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GAGLIARDO-NIRENBERG INEQUALITIES IN FRACTIONAL

COULOMB-SOBOLEV SPACES FOR RADIAL FUNCTIONS

ARKA MALLICK AND HOAI-MINH NGUYEN

Abstract. We extend the range of parameters associated with the Gagliardo-Nirenberg interpola-
tion inequalities in the fractional Coulomb-Sobolev spaces for radial functions. We also study the
optimality of this newly extended range of parameters.
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1. Introduction

In this article we continue our study of Gagliardo-Nirenberg(GN) interpolation inequality in the
Coulomb-Sobolev spaces [18]. Developing the method in [23], we proved the following result in [18].

Theorem 1.1. ([18, Theorem 1.1]) Let d ≥ 1, γ > 1, 1 ≤ p, q < +∞, 0 ≤ s ≤ 1, α ∈ (0, d) and
0 ≤ β1, β2 < +∞ be such that

(1.1) β1p+ 2β2q = 1, (d− sp)β1 + (d+ α)β2 = d/γ,

and

(1.2) β1γ + β2γ ≥ 1.

There exists a constant C > 0 such that

(1.3) ‖g‖Lγ(Rd) ≤ C‖g‖
β1p

Ẇ s,p(Rd)

(ˆ
Rd

ˆ
Rd

|g(x)|q|g(y)|q

|x− y|d−α
dxdy

)β2
for all g ∈ C1

c (Rd).

1
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In Theorem 1.1 and in what follows, for any open set Ω ⊂ Rd, the following notation is used:

(1.4) ‖g‖Ẇ s,p(Ω) =



(ˆ
Ω

ˆ
Ω

|g(x)− g(y)|p

|x− y|d+sp
dxdy

) 1
p

for 0 < s < 1,(ˆ
Ω
|∇g(x)|p dx

)1/p

for s = 1,(ˆ
Ω
|g(x)|p dx

)1/p

for s = 0.

Condition (1.1) is due to the scaling invariance of (1.3) which automatically makes them optimal
whereas the optimality of condition (1.2) was proved in [18]. Set

(1.5) D = p(d+ α)− 2q(d− sp).
In the case D 6= 0, one can compute β1 and β2 as a function of d, α, p, q, s, γ by

(1.6) β1 =
γ(d+ α)− 2qd

γ
(
p(d+ α)− 2q(d− sp)

) and β2 =
pd− γ(d− sp)

γ
(
p(d+ α)− 2q(d− sp)

) .
Gagliardo-Nirenberg inequalities in different function spaces play a crucial role in the study of

non-linear PDEs. First instance of such an inequality appeared in works of Gagliardo and Nirenberg
[11, 26]. In the context of Coulomb-Sobolev spaces, which are relevant in Thomas–Fermi–Dirac–von
Weizsäcker models of density functional theory [4, 12, 13] or in Hartree–Fock theory [9, 14, 8], the
study of GN type inequalities was initiated by Lions [15, 16] in connection to the study of the
Hartree–Fock equation. In fact, Lions proved (1.3) for γ = 3, p = q = α = 2, d = 3 and s = 1.
Subsequently many extensions of (1.3) have been established. One was derived by Bellazzini, Frank,
Visciglia [1] where they proved (1.3) in the case p = 2, q = 2, and 0 < s < 1 (see also [17, (21)] for
the case p = q = 2, α = d − 2s). This was extended by Mercuri, Moroz, and Van Schaftingen [20]
to the case p = 2 and s = 1. Bellazzini, Ghimenti, Mercuri, Moroz, and Van Schaftingen [2] then
extended to the case p = 2 and 0 < s < 1.

A related context is the one of Caffarelli-Kohn-Nirenberg (CKN) inequalities. More precisely, let
d ≥ 1, 0 < s < 1, p ≥ 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1, and α1, α2, β, γ ∈ R. Set α̃ = α1 + α2 and define
σ by γ = aσ + (1− a)β. Assume that

1

τ
+
γ

d
= a

(
1

p
+
α̃− s
d

)
+ (1− a)

(
1

q
+
β

d

)
,(1.7)

and the following conditions hold

(1.8) 0 ≤ α̃− σ
and

(1.9) α̃− σ ≤ s if
1

τ
+
γ

d
=

1

p
+
α̃− s
d

.

Nguyen and Squassina [24] proved that if 1
τ + γ

d > 0, then there exists some positive constant C
such that

(1.10) ‖|x|γg‖Lτ (Rd)

≤ C
(ˆ

Rd

ˆ
Rd

|g(x)− g(y)|p|x|α1p|y|α2p

|x− y|d+sp
dxdy

)a
p
∥∥∥|x|βg∥∥∥1−a

Lq(Rd)
∀ g ∈ C1

c (Rd).

This extends the full range of parameters of the well-known CKN inequalities due to Caffarelli,
Kohn, and Nirenberg [7] (see also [6]) for s = 1 to the fractional Sobolev spaces (0 < s < 1).
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Concerning the radial case, the range of parameters are larger. Let C1
c,rad(Rd) denotes the space of

all radial, continuously differentiable and compactly supported functions defined in Rd with d ≥ 1.
We prove in [19] the following result.

Theorem 1.2. ([19, Theorem 1.1]) Let d ≥ 2 and assume (1.7), 1
τ + γ

d > 0, and

(1.11) − (d− 1)s ≤ α̃− σ < 0.

Then

(1.12) ‖|x|γg‖Lτ (Rd)

≤ C
(ˆ

Rd

ˆ
Rd

|g(x)− g(y)|p|x|α1p|y|α2p

|x− y|d+sp
dxdy

)a
p
∥∥∥|x|βg∥∥∥1−a

Lq(Rd)
, ∀ g ∈ C1

c,rad(Rd).

Remark 1.1. Related results of (1.10) and (1.12) in the case 1
τ + γ

d ≤ 0 are also studied in [24, 19].

In this article, we are in pursuit of an optimal version of the inequality (1.3) for radial functions
in the spirit of [19]. Recall that D is defined in (1.5). Here is the first result of the paper.

Theorem 1.3. Let d ≥ 2, 0 < s ≤ 1, 1 < γ < +∞, 1 ≤ p, q < +∞, 1 < α < d, 0 < β1, β2 < +∞
be such that (1.1) holds and D 6= 0. Assume that either

(1.13) β1γ +
d+ α− 2

d− 1
β2γ > 1

or

(1.14)

(
β1γ +

d+ α− 2

d− 1
β2γ = 1 and q(1− sp) = p

)
.

Then

(1.15) ‖g‖Lγ(Rd) ≤ C‖g‖
β1p

Ẇ s,p(Rd)

(ˆ
Rd

ˆ
Rd

|g(x)|q|g(y)|q

|x− y|d−α
dxdy

)β2
, for all g ∈ C1

c,rad(Rd).

