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Through a comprehensive examination of the durabil-
ity of these materials exposed to low concentrations 
of  H2S in a Paris Region sewage system over nearly 
four years, the findings extend beyond surface-level 
observations. Despite the absence of visible signs of 
deterioration, high-precision analytical techniques 
reveal significant mineralogical transformations 
within the cementitious matrix. Expansive products 
such as gypsum, ettringite, and elemental sulfur are 
identified in mortar samples, underscoring the critical 
role of precise analysis in comprehending the deterio-
ration process.

Keywords Biodeterioration · Cementitious 
materials · Low  H2S concentration · Durability · 
SEM–EDS · µ-Raman

1 Introduction

Underneath the dynamic urban landscape lies a com-
plex and often overlooked sewer system network that 
silently plays a crucial part in ensuring public health 
and environmental sustainability. Cementitious mate-
rials, which form the backbone of the sewer network, 
are at the root of the success of these underground 
pipes. These materials are a key to ensuring the sewer 
infrastructure’s structural integrity, durability, and 
overall efficiency.

Indeed, throughout their lifespan, these pipes 
encounter a range of deterioration processes, which 
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can arise from assembly defects, environmental 
constraints, or deterioration triggered by the pres-
ence of substances and microorganisms within the 
pipe. Thus, in about 40% of cases, this damage can 
be linked to a biogenic attack resulting from sulfuric 
acid production [1]. This particular mode of deterio-
ration, encountered in concrete structures subjected 
to sewage environments, has the potential to substan-
tially reduce the lifespan of these structures [2, 3]. 
For instance, it can diminish the 100-year expected 
service life to a range of 30–50 years, or even, in the 
most severe cases, to 10 years or less [3, 4].

The phenomenon of microbiologically induced 
acid deterioration in concrete has garnered signifi-
cant attention since its identification. The sequence of 
stages that initiate and advance concrete biodeteriora-
tion in sewage environments has been delimited into 
several steps by various researchers [3, 5–11]. How-
ever, the most commonly agreed-upon sequences can 
be summarized as previously schematized by Heris-
son et al. [12]. This process begins with the creation 
of anaerobic zones at the bottom of pipes by waste-
water sediments. In these specific zones, the low con-
centration of oxygen leads sulfate-reducing bacteria 
(SRB) to reduce sulfur compounds, such as sulfates, 
into highly volatile hydrogen sulfide  (H2S). Subse-
quently, depending on the network’s temperature, pH, 
hydrodynamics, and the concentration of oxidized 
sulfur compounds in the wastewater,  H2S volatilizes 
into the pipe atmosphere above the water flow. Gas-
eous  H2S condenses on the pipe surface and affects 
the cementitious matrix in two distinct yet intercon-
nected ways. The first of these pathways acts directly 
by reducing the surface pH of cementitious materi-
als, resulting in immediate effects. Nevertheless, it’s 
important to note that, at this stage, the pH cannot 
attain an acidic value. However, the second, more 
complex path involves a fascinating chain of four key 
stages: the initial abiotic conversion of  H2S into sul-
fur components on the surface of the cementitious 
material; the subsequent bacterial oxidation of sulfur 
compounds into sulfuric acid; the diffusion of sulfuric 
acid into the cementitious matrix; and ultimately the 
gypsum formation.

The biodeterioration of sewage cementitious 
matrices has attracted considerable global research 
attention, with notable studies in occidental countries 
such as Australia, Austria, France, Germany, Den-
mark, and the United States among others [6–8, 10, 

13]. However, among these studies, the  H2S levels 
investigated consistently reached high concentrations, 
which often exceeded 600  ppm, leaving a gap in 
research into low  H2S concentrations. Consequently, 
the ability of sewage cementitious materials to with-
stand low  H2S environmental conditions remains 
under-explored.

This study addresses this gap by investigating 
the performance and durability of various Portland 
cementitious materials (CEM I, CEM II, CEM III, 
and CEM V) under low  H2S concentrations exposure. 
Additionally, it provides a mineralogical characteri-
zation of deterioration layers found on these bind-
ers. Understanding the processes in the cementitious 
matrix at low  H2S concentrations is crucial for imple-
menting effective prevention and maintenance proce-
dures, ensuring the long-term durability and perfor-
mance of vital infrastructure in wastewater networks.

