected by a large systematic error [29]. De-
tails of the analysis of this specific case are presented in
table IV and Fig. 4. The CODATA recommended value is
obtained by a standard weighted average of all values, ex-
cluding the suspicious measurement. The corresponding

uncertainty is obtained by applying an expansion factor
of 37 to the standard weighted average uncertainty to re-
flect the presence of the outlier. More precisely, the final
uncertainty has been chosen to ensure that the difference
between the recommended value and the outlier is four
times larger than the final uncertainty. Like in set 3 of
the previous section, the Jeffreys’ average is only slightly
affected by the outlier in this challenging case.

C. Particle properties

Another field that has to deal with very different mea-
surements to compile reference data is particle physics.
The Particle Data Group (PDG) [30, 31], who is provid-
ing the official reference values, implements a very well
documented procedure, mainly based on the Birge ratio
and data selection. The goal of this selection is to min-
imise possible correlations between considered data and
to exclude evident outliers.
In this section, we evaluate the Jeffreys’ weighted aver-

age of some particle properties, and compare the results
with the PDG recommended values. Moreover, to test
the robustness of our method, we evaluate two sets:

Set A: the measurements selected by the PDG for the de-
termination of the recommended value.

Set B: the whole set of values listed by PDG.

For both sets, no correlations between the data have
been considered. This assumption is, however, not well
adapted to set B, where strongly correlated measure-
ments are present in some cases.
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µ̂ , i.e. to ±1 in the relative scale. Bottom: Ratio between the uncertainties
obtained for the Jeffreys’ weighted average and the official PDG uncertainties

The obtained average values are compared with the
PDG values in Fig. 5. Because of the very different
quantities, we normalise the difference of the Jeffreys’
weighted average to the PDG value by the uncertainty
provided by the PDG. It comes as no surprise that, when
the selected data are considered, the Jeffreys’ weighted
average is in good agreement with the PDG values. Sim-
ilar to the case of the simulated data sets, the associated
final uncertainty is generally larger than the PDG un-
certainty by at most a factor of 2.2. For set B, smaller
values of the final uncertainty can also be found because
of the larger set of considered data. For both sets, devi-
ations of less than two standard deviations are observed,
indicating the good robustness of the Bayesian method
even in difficult cases. The exception of the deviation of
K± meson mass for set B is caused by very strong corre-
lations between measurements. Moreover, the deviation
of the neutron asymmetry parameter B is caused by a
single additional value in set B, which is excluded by the
PDG (set A). Like the case of the Newtonian constant in
CODATA 1998, this very precise additional value has a
strong influence due to the lack of precise measurements.

However, even if in good agreement with PDG values,
some results must be treated with caution. In contrast to
the standard weighted average, typically associated with
a sharp (Gaussian) probability distribution, our method
may more readily exhibit strong asymmetry and multi-
modality. As an example, the deviation in the neutron
lifetime in set B is caused by an asymmetry in the final
probability distribution. Similar cases are found for the
K± meson mass (set A only), the neutron lifetime (set
A only), neutron asymmetry parameter A, muon mass,
and the e− magnetic moment anomaly. For the latter
in particular, no deviation from the PDG value is visi-
ble. Two typical examples are shown in Fig. 6, present-
ing the neutron lifetime and the charged kaon mass in
detail. As we can see, the use of any kind of weighted
average is not appropriate because it does not reflect the
final probability distribution, which should be considered
for further inferences instead. These considerations are
in complete agreement with the PDG recommendations
that, for these non-trivial cases, point out possible issues
with these sets and provide an ideogram corresponding
to the combination of the measurement results (assumed
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FIG. 6. Final likelihood distribution (in linear scale) cor-
responding to the PDG measurement selection for the neu-
tron lifetime (top) and the charged kaon mass (bottom). In
these cases, the final probability distribution generated by the
Bayesian method is highly asymmetric and cannot be approx-
imated by a Gaussian distribution. For these cases, the whole
probability distribution should be considered for further in-
ference analyses instead of any kind of weighted averages.

to be Gaussian with a weight proportional to 1/σi, and
not to 1/σ2

i like for the standard weighted average) to
underline the importance of the single values in the av-
erage. Unlike the standard and PDG methods, such a
conclusion can be directly deduced by looking at the fi-
nal probability distribution of our proposed method.

An extreme example of asymmetry and multimodality
in the final probability distribution is the case of the pro-
ton rms charge radius. For this quantity, very different
results are obtained from the Jeffreys’ weighted average
with respect to the PDG and the standard weighted av-
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FIG. 7. Final likelihood distribution (in linear scale) cor-
responding to the PDG measurement selection for the pro-
ton radius. The PDG official value is also reported, which is
very close to the standard weighted average. Due to the bi-
modality of the final probability distribution, using a weighted
average is completely inappropriate.

TABLE V. Weighted average values with corresponding un-
certainties of the mass of the W boson, together with the
corresponding PDG recommended values of the 2022 edition
(from an average value) and the 2023 edition (from a single
measurement) and the prediction of the Standard Model.