Remark 1.2. Theorem 1.3 deals with the case 1 < α < d and extends Theorem 1.1 in this case
for radial functions under the assumption that D 6= 0. One cannot extend Theorem 1.1 for radial
functions in the case 0 < α ≤ 1 (see Theorem 1.5 below).

Remark 1.3. Condition (1.14) implicitly implies that sp < 1.

Our next result addresses the optimality of the range (1.13)-(1.14).

Theorem 1.4. Let d ≥ 2, 0 < s ≤ 1, 1 < γ < +∞, 1 ≤ p, q < +∞, 1 < α < d, 0 < β1, β2 < +∞
be such that (1.1) holds and D 6= 0. Assume that either

(1.16) β1γ +
d+ α− 2

d− 1
β2γ < 1

or

(1.17)

(
β1γ +

d+ α− 2

d− 1
β2γ = 1 and q(1− sp) 6= p

)
.

Then (1.15) does not hold.

We also obtain the following result which is on the optimality of (1.2) when 0 < α ≤ 1.
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Theorem 1.5. Let d ≥ 2, 0 < s ≤ 1, 1 < γ < +∞, 1 ≤ p, q < +∞, 0 < α ≤ 1, 0 < β1, β2 < +∞
be such that (1.1) holds and D 6= 0. Assume that

(1.18) β1γ + β2γ < 1.

Then (1.15) fails to hold.

Remark 1.4. Theorem 1.5 confirms the optimality of (1.2) even for radial functions.

Various special cases of Theorem 1.3 are known in the literature where the assumptions were
written in a quite involved manner and only for the case p = 2. More precisely, when p = 2,
the conclusion of Theorem 1.3 was proved under the following assumption on γ instead of the
assumption (1.13)-(1.14)

q +
(q(2s− 1) + 2) (d− α)

2s(d+ α− 2) + (d− α)
< γ <∞, if s ≥ d

2 ,

γ ∈

(
q +

(q(2s− 1) + 2) (d− α)

2s(d+ α− 2) + (d− α)
,

2d

d− 2s

]
, if s < d

2 and 1
q >

d−2s
d+α ,

γ ∈

[
2d

d− 2s
, q +

(q(2s− 1) + 2) (d− α)

2s(d+ α− 2) + (d− α)

)
, if s < d

2 and 1
q <

d−2s
d+α and 1

q 6=
1−2s

2 ,

2d

d− 2s
≤ γ ≤ q, if s < 1

2 and 1
q = 1−2s

2 .

(1.19)

It can be shown, with the help of Proposition 2.1 in Section 2, that (1.13)-(1.14) is equivalent to
(1.19) when p = 2. Our results are new even in the case s = 1 and p 6= 2, to our knowledge, and
as it is evident from (1.19), the assumptions given in this paper have a simple form than known
ones. Concerning known results, Ruiz [27] established the result for the case s = 1, d = 3, α = 2,
and p = q = 2. When d ≥ 2, Mercuri, Moroz, and Van Schaftingen [20] obtained the result in the
case 1 < α < d, q ≥ 1, p = 2, and s = 1. The result was later established to the case 1/2 < s < 1,
for d = 3 with the same ranges of α, q, and p by Bellazzini, Ghimenti and Ozawa [3]. Finally,
Bellazzini, Ghimenti, Mercuri, Moroz, Van Schaftingen obtained Theorem 1.3 in the case p = 2.
The optimality discussed in Theorem 1.4 and Theorem 1.5 is known in the case p = 2, a result due
to Bellazzini, Ghimenti, Mercuri, Moroz, and Van Schaftingen [2].

We next briefly describe the ideas of the proof of Theorem 1.3. The idea is to derive useful
consequences of the radial improvements of the CKN inequalities Theorem 1.2 and a point wise
estimate of radial functions related to Strauss’ lemma. These results are given in Section 2.1. We
then apply these results to some suitable approximation γε of γ and then interpolation inequalities
are involved. At some point, we also use an estimate of the Coulomb energy due to Ruiz [27] (see
Lemma 2.5).

The paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.3 and consists of
two subsections. In the first one, we derive various versions of CKN inequalities for radial functions
which will be useful in the proof of Theorem 1.3. The proof of Theorem 1.3 is given in the second
one. In Section 3, we discuss the optimality of the parameters. Theorem 1.4 and Theorem 1.5 are
established there.

2. The Coulomb-Sobolev inequality for radial functions

This section consists of two subsections and is devoted to prove Theorem 1.3.
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2.1. Preliminaries. In this section, we establish various results used in the proof of Theorem 1.3.
Recall that D is defined in (1.5). The following first result is a consequence of Theorem 1.2 and is
the main ingredient for the proof of Theorem 1.3.

Lemma 2.1. Let d ≥ 2, 0 < s ≤ 1, 1 ≤ p, q < ∞, and 0 < α < d. There exists a constant C > 0
such that the following two assertions hold.

(i) If D > 0, then for all ε > 0 small enough such that D−2εp = p(d+α−2ε)−2q(d− sp) > 0,
it holds

||g||Lγε (Rd) ≤ C ||g||
aε
Ẇ s,p(Rd)

∣∣∣∣∣∣|x|−( d−α
2q

+ ε
q

)
g
∣∣∣∣∣∣1−aε
Lq(Rd)

, ∀g ∈ C1
c,rad(Rd),(2.1)

where γε and aε are defined by

γε = q +

(
q(sp− 1) + p

)
(d− α+ 2ε)

sp(d+ α− 2ε− 2) + (d− α+ 2ε)
and aε =

p
(
γε(d+ α− 2ε)− 2qd

)
γε
(
p(d+ α− 2ε)− 2q(d− sp)

) ,(2.2)

(ii) and if D < 0 then for all ε > 0 small enough such that D+2εp = p(d+α+2ε)−2q(d−sp) < 0,
it holds

||g||Lγε (Rd) ≤ C ||g||
aε
Ẇ s,p(Rd)

∣∣∣∣∣∣|x|−( d−α
2q
− ε
q

)
g
∣∣∣∣∣∣1−aε
Lq(Rd)

, ∀g ∈ C1
c,rad(Rd),(2.3)

where γε and aε are defined by

γε = q +

(
q(sp− 1) + p

)
(d− α− 2ε)

sp(d+ α+ 2ε− 2) + (d− α− 2ε)
and aε =

p
(
γε(d+ α+ 2ε)− 2qd

)
γε
(
p(d+ α+ 2ε)− 2q(d− sp)

) .(2.4)

Remark 2.1. The signs in front of 2ε of the corresponding terms in (2.2) and (2.4) are opposite.