Accordingly, different mortar formulations were 
exposed in  situ for a period of nearly 4  years in a 
sewage system, with periodic macroscopic monitor-
ing. Various analytical techniques found application 
in this study, such as X-ray diffraction (XRD), scan-
ning electron microscopy equipped with an energy-
dispersive X-ray spectrometer (SEM–EDS), and 
thermogravimetric analysis (TGA). Furthermore, by 
leveraging this wide range of practical instrument 
configurations, Raman spectrometry outperforms 
other methods with its diverse advantages [14, 15]. 
This technique is nowadays widely applied to char-
acterize civil engineering materials and continuously 
assess their evolution throughout their life cycle, from 
initial anhydrous materials to hydrated and hydrat-
ing pastes, and all the way to their degraded state 
[16–18].

2  Materials and experimental approaches

2.1  Mortar samples

These mixtures were established to be representative 
of the real-world sewer network to assess their resist-
ance to deterioration.

The mortar specimens used in this study were 
prepared with four different types of cement: ordi-
nary Portland cement (CEM I), Portland-composite 
cement (CEM II), blast furnace cement (CEM III), 
and composite cement (CEM V). Three specimens 
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were prepared for each type of cement. In all mix-
tures, the water-to-cement ratio was 0.5 and the sand-
to-cement ratio was 3. The mortars were molded into 
cylinders with a 6 cm diameter and a 12 cm height. A 
PVC tube was also precisely inserted into the central 
portion of each sample to ease their handling.

Once formed, the specimens were exposed to a 
100% relative humidity atmosphere over 24  h, then 
unmolded and stored in sealed plastic bags for a cur-
ing period of 28 days. Then, they were placed inside 
a 60 × 40 × 30   cm3 compartment that was afterward 
installed inside the sewer network and exposed to the 
specific sewer gas flow. Figures 1 and 2 in Herisson 
et al.’s [12] study provide a clear understanding of the 
appearance and placement of the specimens on site.

2.2  Exposure site of mortar samples

The northern part of the greater Paris Sanitation 
Authority (SIAAP in French), has been selected as a 
suitable exposure site for the 44 months study period. 
In addition to stormwater and industrial wastewater, 
SIAAP carries and purifies the wastewater of nine 
million residents within and around Paris, enhancing 
the dynamic natural environments of the Seine and 

Marne rivers. The selected site has been chosen based 
on precise previous results showing that the area 
exhibited relatively low  H2S concentrations.

OdaLog® safety sensors were inserted alongside 
the samples in the compartment in order to track the 
concentration of  H2S and temperature throughout the 
study period. Figure 3 and Table 1 present a 9-month 
example of the results obtained from these sensors 
used to assess the environmental conditions. During 
this period, the site recorded an average  H2S concen-
tration of 1.3  ppm, which categorizes it as a mod-
erately chemically aggressive environment accord-
ing to the NF EN 206/CN [19], designated as XA2. 

Fig. 1  H2S concentration versus Time over 9  months at the 
SIAAP facility

Fig. 2  LabRam HR800 (a) 
and CEM I sample before 
2D mapping (b)

Fig. 3  In-situ visual evolution of mortar samples exposed over 
44 months at a low  H2S concentration
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Moreover, as detailed in Table 1, the data shows that 
the first quartile stands at 0.0  ppm, representing the 
lower 25% of the measured concentrations, while 
the third quartile is at 1.0 ppm, signifying the value 
below which 75% of the data falls. The computed 
values presented in Table 1 provide a comprehensive 
view of the distribution of  H2S concentrations, which, 
in turn, reveals that the specimens were not exposed 
to a severe  H2S environment with respect to this gas.

2.3  Testing procedure

2.3.1  In‑situ evolution monitoring

At each sampling time step (21, 29, and 44  months 
after exposure), in situ photographs of the specimens 
were captured to document the macroscopic degra-
dation of the specimens over time. Additionally, the 
weights of the mortars (measured with a scale accu-
rate to 0.1 g), surface pH (determined using pH paper 
with a precision of 0.2), and diameters (measured 
with a caliper) were recorded to monitor changes in 
the properties over time.

After a 44-month exposure period in the sewage 
network, the mortars were carefully collected from 
their cases and accurately processed to secure consist-
ent test conditions and results. The specimens were 
then entirely covered with epoxy resin (EpoFix, Stru-
ers) under vacuum conditions to preserve the deterio-
ration condition. This precaution was taken to ensure 
the sample’s structural integrity for further testing.

Before all the analysis, the mortars exposed in-situ 
for 44 months underwent a meticulous diamond pol-
ishing process with ethanol that yielded homogene-
ous and plane test surfaces.