Weighted average type Average µ̂ Unc. σµ̂

Inverse-variance (standard) 80.407 0.007
Inverse-variance with Birge ratio 80.407 0.011a

Conservative 80.387 0.017
Jeffreys’ prior 80.385 0.021
PDG 2022 [30] 80.377 0.012
PDG 2023 [31] 80.4335 0.0094
Standard Model prediction [32, 33] 80.354 0.007

aBirge ratio equal to 1.6

erage (so different that they are not reported in Fig. 5).
As we can see from the plot of the probability distribu-
tion (Fig. 7), a pronounced bi-modal distribution appears
when evaluating the entire ensemble of available data. In
this situation, any weighted average, for which we always
assume unimodality of the associated probability distri-
bution, is not suitable. This situation is similar to the
case of a data set composed of only two data points with
different values but the same uncertainties. Regardless
of the chosen method, a weighted average will propose
the midpoint between the data points due to the sym-
metry of the problem. In such cases, as written above,
the whole probability distribution should be taken into
account.

The case of the mass of the W boson is also unique.
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FIG. 8. Final likelihood distribution (in linear scale) corre-
sponding to the PDG measurement selection for the W boson
mass. The PDG official values of the 2022 and 2023 edition
are also reported together with the Standard Model predic-
tion. As can be seen, our Jeffreys’ weighted average agrees
within 1.5 standard deviations with the predicted value.

The 2023 PDG recommended value is derived from a sin-
gle measurement and differs strongly from the 2022 PDG
value, which is based on an average [32, 33]. This situa-
tion is causing debate in the particle physics community.
It is in strident disagreement with Standard Model pre-
dictions [33]. As can be seen in table V and in Fig. 8, the
disagreement is reduced for the standard weighted aver-
age, but is still considerable [33]. When our Bayesian
method is implemented for the entire data set listed by
PDG in 2023, but without preference for a particular
value, the difference between the weighted average and
the Standard Model prediction is significantly reduced.
The scattering of the data is better taken into account,
resulting in a significantly larger uncertainty that is, con-
trary to the PDG 2023 value, compatible with the Stan-
dard Model prediction within 1.5 standard deviations.

IV. THE ASSOCIATED CODE

Despite the well-known problems of the standard
weighted average based on the inverse of the variance,
its still widespread use is undoubtedly largely due to
the simplicity of its formula, which can be easily em-
ployed by anyone. The method presented here, as well
as others proposed in the literature, has the disadvan-
tage of requiring numerical methods for determining the
weighted average and its uncertainty due to the complex-
ity of the associated analytical formulas. The need for
improved averaging methods is, however, prevalent, but
due to the implementation difficulties, such alternative

methods are generally quickly abandoned, sometimes in
favour of the simpler Birge ratio. To plug this gap, we
provide a numerical tool for our proposed weighted av-
eraging method. More precisely, we propose the Python
library bayesian average, which can be easily installed
in any Python environment using the pip command and
is also freely available via the repository GitHub [34]. In
addition to providing the weighted average based on the
Jeffreys’ and conservative method priors, the standard
inverse-variance method and its modified version with
the Birge ratio are included for comparison. A graphical
tool is available to plot the final weighted averages and
the associated final likelihood probability distributions
together with the input data. Figures 2, 4 and 6–8 are
typical outputs from bayesian average (with minimal
changes to the label of the axes).

V. CONCLUSIONS

We present a new robust method for averaging incon-
sistent data as an alternative to the standard weighted
average based on the inverse of the variance. Com-
pared with other similar methods previously proposed
in the literature, the number of working hypotheses is
kept to the minimal requirements. A new weighted av-
erage based on Bayesian statistics is proposed to avoid
formulating complex hypotheses on the nature and be-
haviour of the unknown component of the true uncer-
tainties. For each data point, a Gaussian (normal) dis-
tribution is considered, but the provided uncertainty σi is
regarded as a lower bound of the true uncertainty value.
Using Bayes’ theorem and assuming a non-informative
(Jeffreys’) prior for σ′

i, a new probability distribution is
obtained by marginalising over σ′

i ∈ [σi, σ
max
i ]. The new

arbitrary parameters σmax
i are eliminated by looking at

the asymptotic solution of the resulting weighted average
µ̂. Contrary to the final associated probability distribu-
tion that diverges, the limit value of µ̂ and the associated
uncertainty σµ̂ are well defined.
The proposed method is applied to a series of cases that

show its reliability and robustness. For this purpose, sim-
ulated data, CODATA values of the Newtonian constant,
as well as a series of particle properties data are consid-
ered. In particular, for the CODATA 1998 case, where
an outlier was causing issues, our method has proved to
be a very robust tool. In the case of particle properties,
different scenarios are encountered. For the largest part
of the cases, our weighted average reproduces very well
the PDG recommended values, but with a slightly larger
uncertainty. In some cases, however, we show that a
weighted average procedure should be taken with caution
and the entire probability distribution should be consid-
ered instead, which is in agreement with the PDG recom-
mendations. This is particularly true for the case of the
proton radius, which shows a pronounced multimodality
in the corresponding final probability. In the case of the
mass of the W boson, unlike the PDG 2023 values and
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previous studies, our proposed average agrees quite well
with the Standard Model predictions.

The focus of future developments will be on incorpo-
rating correlations between the input data for the average
calculation.
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