Proof. We only prove the assertion (i). Assertion (ii) follows similarly.
We have, by (2.2),

γε −
2qd

d+ α− 2ε
= q +

(
q(sp− 1) + p

)
(d− α+ 2ε)

sp(d+ α− 2ε− 2) + (d− α+ 2ε)
− 2qd

d+ α− 2ε

=

(
qsp− q + p

)
(d− α+ 2ε)

sp(d+ α− 2ε− 2) + (d− α+ 2ε)
− q(d− α+ 2ε)

d+ α− 2ε
.

This implies

(2.5) γε −
2qd

d+ α− 2ε
=

(
p(d+ α− 2ε)− 2q(d− sp)

)
(d− α+ 2ε)

(d+ α− 2ε)
(
sp(d+ α− 2ε− 2) + (d− α+ 2ε)

) > 0,

by the smallness of ε.
Using the definition of aε in (2.2), we derive from (2.5) and the smallness of ε that

(2.6) aε > 0.

We have, by (2.2),

(2.7) 1− aε = 1−
p
(
γε(d+ α+ 2ε)− 2qd

)
γε
(
p(d+ α+ 2ε)− 2q(d− sp)

) =
2q
(
dp− γε(d− sp)

)
γε
(
p(d+ α− 2ε)− 2q(d− sp)

) ,
which yields

aε < 1 if sp ≥ d.
We next deal with the case sp < d. From (2.2), we derive that

(2.8) γε =
2qsp(d− 1) + p(d− α+ 2ε)

sp(d+ α− 2ε− 2) + (d− α+ 2ε)
.



6 A. MALLICK AND H.-M. NGUYEN

Using (2.8), we obtain

dp

d− sp
− γε =

dsp2(d+ α− 2ε− 2) + dp(d− α+ 2ε)

(d− sp)
(
sp(d+ α− 2ε− 2) + (d− α+ 2ε)

)
− 2qsp(d− 1)(d− sp) + p(d− sp)(d− α+ 2ε)

(d− sp)
(
sp(d+ α− 2ε− 2) + (d− α+ 2ε)

)
=
dsp2(d+ α− 2ε− 2) + sp2(d− α+ 2ε)− 2qsp(d− 1)(d− sp)

(d− sp)
(
sp(d+ α− 2ε− 2) + (d− α+ 2ε)

)
=
sp2(d− 1)(d+ α− 2ε− 2) + 2sp2(d− 1)− 2qsp(d− 1)(d− sp)

(d− sp)
(
sp(d+ α− 2ε− 2) + (d− α+ 2ε)

)
=
sp(d− 1) (p(d+ α− 2ε− 2) + 2p− 2q(d− sp))

(d− sp)(sp(d+ α− 2ε− 2) + (d− α+ 2ε))
,

which yields, for sp < d,

dp

d− sp
− γε =

sp(d− 1)
(
p(d+ α− 2ε)− 2q(d− sp)

)
(d− sp)

(
sp(d+ α− 2ε− 2) + (d− α+ 2ε)

) > 0,(2.9)

by the smallness of ε, which implies, by (2.2), that

aε < 1.

We thus established
0 < aε < 1.

In light of (1.12) under the assumptions (1.7) and (1.11), it suffices to verify these conditions for
the following parameters (s, p, q, τ, γ, a, α1, α2, β) = (s, p, q, γε, 0, aε, 0, 0,−d−α+2ε

2q ). One can check

that

(2.10) α̃ = α1 + α2 = 0

and

(2.11) σ =
1

a

(
γ − (1− a)β

)
=

1− aε
aε

d− α+ 2ε

2q
.

From (2.2) and (2.7), we deduce that

d− sp
d

γεaε
p

+
d+ α− 2ε

d

γε(1− aε)
2q

=
(d− sp)

(
γε(d+ α− 2ε)− 2qd

)
+ (d+ α− 2ε)

(
dp− γε(d− sp)

)
d
(
p(d+ α− 2ε)− 2q(d− sp)

) = 1.

This implies
1

γε
=
aε(d− sp)

dp
+

(1− aε)(d+ α− 2ε)

2dq

and thus (1.7) holds.
We have

(2.12) α̃− σ (2.10),(2.11)
= −1− aε

aε

d− α+ 2ε

2q

(2.2),(2.7)
= −

(
dp− γε(d− sp)

)
(d− α+ 2ε)

p
(
γε(d+ α− 2ε)− 2qd

) .

Plugging (2.5) and (2.9) in (2.12), we get

α̃− σ = −(d− 1)s.

Therefore, (1.11) is satisfied.
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Thus, the assumptions (1.7) and (1.11) are checked. The proof is complete. �

Here is another consequence of the CKN inequalities (1.12) for radial functions, which is used in
the proof of Theorem 1.3.

Lemma 2.2. Let d ≥ 2, 1 ≤ p <∞ , 0 < s ≤ 1 be such that sp < d, and β ∈ R. Assume that

(a) 1
r = 1

p + β−s
d ,

(b) −(d− 1)s ≤ β ≤ s.
There exists a positive constant C such that∥∥∥|x|−βg∥∥∥

Lr(Rd)
≤ C‖g‖Ẇ s,p(Rd), for all g ∈ C1

c,rad(Rd).(2.13)

Proof. First of all notice that, since β ≤ s we must have r ≥ p. In light of (1.12) under the
assumptions (1.7), (1.11), and (1.9), it suffices to verify these conditions for the following parameters
(a, s, p, τ, γ, α1, α2) = (1, s, p, r,−β, 0, 0). We compute α̃ = α1 + α2 = 0 and σ = −β. Note that by

the assumption (a) we have 1
τ + γ

d = d−sp
dp > 0. So, (1.7) is satisfied. On the other hand, (1.11) and

(1.9) are consequences of the assumptions (b). We thus have the desired inequality. �

Remark 2.2. Particular versions of (2.13) can be found in [29] (see also of [2, Theorem 4.3] and
the discussion afterwards for more references).

As a consequence of (2.13), we obtain the following useful estimate.

Lemma 2.3. Let d ≥ 2, 1 ≤ p < ∞, and 0 < s ≤ 1 be such that sp ≤ 1. Assume that
1
p − s ≤

1
γ ≤

1
p −

s
d . Then there exists a positive constant C such that for any R > 0, we have(ˆ
|x|>R

|g(x)|γdx

) 1
γ

≤ CR
d
γ
−( d

p
−s)‖g‖Ẇ s,p(Rd), for all g ∈ C1

c,rad(Rd).(2.14)

Proof. Inequality (2.14) is a consequence of (2.13) with r = γ and β = d
γ −

(
d
p − s

)
after noting

that β ≤ 0 by the assumptions. �

We next present a point wise estimate of radial functions related to Strauss’ lemma.