2.3.2  Scanning electron microscopy with energy 
dispersive x‑ray spectrometer (SEM–EDS)

Analyses were carried out using a Scanning elec-
tron Microscope (Quanta 400 FEI) equipped with 

an Energy Dispersive X-ray Spectrometer (EDS, 
Xplore30, Oxford), operating at an acceleration volt-
age of 20 kV. After carbon metallization of the pol-
ished surface, a panorama was acquired using back-
scattered electrons in order to identify deteriorated 
areas. Maps were acquired using the intensity of the 
Kα rays for the relevant chemical elements (Si, Ca, 
Mg, K), modifications being expected after the attack 
for these specific ones.

2.3.3  X‑ray diffraction (XRD) analyses

In order to detect and identify the crystalline phases 
present and their possible in-core degree of penetra-
tion, three holes were drilled at three successive dis-
tances, from the sample’s edge to its center, using 
3 mm diameter drills, as shown in Fig. 8 of Appen-
dix 1 . Subsequently, the resulting cement powder 
was gathered for qualitative analysis by X-ray dif-
fraction (XRD). The XRD measurements were per-
formed using a PANalytical Empyrean diffractom-
eter equipped with Co Kα radiation and a  PIXcel3D 
detector. Current and voltage on the X-ray tube were 
30  mA and 40  kV, respectively. The diffractograms 
were acquired in the range of 2θ from 4° to 76° with 
a step size of 0.013° 2θ/s. Mineral identification was 
carried out using the HighScore Plus software with 
the crystallography open database (COD) [20–27].

2.3.4  Thermogravimetric analysis (TGA—DTA) 
coupled with a mass spectrometer

Using the resulting cement powder gathered from 
the drilling process described in the subSect.  2.3.3., 
the thermogravimetric (TGA) and differential ther-
mal (DTA) analysis for the identification of the dif-
ferent phases, progressing from the edge of the sam-
ple towards its center, was carried out in a dry argon 
atmosphere using a NETZSCH STA 409E simulta-
neous thermal analyzer, performing both TGA and 
DTA simultaneously. The selected temperature ramp 
was 30–1250  °C, with an argon flow rate of 40  ml/
min and a heating rate of 10 °C/min. All through the 
heating process, weight changes are generated by the 
loss of  H2O and  CO2 as the temperature increases. 
Emitted gas,  H2O, and  CO2 were monitored over time 
using a mass spectrometer, with 18.09  g/mol, and 
44.09 g/mol respectively used as molar masses.

Table 1  Overview of  H2S concentration (ppm) data over 
9 months of the study period

Mean Standard 
deviation

1st quar-
tile

3rd 
quartile

Mini-
mum

Maximum

1.3 2.7 0.0 1.0 0.0 55.0
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2.3.5  µ‑Raman spectroscopy

As shortly mentioned in the introduction, Raman 
spectroscopy is now implemented in the characteriza-
tion of civil engineering materials, and in the continu-
ous monitoring of some of their evolution. In addition 
to all the advantages that Raman spectroscopy offers, 
such as being a non-destructive and rapid technique, 
it has been found to successfully detect the sulfate 
attack product in cementitious materials [28, 29].

Precise punctual measurements were conducted 
along a radial line over a section of the samples (cf. 
Figure 9 of Appendix 1 ) to enhance the investigation 
of the mineralogical characterizations of the mortar 
samples. The analyses were performed using two dif-
ferent instruments.

The first one was a BWTek iRaman spectrom-
eter operating with a 532  nm laser wavelength 
and delivering nearly 50 mW power output. The 
2048-pixel CCD detector provided spectra over the 
150–4000   cm−1 spectral range with a resolution of 
4  cm−1. It was paired to a BAC151C microscope, and 
spectral measurements were made through an × 50 
objective lens from Olympus. Both BWTek instru-
ments are managed by BWSpec 4.11_1 software.

The second spectrometer was a LabRAM HR800 
spectrometer operating with a 514  nm laser wave-
length and delivering nearly 1 mW power output. 
The instrument is optically coupled to a BX-model 
microscope from Olympus, with a × 50 (NA 0.75) 
MPlanN objective. The diffraction-limited spot size is 
then about 1 µm. The detector provided spectra over 
the 50–4000  cm−1 spectral range with a resolution of 
1  cm−1. An XY-motorized stage allowed to taking of 
in-line profiles and 2D mappings with a displacement 
step as low as 1  µm. All devices are controlled by 
LabSpec 6 software.