Lemma 2.4. Let 0 < s ≤ 1, 1 ≤ p < ∞ and d′ > 0 be such that 1 < sp < d′ and assume that
Λ > 1. Then there exist a constant C = C(d′, s, p,Λ) > 0 such that if 0 < s < 1, then for any
g ∈W s,p(R) it holds

|g(x)| ≤ C

|x|
d′−sp
p

(ˆ
R

ˆ
R

|g(r)− g(ρ)|p|r|d′−1

|r − ρ|1+sp
χΛ(|r|, |ρ|)drdρ

) 1
p

, ∀x 6= 0,(2.15)

where, for r1, r2 ≥ 0, we denote

(2.16) χΛ(r1, r2) =

{
1 for Λ−1r1 ≤ r2 ≤ Λr1,

0 otherwise,

and if s = 1, then for any g ∈W 1,p(R) it holds

|g(x)| ≤ C

|x|
d′−p
p

(ˆ
R

∣∣g′(r)∣∣p |r|d′−1dr

) 1
p

, ∀x 6= 0.(2.17)
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Proof. First we consider 0 < s < 1. Since 1 < sp, g is Hölder continuous by [22, Theorem 8.1] .
Without loss of generality, we can assume that g has compact support and supp g ⊂ (−2m, 2m) for
some m ∈ N. Since, (2.15) is invariant under scaler multiplication, so we could assume that(ˆ

R

ˆ
R

|g(r)− g(ρ)|p|r|d′−1

|r − ρ|1+sp
χΛ(|r|, |ρ|)drdρ

) 1
p

= 1.(2.18)

Using a scaling argument, it suffices to prove (2.15) for x = 1.
By the embedding for the fractional Sobolev spaces, see e.g., [22, estimates 8.4 and 8.8], we have

|g(1)− g(2)| ≤ C

(ˆ
1
2
≤|r|≤4

ˆ
1
2
≤|ρ|≤4

|g(r)− g(ρ)|p

|r − ρ|1+sp
χΛ(|r|, |ρ|)drdρ

) 1
p

≤ C

(ˆ
1
2
<|r|<4

ˆ
1
2
<|ρ|<4

|g(r)− g(ρ)|p|r|d′−1

|r − ρ|1+sp
χΛ(|r|, |ρ|)drdρ

) 1
p

.(2.19)

Here and in what follows, C > 0 is a constant depends on s, d′, p and Λ. Let λ > 0 and denote
gλ(x) := g(λx). Applying (2.19) to gλ, we obtain

|g(λ)− g(2λ)| ≤ C

λ
d′−sp
p

(ˆ
λ
2
<|r|<4λ

ˆ
λ
2
<|ρ|<4λ

|g(r)− g(ρ)|p|r|d′−1

|r − ρ|1+sp
χΛ(|r|, |ρ|)drdρ

) 1
p

.(2.20)

Using the fact

|g(1)| = |g(1)− g(2m)| ≤
m∑
k=1

∣∣∣g(2k−1)− g(2k)
∣∣∣ ,

we derive from (2.20) that

(2.21) |g(1)| ≤ C
m∑
k=1

(
1

2
k−1
p

)d′−sp

×

(ˆ
2k−2≤|r|≤2k+1

ˆ
2k−2≤|ρ|≤2k+1

|g(r)− g(ρ)|p|r|d′−1

|r − ρ|1+sp
χΛ(|r|, |ρ|)drdρ

) 1
p

.

Since sp < d′, so
∑

k≥1 2
− (k−1)(d′−sp)

p <∞, using (2.18) in (2.21) we establish (2.15). This completes
the proof in the case 0 < s < 1. The proof in the case s = 1 follows similarly. The details are
omitted. �

As a consequence of Lemma 2.4, we obtain the following result.

Corollary 2.1. Let 0 < s ≤ 1, 1 ≤ p <∞ and d ≥ 2 be such that 1 < sp < d. Then there exists a
constant C > 0 depending on s, p and d, such that for any g ∈ C1

c,rad(Rd) we have

|g(x)| ≤ C

|x|
d−sp
p

‖g‖Ẇ s,p(Rd), ∀x ∈ Rd \ {0} .(2.22)

Proof. Corollary 2.1 is a direct consequence of Lemma 2.4 and [19, Lemma 3.1]. �

Remark 2.3. The inequality (2.22) is an extension of the radial lemma of Strauss [28] to the
fractional Sobolev spaces. This type of inequalities has been derived previously in [21, Theorem
3.1] and [10] for p = 2 and the known proofs are limited to the case p = 2.
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2.2. Proof of Theorem 1.3. We start by proving the following proposition which allow us to
divide the proof of Theorem 1.3 into three different sub cases.

Proposition 2.1. Let d ≥ 2, 0 < s ≤ 1, 1 ≤ γ, p, q < +∞, 1 < α < d, and 0 ≤ β1, β2 < +∞, and
assume (1.1) and (d+ α)p− 2q(d− sp) 6= 0. Set

(2.23) γrad := q +
(q(sp− 1) + p) (d− α)

sp(d+ α− 2) + (d− α)
=

2qsp(d− 1) + p(d− α)

sp(d+ α− 2) + (d− α)
.

Then (1.13) is equivalent to the following:
γrad < γ ≤ pd

d− sp
, if D > 0 and sp < d,

γrad < γ <∞, if sp ≥ d,
pd

d− sp
≤ γ < γrad, if D < 0,

(2.24)

and (1.14) is equivalent to the fact

(2.25) γ = γrad and q =
p

1− sp
.

Proof. We have, by (1.6),

β1γ +
β2γ(d+ α− 2)

d− 1
− 1 =

(
γ(d+ α)− 2qd

)
γ

γ
(
p(d+ α)− 2q(d− sp)

) +

(
pd− γ(d− sp)

)
γ(d+ α− 2)

(d− 1)γ
(
p(d+ α)− 2q(d− sp)

) − 1

=
(d− 1)

(
γ(d+ α)− 2qd

)
+
(
pd− γ(d− sp)

)
(d+ α− 2)

(d− 1)
(
p(d+ α)− 2q(d− sp)

)
−

(d− 1)
(
p(d+ α)− 2q(d− sp)

)
(d− 1)

(
p(d+ α)− 2q(d− sp)

) .
Simplifying the expression after noting (d− 1)(d+ α)− d(d+ α− 2) = d− α, we obtain

β1γ +
β2γ(d+ α− 2)

d− 1
− 1 =

γ
(
sp(d+ α− 2) + (d− α)

)
−
(
2qsp(d− 1) + p(d− α)

)
(d− 1)

(
p(d+ α)− 2q(d− sp)

) ,(2.26)

which yields, by (2.23),

(2.27) β1γ +
β2γ(d+ α− 2)

d− 1
− 1 =

sp(d+ α− 2) + (d− α)

(d− 1)

(γ − γrad)(
p(d+ α)− 2q(d− sp)

) .
On the other hand, since β1, β2 ≥ 0, γ > 0, d + α − 2 > 0, we derive from (1.6) that the fact

β1, β2 ≥ 0 is equivalent to the one that

(2.28)
2qd

d+ α
≤ γ ≤ pd

d− sp
if p(d+ α)− 2q(d− sp) > 0 and d− sp > 0,

(2.29)
2qd

d+ α
≤ γ < +∞ if p(d+ α)− 2q(d− sp) > 0 and d− sp ≤ 0,

and

(2.30)
pd

d− sp
≤ γ ≤ 2qd

d+ α
if p(d+ α)− 2q(d− sp) < 0 and d− sp > 0.

(Note that the case p(d+ α)− 2q(d− sp) < 0 and d− sp ≤ 0 does not occur.)
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We next claim that

(2.31) γrad −
2qd

d+ α
=

(d− α)

(d+ α)(sp(d+ α− 2) + (d− α))

(
p(d+ α)− 2q(d− sp)

)
.

Indeed, we have, by (2.23),

γrad −
2qd

d+ α
= q +

(
q(sp− 1) + p

)
(d− α)

sp(d+ α− 2) + (d− α)
− 2qd

d+ α

=

(
q(sp− 1) + p

)
(d− α)

sp(d+ α− 2) + (d− α)
− q(d− α)

d+ α

=
(d− α)

(
qsp(d+ α) + (p− q)(d+ α)− qsp(d+ α− 2)− q(d− α)

)
(d+ α)

(
sp(d+ α− 2) + (d− α)

) ,

which yields claim (2.31).
In the case

β1γ +
β2γ(d+ α− 2)

d− 1
> 1,

using from (2.27)-(2.31), we have the following three situations:

• if D > 0 and sp < d, then

γrad < γ ≤ pd

d− sp
• if D > 0 and sp ≥ d (this is equivalent to the fact sp ≥ d), then

γrad < γ < +∞.
• if D < 0 and sp < d (this is equivalent to the fact D < 0), then

pd

d− sp
≤ γ < γrad.

In the case

β1γ +
β2γ(d+ α− 2)

d− 1
= 1 and q =

p

1− sp
we have

γ = γrad.

The conclusion follows. The proof is complete. �

Depending on the range where γ belongs, we intend to employ different techniques to prove
Theorem 1.3. Using Proposition 2.1, we divide the range of γ into three main sub-ranges.

γrad < γ ≤ pd

d− sp
, if D > 0 and sp < d,

γrad < γ <∞, if sp ≥ d.
(Range A)

pd

d− sp
≤ γ < γrad, if D < 0.(Range B)

γ = γrad and q =
p

1− sp
.(Range C)

We next recall the following result from [18].
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Lemma 2.2. ([18, Lemma 2.5]) Let d ≥ 2, 0 ≤ s ≤ 1, 1 ≤ γ, p, q < ∞, 0 < α < d, and
0 ≤ β1, β2 < +∞. Set

(2.32) γcs :=
p(α+ 2qs)

α+ sp
.

and assume that (1.1) holds and (d+ α)p− 2q(d− sp) 6= 0. Then (1.2) is equivalent to the fact
γcs ≤ γ ≤

pd

d− sp
if D > 0 and sp < d,

γcs ≤ γ <∞ if sp ≥ d,
pd

d− sp
≤ γ ≤ γcs if D < 0.

(2.33)

Remark 2.1. Let d ≥ 2, 0 < s ≤ 1, 1 < γ < +∞, 1 ≤ p, q < +∞, 1 < α < d, 0 < β1, β2 < +∞
be such that (1.1) and D 6= 0 hold. One can check that

(2.34) γcs satisfies (1.1) and β1γcs + β2γcs = 1

(see, e.g., the proof of [18, Lemma 2.5]). Using (2.34), we obtain

(2.35) β1γcs +
β2γcs(d+ α− 2)

d− 1
− 1 =

β2γcs(α− 1)

d− 1
.

Considering (2.27) with γ = γcs and using the above identity, we obtain

(2.36)
β2γcs(α− 1)

d− 1
=

sp(d+ α− 2) + (d− α)

(d− 1) (p(d+ α)− 2q(d− sp))
(γcs − γrad) .

Since 1 < α < d and β2 > 0, it follows from (2.36) that

(2.37) γrad < γcs if D > 0

and

(2.38) γcs < γrad if D < 0.

Applying Theorem 1.1 and using Lemma 2.2, we deduce that (1.3) holds if γ satisfies (2.33). Con-
sequently, (1.15) holds if γ satisfies (2.33). Using this fact, we only need to prove Theorem 1.3 for
γrad < γ < γcs, when γ varies in Range A and for γcs < γ < γrad when γ varies in Range B.

2.2.1. Proof of Theorem 1.3 when γ varies in the Range A. As mentioned in Remark 2.1, one only
needs to establish (1.15) for

γrad < γ < γcs,

which is assumed from later on in this part.
Let ε > 0 be small enough so that p(d+ α− 2ε)− 2q(d− sp) > 0. This can be done since D > 0.

Set

γε := q +

(
q(sp− 1) + p

)
(d− α+ 2ε)

sp(d+ α− 2ε− 2) + (d− α+ 2ε)
.

We claim that (1.15) holds for γ = γε for ε sufficiently small.
We first admit this claim and continue the proof. We have, by (2.23),

γε − γrad =
(q(sp− 1) + p)(d− α+ 2ε)

sp(d+ α− 2ε− 2) + (d− α+ 2ε)
− (q(sp− 1) + p) (d− α)

sp(d+ α− 2) + (d− α)

=
4εsp(d− 1)

(
p+ q(sp− 1)

)(
sp(d+ α− 2ε− 2) + (d− α+ 2ε)

)(
sp(d+ α− 2) + (d− α)

) .(2.39)
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We first claim that

(2.40) p+ (sp− 1)q > 0.

Indeed, (2.40) is clear for sp ≥ 1. We now establish (2.40) for sp < 1. Since D = p(d+ α)− 2q(d−
sp) > 0, we obtain using α < d

q <
p(d+ α)

2(d− sp)
<

dp

d− sp
.(2.41)

We have
p

1− sp
− dp

d− sp
=
p (d− sp− d+ dsp)

(1− sp)(d− sp)
=

sp2(d− 1)

(1− sp)(d− sp)
.

Claim (2.40) then follows in the case sp < 1.
Thus (2.39) implies γε → γrad+ as ε → 0+. Since (1.15) holds for γ = γcs by (2.34) and

Theorem 1.1, using interpolation (Hölder’s inequalities), we derive from the claim that (1.15) holds
for γrad < γ < γcs.

It hence remains to show that (1.15) holds for γ = γε for ε sufficiently small. Let g ∈ C1
c,rad(Rd).