3  Results

3.1  In situ visual evolution monitoring

Photographs taken at each time scale provided an 
overview of a qualitative visual evolution of the 
cementitious materials, as shown in Fig.  3. Since 
the very first sampling period (21 months), the dete-
rioration of all the specimens has been observed and 
has evolved over the years. Indeed, according to the 

literature with samples exposed to average  H2S con-
centrations of 5 and 100  ppm respectively [30, 31], 
samples were expected to show much more notice-
able visual deterioration after 44 months of exposure. 
Therefore, it can be noticed that the mortars are mod-
erately well preserved and that this limitation of deg-
radation can be strongly linked to their exposure to a 
very low concentration of  H2S.

Based on the visual characteristics only, through-
out the study period, the changes in all samples were 
characterized by the presence of white crystals and 
brownish deposits. At the end of the 44 months, the 
specimens had somewhat darkened and showed some 
deterioration marks, notably the growth of expansive 
products.

Alongside a visual inspection of the degradation, 
sample weights were measured during the in‑situ 
exposure period. All the examined mortars exhibited 
identical behavior, as illustrated in Fig.  4. Over the 
first 21 months, a weight gain is recorded, which can 
be linked to the accumulation of water in the pores 
of the mortar specimens and the formation of sulfide 
reaction products, followed by a slight weight loss. 
It is crucial to highlight that all the types of cement 
used in the study showed a similar variation in weight 
percentage.

The examination of pH values throughout the 
study period revealed a significant drop in the sur-
face pH, from its initial alkaline value to an acidic 
value after 21 months, followed by stabilization in the 
4–6 range over the subsequent months. This pattern 
reflects the results documented in existing literature 
[30–32].

Furthermore, the investigation of the diameter 
evolution over the 44  months did not reveal any 

Fig. 4  Mean weight variation of mortar samples exposed for 
44 months at a low  H2S concentration
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significant change for all the specimens. The percent 
change in diameter ranged from 0 to 0.7% of expan-
sion over the study period, which is consisted with 
the visual observations that did not reveal any notice-
able expansion of the mortars.

3.2  Chemical profile maps determination

SEM observations and elemental map investiga-
tions facilitated the identification of diverse elemen-
tal chemical distributions and sample zonation. Fig-
ures 10–13 in the Appendix illustrate the multimodal 
analysis of the mortar specimens, presenting visuali-
zations of cross-sections obtained using KEYENCE, 
SEM imaging of half the section and the selected sec-
tion to be analyzed with EDS. The interpretation of 
chemical variations relied on the distribution of ele-
ments compounds determined through EDS analysis. 
The identification of various microstructural zones 
in all examined deteriorated mortar samples closely 
aligns with previous findings [32–35]. Furthermore, a 
consistent behavior was observed across all samples, 
attributed to their shared composition of Portland 
cement. This emphasizes the reliability of the results 
and underscores a uniform response to selected envi-
ronmental factors.

Four distinct zones have been distinguished in 
these samples through meticulous analysis, as illus-
trated in Figs. 5 and 6. Each zone reveals unique fea-
tures indicating specific compositional, mineralogi-
cal, and microstructural characteristics.

The first zone, prominently visible in the SEM 
images, consisted of a strongly altered area. This 
near-surface zone is locally enriched in sulfur and 
calcium (cf. zone 1 in Fig.  5), precipitating mainly 
along long reticulated crack systems.

Moving on to a second zone, its composition dif-
fered notably from the first, with a porous structure 
characterized by the presence of Si and the depletion 
of the S and Ca elements, creating a distinctive void 
in the elemental composition. Additionally, this zone 
is characterized by the absence of anhydrous phases 
(such as C2S, C3S, etc.). In the backscatter images, 
anhydrous phases typically appear as white elements; 
however, they are absent in this specific zone of the 
section. This particular zone can be most precisely 
described as an outer transition zone, representing a 
boundary between the strongly deteriorated external 
zone and the slightly deteriorated internal zone.

The third zone can be most accurately described 
as an inner transition zone, marked by the accumu-
lation of K and Mg elements, followed by the suc-
cessive incorporation of S and Ca. Furthermore, 
this zone can be subdivided into two distinct inter 
zones, labeled 3a and 3b. These sub-zones are 
clearly differentiated by the absence of anhydrous 
phases in zone 3a and their presence in zone 3b, 
with an additional layer of complexity to the min-
eralogical composition in this transitional region. 
This zone further contributes to the comprehensive 
understanding of the sample’s heterogeneity.

These deteriorated layers probably consist of 
newly formed calcium sulfates. These layers are 
identified by regions where calcium and sulfur have 
accumulated. Additionally, they are less defined 
layers containing silicon. However, in cases where 
only sulfur was detected in the elemental distribu-
tion images, the presence of elemental sulfur was 
probable.