Since p(d+ α)− 2q(d− sp) 6= 0 and (1.15) is invariant under scaling, without loss of generality, we
can assume that ˆ

Rd

ˆ
Rd

|g(x)− g(y)|p

|x− y|d+sp
dxdy = 1 =

ˆ
Rd

ˆ
Rd

|g(x)|q|g(y)|q

|x− y|d−α
dxdy.(2.42)

By (2.1) in Lemma 2.1, it suffices to prove thatˆ
Rd

|g(x)|qdx
|x|

d−α
2

+ε
≤ C,(2.43)

for some constant C > 0 independent of g. Because of (2.47) with R = 1 in the Lemma 2.5 below,
we only need to show that

(2.44)

ˆ
|x|<1

|g(x)|qdx
|x|

d−α
2

+ε
< C,

for some constant C > 0 independent of g.
Since p+ (sp− 1)q > 0 by (2.40), we derive from (2.23) that

q < γrad.

This implies, by (2.37), that

q < γcs.

Since (1.15) holds for γ = γcs by (2.34) and Theorem 1.1, it follows from (2.42) that

(2.45)

ˆ
|x|<1

|g(x)|γcs dx ≤ C.

Applying Hölder’s inequality, we derive that

(2.46)

ˆ
|x|<1

|g(x)|qdx
|x|

d−α
2

+ε
≤

(ˆ
|x|<1

|g(x)|γcs dx

) q
γcs
(ˆ
|x|<1

dx

|x|
γcs
γcs−q (

d−α
2

+ε)

) γcs−q
γcs

(2.45)

≤ C

(ˆ
|x|<1

dx

|x|
γcs
γcs−q (

d−α
2

+ε)

) γcs−q
γcs

.
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Since

d− γcs
γcs − q

(
d− α

2
+ ε

)
=

1

γcs − q

[
α
(
p(d+ α)− 2q(d− sp)

)
2(α+ sp)

− γcsε

]
> 0,

for ε > 0 small enough, assertion (2.44) follows for ε sufficiently small. The proof is complete. �

The following result due to Ruiz [27] is used in the proof.

Lemma 2.5. ([27, Theorem 1.1]) Let d ∈ N, 0 < α < d, 1 ≤ q < ∞. Then for every ε > 0 and

R > 0 there exists C = C(d, α, q, ε) > 0 such that for all u ∈ L
2dq
d+α (Rd) we have,

ˆ
|x|>R

|u(x)|q

|x|
d−α
2

+ε
dx ≤ C

Rε

(ˆ
Rd

ˆ
Rd

|u(x)|q|u(y)|q

|x− y|d−α
dxdy

) 1
2

and(2.47)

ˆ
|x|<R

|u(x)|q

|x|
d−α
2
−ε
dx ≤ CRε

(ˆ
Rd

ˆ
Rd

|u(x)|q|u(y)|q

|x− y|d−α
dxdy

) 1
2

.(2.48)

2.2.2. Proof of Theorem 1.3 when γ varies in the Range B. As mentioned in Remark 2.1, it suffices
to prove (1.15) for

γcs < γ < γrad,

which will be assumed from later on in this part.
Let g ∈ C1

c,rad(Rd). Since p(d+α)− 2q(d− sp) 6= 0 and (1.15) is invariant under scaling, without
loss of generality we can assume thatˆ

Rd

ˆ
Rd

|g(x)− g(y)|p

|x− y|d+sp
dxdy = 1 =

ˆ
Rd

ˆ
Rd

|g(x)|q|g(y)|q

|x− y|d−α
dxdy.(2.49)

We now consider three cases separately:

• Case 1: 1 < sp < d.
• Case 2: sp ≤ 1 and q(sp− 1) + p > 0.
• Case 3: sp ≤ 1 and q(sp− 1) + p ≤ 0.

We now proceed the proof.

• Case 1: 1 < sp < d. Set, for ε sufficiently small,

γε = q +
(q(sp− 1) + p)(d− α− 2ε)

sp(d+ α+ 2ε− 2) + (d− α− 2ε)
.

We claim that (1.15) holds for γ = γε for ε sufficiently small.
We first admit this claim and continue the proof. We have, by (2.23),

γε − γrad =
(q(sp− 1) + p)(d− α− 2ε)

sp(d+ α+ 2ε− 2) + (d− α− 2ε)
− (q(sp− 1) + p)(d− α)

sp(d+ α− 2) + (d− α)

= −
4εsp(d− 1)

(
p+ q(sp− 1)

)
(sp(d+ α+ 2ε− 2) + (d− α− 2ε)) (sp(d+ α− 2) + (d− α))

.(2.50)

It follows that γε → γrad− and ε → 0+ since sp > 1. Now, since (1.15) holds with γ = γcs by
(2.34), by interpolation, it suffices to prove the claim.

Next, we establish the claim. Applying (2.3) in Lemma 2.1, it suffices to show thatˆ
Rd

|g(x)|q

|x|
d−α
2
−ε
dx ≤ C,(2.51)
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for some constant C > 0 independent of g and for ε > 0 small enough. Using (2.48) in Lemma 2.5,
one only needs to prove ˆ

|x|>1

|g(x)|q

|x|
d−α
2
−ε
dx ≤ C.(2.52)

We have, by (2.23),

q < γrad.

If γcs < q < γrad, using (2.22) and (2.49), we obtainˆ
|x|>1

|g(x)|q

|x|
d−α
2
−ε
dx ≤ C

ˆ
|x|>1

dx

|x|(
d−α
2
−ε)+

q(d−sp)
p

≤ C,

for ε sufficiently small since, by D < 0,

d− α
2

+
q(d− sp)

p
> d.

If q = γcs, then applying (1.15) with γ = γcs by (2.34), and using (2.49), we haveˆ
|x|>1

|g(x)|q

|x|
d−α
2
−ε
dx ≤

ˆ
|x|>1

|g(x)|γcsdx ≤ C.

If q < γcs < γrad, applying (1.15) with γ = γcs by (2.34), and using (2.49), we have

(2.53)

ˆ
|x|>1

|g(x)|q

|x|
d−α
2
−ε
dx ≤

(ˆ
|x|>1

|g(x)|γcs dx

) q
γcs
(ˆ
|x|>1

dx

|x|
γcs
γcs−q (

d−α
2
−ε)

) γcs−q
γcs

≤ C

(ˆ
|x|>1

dx

|x|
γcs
γcs−q (

d−α
2
−ε)

) γcs−q
γcs

.

Since D = p(d+ α)− 2q(d− sp) < 0, it follows that

d− γcs
γcs − q

(
d− α

2
− ε
)

=
1

γcs − q

[
α (p(d+ α)− 2q(d− sp))

2(α+ sp)
+ γcsε

]
< 0,

for ε > 0 small enough. It follows from (2.53) that

(2.54)

ˆ
|x|>1

|g(x)|qdx
|x|

d−α
2
−ε
≤ C.

The proof is complete in this case.

• Case 2: sp ≤ 1 and p+ q(sp− 1) > 0. Set

γ = γε = q +

(
q(sp− 1) + p

)
(d− α− 2ε)

sp(d+ α+ 2ε− 2) + (d− α− 2ε)
,

for ε sufficiently small.
From (2.23), we derive that γε → γrad− as ε → 0+ (see for e.g (2.50)). Since (1.15) holds with

γ = γcs by (2.34), by interpolation, it suffices to prove Theorem 1.3 for γε with ε sufficiently small.
Applying (2.3), we only need to establishˆ

Rd

|g(x)|q

|x|
d−α
2
−ε
dx ≤ C,(2.55)
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for some constant C > 0 independent of g and for ε > 0 small enough. Applying (2.48) in Lemma 2.5,
we only need to show ˆ

|x|>1

|g(x)|q

|x|
d−α
2
−ε
dx ≤ C.(2.56)

If q < dp
d−sp , then q < γcs given by (2.32) since D < 0 and sp < d. Similar to (2.54), we obtain

(2.56). If dp
d−sp ≤ q then it follows, since p+ q(sp− 1) > 0, that

1

p
− s < 1

q
≤ 1

p
− s

d
.

Applying Lemma 2.3 with γ = q and R = 1, we have

(2.57)

ˆ
|x|>1

|g(x)|q dx ≤ C.

Assertion (2.56) now follows from (2.57) by noting that 1

|x|
d−α
2 −ε

≤ 1 for |x| > 1.

The proof of (2.56) is complete.
• Case 3: sp ≤ 1 and p+ q(sp− 1) ≤ 0. Since, p ≥ 1, so we must have sp < 1 in this case.
We first consider the case p+ q(sp− 1) = 0. Then γrad = q by (2.23). Applying Lemma 2.3 and

using (2.49), we have ˆ
|x|>1

|g|q ≤ C.(2.58)

On the other hand, by (2.49),

(2.59)

ˆ
|x|<1

|g|qdx ≤ C.

From (2.58) and (2.59), we obtain ˆ
Rd
|g(x)|q dx ≤ C.

Since (1.15) holds with γ = γcs by (2.34), by interpolation, the conclusion holds for γcs < γ <
γrad = q.

We next deal with the case p+ q(sp− 1) < 0. Set

(2.60) γε = q +

(
q(sp− 1) + p

)
(d− α+ 2ε)

sp(d+ α− 2ε− 2) + (d− α+ 2ε)
,

for ε sufficiently small. Since p+ q(sp− 1) < 0, it follows from (2.39) that γε → γrad− as ε→ 0+.
Since (1.15) holds with γ = γcs by (2.34), by interpolation, it suffices to prove Theorem 1.3 for γε,
i.e., to prove ˆ

Rd
|g(x)|γε dx < C,

for ε sufficiently small.
We have, by (2.49), ˆ

|x|<1
|g(x)|q dx ≤ C.

Since γε < γrad ≤ q thanks to the fact p+ q(sp− 1) ≤ 0, it follows from Hölder’s inequality thatˆ
|x|<1

|g(x)|γε dx ≤ C.
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It remains to prove that ˆ
|x|>1

|g(x)|γε dx ≤ C.

Set

(2.61) r =
p

1− sp
.

We have, by (2.23),

γrad − r = q +

(
q(sp− 1) + p

)
(d− α)

sp(d+ α− 2) + (d− α)
− p

1− sp

=
(
q(sp− 1) + p

)( d− α
sp(d+ α− 2) + (d− α)

− 1

1− sp

)
= − 2(q(sp− 1) + p)sp(d− 1)(

sp(d+ α− 2) + (d− α)
)
(1− sp)

.

Since p+ q(sp− 1) < 0, it follows that

(2.62) r < γrad

(2.23)
< q.

For ε > 0 sufficiently small, set

(2.63) η = ηε :=
d− α

2
+ ε

and let θ = θε ∈ (0, 1) be such that
θ

r
+

1− θ
q

=
1

γε
(the existence of θ follows from (2.62)). One has

(2.64) θ =
q − γε
q − r

r

γε
and 1− θ =

(γε − r)q
(q − r)γε

.

We have, by Hölder’s inequality,

(2.65)

ˆ
|x|>1

|g(x)|γε dx =

ˆ
|x|>1

(
|g(x)|θγε |x|

ηγε(1−θ)
q

)|g(x)|(1−θ)γε 1

|x|
ηγε(1−θ)

q

 dx

≤

(ˆ
|x|>1

|g(x)|r|x|
rη(1−θ)
θq dx

) γεθ
r
(ˆ
|x|>1

|g|q

|x|η
dx

) (1−θ)γε
q

,

which yields, by (2.63), (2.47), and (2.49)

(2.66)

ˆ
|x|>1

|g(x)|γε dx ≤ C

(ˆ
|x|>1

|g(x)|r|x|
rη(1−θ)
θq dx

) γεθ
r

= C

(ˆ
|x|>1

|g|r|x|−rβdx

) γεθε
r

,

by (2.64), where

(2.67) β = βε := −(γε − r)η
(q − γε)r

We claim that

(2.68) β = −(d− 1)s.
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Since, by (2.61),

q(sp− 1) + p = (q − r)(sp− 1),

it follows from (2.60) that

(2.69) γε = q +
(q − r)(d− α+ 2ε)(sp− 1)

sp(d+ α− 2ε− 2) + (d− α+ 2ε)
.

This implies

γε − r = (q − r)
(

1 +
(d− α+ 2ε)(sp− 1)

sp(d+ α− 2ε− 2) + (d− α+ 2ε)

)
,

which yields

(2.70) γε − r =
2(q − r)sp(d− 1)

sp(d+ α− 2ε− 2) + (d− α+ 2ε)
.

We also have, by (2.69)

(2.71) q − γε = − (q − r)(sp− 1)(d− α+ 2ε)

sp(d+ α− 2ε− 2) + (d− α+ 2ε)
.

Combining (2.61), (2.70), and (2.71) yields

βε = −(γε − r)ηε
(q − γε)r

= −(d− 1)s.

Applying Lemma 2.2 with β = −(d− 1)s and using (2.49) and (2.66), we obtain

ˆ
|x|>1

|g|γεdx ≤ C.

The proof is complete. �

2.2.3. Proof of Theorem 1.3 when γ varies in the Range C. Let g ∈ C1
c,rad(Rd). Since p(d + α) −

2q(d− sp) 6= 0 and (1.15) is invariant under scaling, without loss of generality we can assume that

ˆ
Rd

ˆ
Rd

|g(x)− g(y)|p

|x− y|d+sp
dxdy = 1 =

ˆ
Rd

ˆ
Rd

|g(x)|q|g(y)|q

|x− y|d−α
dxdy.(2.72)

We first note that γ = q in this case. Applying Lemma 2.3 and using (2.72), we have

ˆ
|x|>1

|g|q ≤ C.(2.73)

On the other hand, by (2.72),

(2.74)

ˆ
|x|<1

|g|qdx ≤ C.