Lastly, a fourth zone, which can be described as 
the pristine zone, indicates that its mineralogical 
composition has remained relatively unchanged. 
This zone features an abundance of anhydrous 
phases (such as C2S, C3S, slag, …) identifiable 
on BSE images. The presence of anhydrous phases 
indicates a chemical reaction of the water with the 
initial cement, potentially contributing to the zone’s 
resistance to the deleterious effects of  H2S. Indeed, 
the distinction between all the zones can be effec-
tively discerned through the variations in texture 
from one zone to its neighbors.

From the results illustrated in Fig. 5, the CEM I 
sample features all four of the identified zones. On 
the other hand, the CEM III and CEM V samples 
exhibit similar zonation, whereby the second zone 
is notably lacking. Conversely, the CEM II sample 
presents a marked change in element distribution, 
as illustrated in Fig. 6. Particularly in its third zone, 
where the element sulfur is notably absent.

With these findings and ImageJ software [36], 
measurements of minimum and maximum values 
were taken for each zone of the samples for com-
parative analysis, as shown in Table 1. The results 
reveal that all the samples present deteriorated lay-
ers in varying degrees of proximity. Remarkably, 
the CEM II sample was found to be the most dete-
riorated of all the Portland cement samples studied 
(Table 2).
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Fig. 5  High resolution and elemental distribution images of S, Ca, Si, K, and Mg of cross-sections in a CEM I, b CEM III, and c 
CEM V samples, revealing the varied zones from the exterior deteriorated zone to the interior pristine zone

Fig. 6  High resolution and elemental distribution images of S, Ca, Si, K, and Mg of cross-sections in the CEM II sample, revealing 
the varied zones from the exterior deteriorated zone to the interior pristine zone
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3.3  Mineralogical characterization

XRD (X-ray Diffraction) and TGA (Thermogravimet-
ric Analysis), analyses were carried out for the miner-
alogical characterization of the cementitious samples 
into the depth of the materials constituting the sam-
ples. Nevertheless, considering the information pre-
sented in Sect. 3.2 and the fact that the holes in the 
samples were obtained using 3  mm drills, it can be 
asserted that the first hole falls within the three pre-
defined zones. Consequently, differentiation of results 
based on specific zones, according to XRD and TGA, 
is not feasible. However, it can be considered that 
the first hole occurred in the deteriorated part of the 
sample (zones 1, 2, 3a, and 3b previously described 
in Sect.  3.2 and shown in Figs.  5 and 6), while the 
other two occurred in the intact zone (zone 4 previ-
ously described in Sect. 3.2.).

Qualitative XRD analyses of the resulting cement 
powder showed the quartz (peak at 3.34 Å) contained 
in the sand to be the main crystallized phase for all 
the holes of the four cement types.

For the Ordinary Portland cement sample 
CEM I, XRD results revealed the presence of 
the semi-hydrated phase of gypsum ‘bassanite’ 
 (CaSO4·0.5H2O, peak at 3.00 Å) and calcite  (CaCO3, 
peak at 3.04  Å), in the altered layer of the sample 
indicating the local variation in the mineralogical 
composition of the sample due to the biogenic  H2S 
attack. Furthermore, portlandite (peak at 2.63 Å) was 
detected throughout the core of the sample. Figure 14 
of Appendix 1 shows the diagrams of the three holes 
of the CEM I specimen.

For the CEM II and CEM III samples, XRD analy-
ses confirmed the predominance of quartz, but other 
phases such as calcite and portlandite were also iden-
tified throughout the radial line of the samples. More-
over, vaterite (peak at 3.29  Å) was also detected in 
the CEM III sample.

Nevertheless, for the CEM V sample, no other 
phases apart from quartz were detected in the intact 
zone of the sample. However, in the deteriorated 
zone, gypsum (peaks at 7.62 and 4.27 Å) and calcite 
were identified.

On the other side, the TGA-MS results for all 
the samples revealed the presence of four distinc-
tive stages of weight loss over the entire temperature 
range, spanning from 30 to 1250 °C.

The initial weight loss, occurring between room 
temperature and 220 °C, was attributed to the evapo-
ration of all free water and of water from the C–S–H 
and ettringite components. The following weight loss, 
between 380 and 500 °C, is mainly due to the libera-
tion of water during the dehydration process of port-
landite. This percentage weight loss can be effectively 
used to estimate the portlandite content of samples. 
With the third stage of weight loss, which takes place 
between 700 and 800 °C,  CO2 is released, making it 
possible to estimate the  CaCO3 content in the mor-
tar samples. The final weight loss observed above 
1000  °C is attributed to the release of  SO3, which 
originates from the sulfates contained in the gypsum 
and ettringite due to the  H2S attack in the mortar sam-
ples [9].

Taking all the findings together, it is confirmed 
that the samples have undergone an alteration with 
a mineralogical modification. However, it should be 
noted that this change was not as severe as that pre-
viously recorded for samples heavily exposed to  H2S 
[8–10, 37]. The mineral phases identified in the sam-
ples of this study suggest alteration, but to a lesser 
degree, underlining the importance of environmental 
conditions in the mineral alteration process.

Moreover, these results demonstrate that after 
44  months of in-situ exposure in a sewer environ-
ment, all Portland cement-based mortars contain 
portlandite all over the different zones of the samples. 
This finding can be justified by the low concentration 
of  H2S in the exposition zone, as the reduced pres-
ence of hydrogen sulfide leads to a less aggressive 
chemical environment.

3.4  Mineralogical characterization by micro-Raman 
spectroscopy

Among the different methods assessed, the Raman 
spectroscopy analysis consistently identified the 
presence of gypsum in the deteriorated layers of all 

Table 2  Alteration zone thickness variations for various 
cement types in mm (min–max)

Zone 1 Zone 2 Zone 3a Zone 3b

CEM I 0.2–0.5 0.2–0.3 0.9–1.1 1.9–2.3
CEM II 0.8–1.4 0.6–0.7 1.7–2.1 1.7–2.4
CEM III 0.3–0.9 NA 0.2–0.3 2.623.2
CEM V 0.2–0.7 NA 1.9–2.1 1.9 –2.1
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the specimens under investigation. Notably, gyp-
sum formation is characteristic of the sulfate attack 
of a cementitious material. This material has a spe-
cific peak at 1003  cm−1, as indicated in the literature 
[38].A photograph of an altered zone of a polished 
section of the exposed CEM V sample is shown in 
Fig.  7a. Additionally, Fig.  7b presents its spectral 
analysis over two spectral ranges (laser at 514  nm, 
25-s acquisition time, and averaged over 4 spectra), 
with an emphasis on the intensification characteristic 
of the gypsum spectrum. It is crucial to outline that 
the observed vibrational modes closely align with the 
literature data [29, 37, 39, 40].

Starting with the CEM I specimen exposed to the 
 H2S-enriched environment, alongside gypsum, the 
analysis revealed the presence of ettringite and two 
calcium carbonate polymorphs (calcite and vaterite, 
with a main intense peak respectively at 1085   cm−1 
and 1077–1090   cm−1) [29, 41–43]. Ettringite and 
gypsum were detected in the altered zone, and 
according to the literature, they have been identified 
as the main reason for the sulfate attack damage [29, 
44]. However, calcium carbonate was detected along 
the radial line of the sample.

Moving on to the CEM II specimen, calcite was 
identified in all the measurements taken, indicating its 
consistent presence. The existence of this supplemen-
tary phase within the alteration layer suggests that the 
formation of gypsum might have arisen either from 
calcium ions present in the constituent phases of the 
cementitious matrix (portlandite and C–S–H) or from 
calcite. Moreover, it is worth noting that calcite is 
consistently observed in all the samples and at greater 
depths within the mortars. The presence of  CaCO3 in 

the samples’ sections could also be attributed to an 
unavailable carbonation occurring once the inner part 
of the samples had been exposed to the atmosphere 
and during the polishing process, despite cautious 
storage conditions.

For the CEM III sample, the sulfite mineral hanne-
bachite was also detected at the surface of the mortar 
sample [45]. As per prior studies, Pons et al. [37] also 
identified hannebachite in a previous CEM III mortar 
sample.

Lastly, in the case of the CEM V specimen, ettrin-
gite and calcite were also detected in addition to 
gypsum.

All these findings reinforce the spectroscopic tech-
nique’s importance for assessing the cementitious 
matrix’s bio-alteration, but also about its spatial reso-
lution with respect to TGA and XRD.