The conclusion follows from (2.73) and (2.74). �
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3. Optimality of the Range of Parameters

In this section, we prove Theorem 1.4 and Theorem 1.5. Let η ∈ C∞c (R \ {0}) be a nontrivial,
nonnegative function with spt η ⊂ (−1, 1). Define

(3.1) gλ,R,S(x) := λη

(
|x| −R
S

)
,∀R > S > 0 and λ > 0.

Applying [5, Theorem 1], we have

(3.2) ||g||Ẇ s,p(Rd) . ||∇g||Lp(Rd) + ||g||Lp(Rd) ∀g ∈ C
∞
c (Rd).

Here and in what follows in this section, a . b means that a ≤ Cb for some positive constant C
depending only on the parameters in Theorem 1.4 and Theorem 1.5.

By a scaling argument, we derive from (3.2) that

(3.3) ||g||Ẇ s,p(Rd) . ||g||
s
Ẇ 1,p(Rd)

||g||1−sLp(Rd) , ∀g ∈ C
∞
c (Rd).

Using (3.3) we can estimate

(3.4) ||gλ,R,S ||pẆ s,p(Rd)
. λpRd−1S1−sp, for 0 < s < 1 and 1 ≤ p < +∞.

On the other hand, one has, see e.g., [2, (5.8)],

(3.5)

ˆ
Rd

ˆ
Rd

|gλ,R,S(x)|q|gλ,R,S(y)|q

|x− y|d−α
dxdy .


λ2qRd+α−2S2 if 1 < α < d,

λ2qRd−1S2 log(R/S) if α = 1,

λ2qRd−1S1+α if 0 < α < 1.

A straightforward computation gives

(3.6) λγ (R− S)d−1 S . ||gλ,R,S ||γLγ(Rd)
.

We are now ready to give the proofs of Theorem 1.4 and Theorem 1.5. We will only focus on the
case 0 < s < 1. The cases s = 1 and s = 0 are either trivial or follow by the same arguments.

3.1. Proof of Theorem 1.4. We establish the conclusion by considering two cases separately:

• Case 1: β1γ + d+α−2
d−1 β2γ < 1.

• Case 2: β1γ + d+α−2
d−1 β2γ = 1 and q(sp− 1) + p 6= 0.

Case 1: β1γ + d+α−2
d−1 β2γ < 1. In this case, if (1.15) holds, then we can apply it to g = g1,R,1 for

large R. Therefore, using estimates (3.4), (3.5), (3.6), and the inequality (1.15) we have, for large
R,

(3.7) Rd−1 . R(d−1)β1γ+(d+α−2)β2γ

Taking R→∞ in (3.7), we obtain a contradiction.

Case 2: β1γ + d+α−2
d−1 β2γ = 1 and q(sp− 1) + p 6= 0.

Since, in addition, γ satisfy (1.1) so we can compute (see for e.g. (2.27))

(3.8) γ = q +
(q(sp− 1) + p) (d− α)

sp(d+ α− 2) + (d− α)
.

If (1.15) holds, then in particular it holds for

(3.9) g = gm,R =

m∑
k=1

gRkξ2 ,Rk,Rkξ1 , ∀R > 0 and m ∈ N,



INTERPOLATION INEQUALITIES 19

where ξ1 6= 1 and ξ2 ∈ R to be chosen subsequently. If ξ1 > 1, then we start with a small enough
0 < R < 1 and if ξ1 < 1, then we start with a large enough R >> 1 so that the supports of
gRkξ2 ,Rk,Rkξ1 remain disjoint for all k ∈ N. With this choice and with the help of (3.4), (3.5), (3.6),

and the inequality (1.15), we derive that

m∑
k=1

Rkγξ2
(
Rk −Rkξ1

)d−1
Rkξ1

.

(
m∑
k=1

Rkpξ2Rk(d−1)R(1−sp)kξ1

)β1γ ( m∑
k=1

R2qkξ2Rk(d+α−2)R2kξ1

)β2γ
.

Simplifying this estimate, we have

(3.10)
m∑
k=1

Rk(γξ2+ξ1+d−1)
(

1−Rk(ξ1−1)
)d−1

.

(
m∑
k=1

Rk(pξ2+(1−sp)ξ1+d−1)

)β1γ ( m∑
k=1

Rk(2qξ2+2ξ1+d+α−2)

)β2γ
.

We now choose ξ1 and ξ2 such that

(3.11) pξ2 + (1− sp)ξ1 + (d− 1) = 0 = 2qξ2 + 2ξ1 + (d+ α− 2).

Since q(sp− 1) + p 6= 0, the exact expressions of ξ1 and ξ2 can be computed from (3.11) as follows

(3.12) ξ1 =
2q(d− 1)− p(d+ α− 2)

2(q(sp− 1) + p)
and ξ2 = −sp(d+ α− 2) + (d− α)

2(q(sp− 1) + p)
.

Notice that using (3.8), we can simplify the expression of ξ2 as follows

(3.13) ξ2 = − d− α
2(γ − q)

.

Making use of (3.13) and (3.11) we calculate

γξ2 + ξ1 + (d− 1) = (γ − q)ξ2 + qξ2 + ξ1 + (d− 1)

= −d− α
2
− d+ α− 2

2
+ (d− 1) = 0(3.14)

Plugging (3.11) and (3.14) into (3.10) we get

(3.15)

m∑
k=1

(
1−Rk(ξ1−1)

)d−1
. mβ1γ+β2γ , ∀m ∈ N.

Since β1γ + d+α−2
d−1 β2γ = 1 and 1 < α < d, it follows that β1γ + β2γ < 1. Taking R → +∞ in

(3.15) if ξ1 < 1 and taking R→ 0+ in (3.15) if ξ1 > 1, we obtain a contradiction.
It remains to show that ξ1 6= 1. Indeed, this follows from the assumption p(d+α)−2q(d−sp) 6= 0

and (3.12), as ξ1 can be rewritten as ξ1 = 1− p(d+α)−2q(d−sp)
2(q(sp−1)+p) .

The proof is complete. �
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3.2. Proof of Theorem 1.5. We prove the result by contradiction. Assume (1.15). Consider the
family of radial functions g1,R,1 for R > 1 (see (3.1) for the definition). Using (3.4), (3.5), and (3.6),
and applying (1.15) to g1,R,1, we obtain

(3.16) Rd−1 .

{
R(d−1)(β1γ+β2γ), if 0 < α < 1,

R(d−1)(β1γ+β2γ)
(
(log(R))β2γ + 1

)
, if α = 1.

Taking R → +∞ in (3.16) and noticing β1γ + β2γ < 1, we obtain a contradiction. The conclusion
follows. �
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