4  Discussion

This study highlights the significant synergies arising 
from the utilization of diverse analytical techniques. 
While each method provided valuable data inde-
pendently, the true strength of the results emerged 
when considering the correlations and relationships 
revealed through their collective examination. The 
interconnections observed among XRD, SEM–EDS, 
TGA-MS, µ-Raman spectroscopy, and in  situ moni-
toring collectively present a comprehensive portrayal 
of the impact of low  H2S concentrations on cementi-
tious materials in sewage systems. These techniques, 
when integrated, offer a holistic view, uncovering 
mineralogical modifications and chemical alterations 

Fig. 7  a Photograph in reflected light of a CEM V altered zone, and b a normalized Raman spectrum (obtained with the LabRAM 
HR800 spectrometer) after 44 months of exposure in a sewage system
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within the cementitious matrix. This multifaceted 
approach proves crucial, as it goes beyond the limita-
tions of any single analytical method.

The intricate nuances of material degradation in 
cement samples exposed to an  H2S-enriched atmos-
phere in wastewater networks are brought to light 
through meticulous scanning electron microscopy 
observations. The SEM reveals a fascinating diversity 
within the deteriorated portions of the sample, where 
different zones, each characterized by distinct chemi-
cal features and sizes, emerge even in the thinnest 
sections. This microscale analysis, with its capacity 
to discern minute variations, surpasses the capabili-
ties of traditional tools such as TGA and XRD. The 
revelation of specific characteristics within each zone, 
despite their thinness, underscores the non-uniform 
nature of the degradation process. It becomes evi-
dent that a comprehensive understanding of this com-
plex interaction necessitates a diversified analytical 
approach. This exploration not only highlights the 
limitations of singular analytical tools but emphasizes 
the imperative role of complementary techniques.

In this context, SEM, with its precision at the 
microscale, and Raman spectroscopy stand out as piv-
otal contributors. Their integration facilitates a more 
holistic analysis, providing unparalleled insights into 
the intricate interplay between cement samples and 
 H2S. This synergy between SEM and Raman spec-
troscopy transcends the individual constraints of each 
technique, offering a comprehensive understanding 
of the material deterioration process. In essence, this 
approach broadens the horizons of material science, 
demonstrating the indispensability of diverse analyti-
cal tools in unraveling the complexities of biodegra-
dation in cement exposed to environmental stressors.

In this research, the analysis of element distri-
bution in deteriorated concrete layers revealed a 
dynamic system influenced by pH and diffusion of 
elements into the cement matrix. It revealed a clear 
sequence of element accumulation closely linked to 
pH levels, the dissolution and precipitation of solids, 
some variations in chemical compositions of cementi-
tious binders, and the spatial distribution of bacteria 
present in the wastewater.

The strongly deteriorated surface layer (zone 
1) extending from 0.2 to 1.4  cm featured a com-
position comprising filamentous structures 
composed of S and Ca. These structures rep-
resented the precipitation of secondary sulfate 

salts, including gypsum  (CaSO4⋅2H2O), ettrin-
gite  (Ca6Al2(SO4)3(OH)12·26H2O), anhydrite 
 (CaSO4), hannebachite  (CaSO3⋅H2O), and bassanite 
 (CaSO4⋅0.5H2O). The formation of hannebachite and 
bassanite can be explained by cycles of humidifica-
tion and drying, leading to fluctuating SO

2−

4
 and  H2O 

activities in the mortar’s interstitial solutions. Si-rich 
layers, on the other hand, consisted of amorphous 
silica.

The transition zone, segmented into three distinct 
inter zones (Zones 2, 3a, and 3b) between strongly 
deteriorated and intact concrete, was bounded within 
a range of 3–5 mm. This led to dynamic dissolution 
and precipitation of individual phases, as shown by 
the concentrations of individual elements in Figs.  5 
and 6. The interface between Zones 2 and 3 in the 
transition zone was characterized by a reduction in Ca 
concentration following acid penetration. Meanwhile, 
a simultaneous process of sulfate incorporation along 
the grain boundaries was observed, suggesting that 
this could be associated with the interfacial transition 
zone and its higher portlandite content (Ca(OH)2) 
[46]. This resulted in the microstructural deteriora-
tion of the cement matrix through the formation of 
expansive sulfate phases [47]. From the very initial 
edge of zone 3, Mg accumulation occurred as a result 
of the precipitation of Mg hydroxides, such as brucite 
(Mg(OH)2). In this process, hydroxide  (OH−) diffused 
from alkaline areas in the intact mortar, while diffu-
sion of Mg ions was induced by Mg precipitation and 
the associated concentration gradient. Given that the 
stability of Mg-containing precipitates is limited to 
strongly alkaline conditions, the cessation of Mg pre-
cipitation marks the end of zone 3. Mg thickness and 
concentrations in the accumulation zone have been 
found to correlate directly with the dominant pH gra-
dient, making them indicative of the rate of deteriora-
tion [33, 48]. Furthermore, in this transition zone, a 
noticeable accumulation of potassium (K) occurs in 
the elemental distribution (Figs.  5 and 6). Analysis 
of the compositional data suggests that these addi-
tional precipitates could be identified as (K-alum) 
(KAl(SO4)2⋅12H2O), syngenite  (K2Ca(SO4)2⋅H2O), 
or alunite  (KAl3(SO4)2(OH)6 that is also affected by 
the alkaline leaching rate [33, 49].

The intact pristine zone (zone 4), identified as 
the inferior zone, features a matrix mainly made 
up of calcium- and silicon-rich phases, including 
portlandite and hydrated calcium silicates (C–S–H 
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phases) as well as anhydrous grains. This matrix 
envelops silica and carbonate aggregates. In addition, 
various calcium carbonate polymorphs, such as 
calcite and vaterite, have been detected in this zone.

5  Conclusion

This research has illuminated the significant impact of 
low  H2S concentrations on cementitious materials in 
sewage systems. This impact, although often overlooked, 
plays a fundamental role in the degradation process of 
the cementitious materials that constitute these systems. 
Previous research has focused primarily on high  H2S 
concentrations, yet this study unveiled the subtle but 
consequential effects of low  H2S levels. By combining 
a full range of analytical techniques, including XRD, 
SEM–EDS, TGA-DTA, and Raman spectroscopy, in 
conjunction with continuous weight measurements and 
visual observations, several significant breakthroughs 
were achieved.

On the visual side, samples subjected to low  H2S 
concentrations showed no dramatic indications of 
deterioration compared to those exposed to more 
harsh environmental conditions. However, the 
real significance of these results lies beneath the 
surface, since the cementitious materials underwent 
considerable mineralogical alterations.

Most notably, these analyses highlighted the presence 
of several minerals in the mortar samples, underscoring 
the extent of the changes observed. In particular, 
bassanite and hannebachite, which are precursors 
to gypsum and have not been identified in materials 
subjected to higher levels of  H2S, were discovered. 
Moreover, gypsum, ettringite, elemental sulfur, 
and various polymorphs of calcium carbonate were 
identified along a radial line from the edge to the core 
of the samples. These mineralogical transformations 
emphasize the complex interplay between low  H2S 
concentrations and the composition of cementitious 
materials, which, although less visible on the surface, 
have a considerable impact on their long-term durability.

Furthermore, magnesium and potassium were 
detected in the altered layers following the chemical 
reactions of the Portland cement-based mortars at 
low  H2S levels. The unexpected existence of these 
components underlines both the complexity and the 
subtlety of biogenic sulfuric attacks on cementitious 
materials.

Remarkably, this study showed no real difference 
in the durability of the various cement-based paste 
samples used. The absence of any significant dif-
ferentiation in resistance to low  H2S concentrations 
suggests that there is no distinct hierarchy in the clas-
sification of pastes according to their degree of resist-
ance. It is noteworthy, however, that the CEM II sam-
ple revealed a slightly thicker deteriorated layer than 
the others, pointing to a nuanced aspect in the perfor-
mance of these cement pastes.

To conclude, the outcomes of this study are very 
consistent with the existing literature on studies at 
high concentrations of  H2S, highlighting the crucial 
importance of considering low  H2S levels when 
assessing the durability of cementitious matrices in 
wastewater systems. Moreover, this study highlights the 
importance of using very precise analytical techniques, 
such as micro-Raman and SEM–EDS, to thoroughly 
assess all the layers arising during the biodeterioration 
process.
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Appendix 1

See Figs. 8, 9, 10, 11, 12, 13 and  14  

Fig. 8  A Keyence figure of a CEM V sample showing holes 
drilled at successive distances from the edge
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Fig. 9  Example of punctual measurements sequencing in 
µ-Raman spectroscopy. The green dot signifies the initial laser 
acquisition point, while the multiple black dots illustrate the 
subsequent acquisitions

Fig. 10  Analysis of CEM 
I Mortar: a Cross section 
visualization with Keyence, 
b Back scatter image, and 
c EDS elemental analysis 
selection
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Fig. 11  Analysis of CEM II mortar: cross section visualiza-
tion with Keyence, SEM imaging, and EDS elemental analysis 
selection Fig. 12  Analysis of CEM III mortar: Cross section visualiza-

tion with Keyence, SEM imaging, and EDS elemental analysis 
selection
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Fig. 13  Analysis of CEM 
V mortar: Cross section 
visualization with Keyence, 
SEM imaging, and EDS 
elemental analysis selection
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