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Abstract

We introduce a variant of the cumulative scheduling problem (CuSP), characterized by
continuous modes, time windows and a criterion which involves safety margin maximization.
The study of this variant is motivated by the GEOSAFE H2020 project, devoted to the de-
sign of evacuation plans in face of natural disasters and more specifically wildfire. People and
goods have to be transferred from endangered places to safe places and evacuation planning
consists in scheduling evacuee moves along pre-computed paths, under arc capacities and
deadlines. The resulting model is relevant in other contexts, such as project or industrial
process scheduling. We consider here several formulations of the continuous time-resource
tradeoff scheduling problem (CTRTP-TW) with a safety maximization objective. We estab-
lish a complete complexity characterization distinguishing polynomial and NP-hard special
cases depending on key parameters. We show that the problem with fixed sequencing, i.e.
with predetermined overlap or precedence relations between activities, is convex. We then
show that the preemptive variant is polynomial and we propose lower and upper bounds
based on this relaxation. A flow-based mixed-integer linear programming formulation is pre-
sented, from which a branch-and-cut exact method and an insertion heuristic are derived.
An exact dedicated branch-and-bound algorithm is also designed. Extensive computational
experiments are carried out to compare the different approaches on evacuation planning
instances and on general CTRTP-TW instances. The experiments show also the interest of
the continuous model compared to a previously proposed discrete approximation.

1 Introduction
The NP-hard cumulative scheduling problem (CuSP) [11] can be stated as the problem to find
a feasible schedule for a set of activities that share a single so-called cumulative resource with a
finite capacity. Each activity is associated with a time-window and a fixed amount of resource
required during all its processing interval. A schedule is feasible if each activity is scheduled
within its time window and if, at each time point, the total amount of resource required by the
activities in progress never exceed the resource capacity.

The CuSP is at the core of the well known resource constrained project scheduling Problem
(RCPSP, see [1, 14, 21, 23, 26, 32] for surveys), one of the scheduling problems that received
the most attention during the last decades. The RCPSP involves a set of activities subject to
precedence and resource constraints: each activity requires simultaneously during its processing
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interval a different amount on each of the cumulative resources. A performance criterion has to
be optimized, which is most often the makespan (total duration) minimization. Many variants
of the RCPSP exist, some of which being related to preemption (some activities may be run,
interrupted, and run again), non renewable resources or alternative performance criteria.

Among those variants, the multimode RCPSP [9, 10, 32, 36, 39, 41]: consider activities with
flexible resource requirements and the decision maker may cut a well-fitted trade-off between
resource consumption and the durations of the activities. The possible modes are most often
discrete: an activity mode gives a precise duration, a list of required resources, and, for each of
them, a required amount.

The CTRTP-TW (continuous time-resource tradeoff problem with time windows) model in-
troduced in this paper can be viewed as a variant of CuSP that involves multiple resources and
modes: for any activity j, we have to choose its processing rate sj in an interval [smin

j , smax
j ],

which determines, for any resource k in the set Rj of the resources required by j, the amount
of k consumed by j. For a given processing rate sj , the duration of the activity is pj = Pj/sj ,
where Pj is the work content of activity j. As for temporal constraints, we have to select for each
activity j, a start time Sj and a completion time Cj subject to release dates rj and deadlines dj .
The objective is safety maximization and more precisely the maximization of the minimum safety
margin of every activity, where the safety margin of an activity denotes the difference between
its deadline and its ending time. This maximization of this objective is equivalent to minimizing
the maximum lateness. Compared to the standard multimode RCPSP with continuous resources
(see chapter 10 in [32] for a precise definition), the CTRTP-TW has the following specificities:
the activities have no precedence constraints but release dates and deadlines; once an activity is
started, its processing rate remains constant till the end of the activity; the processing rate of
each activity must lie within a predefined interval.

Among the vast literature on special cases and variants of the multimode RCPSP, the consid-
ered problem is close to the discrete time-resource tradeoff problem (DTRTP), see for instance
[13]. However, in the CTRTP-TW, the function that links the duration of an activity to its pro-
cesing rate sj is the rational function Pj/sj instead of a discrete function defined on a discrete
set as in the DTRTP. The feasibility variant of the CTRTP with a single resource was defined
as the cumulative resource constraint with energy in [42], with, additionally, a variable total
work requirement. Constraint propagation algorithms were proposed in a discrete time setting.
Considering discrete time and/or resource requirements may not accurately model particular
contexts and yield infeasible or suboptimal solutions.

The CTRTP (where both resource and time are continuously divisible) has been previously
considered in the literature. In [33], the major difference is that the duration function is ap-
proximated as an affine linear function pj = bj − ajsj , where bj is the maximal duration of the
activity and aj is obtained by linear regression. So the problem can be addressed via a mixed-
integer linear programming approach inspired by rectangle packing. In our case, the nonlinear
and continuous model is such that rational solutions may not exist as we will show on a simple
example.

The CTRTP with general processing rate functions is considered in several papers such as
[40, 35]. The processing rate function is the function f(.) that links the total work content to
the processing rate, i.e. Pj =

∫ Cj

t=Sj
fj(rj)dt = (Cj − Sj)fj(rj). In the context considered in

papers [35, 40], the case where f is convex, is trivially solved. In our case we have also a convex
function, more precisely the identity function f(x) = x, but due to the presence of release dates
and deadlines, the problem will be shown to be NP-hard.

In [27, 28, 38], a problem called the resource-constrained project scheduling problem with
flexible resource profiles (FRCPSP) involving the assignment of continuous resources is consid-
ered. In the FRCPSP, the processing rate ri is not constant during the processing window of
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an activity and may differ on each required resource k ∈ Rj . This means that a functional
t → rj,k(t) has to be determined for each activity j ∈ J and each resource k ∈ Rj such that
Pj ≤

∫ Cj

t=Sj
fj(rj(t))dt. In [28, 38], the authors propose time-indexed MILP models defined on

a discrete time horizon. In [27], event-based MILP formulation is devised in a continuous time
setting. In the FRCPSP, there are precedence constraints but the problem is to minimize the
makespan and the activities have no time windows. Each activity j ∈ J has a principal resource
k∗ ∈ Rj such that the processing rate rj,k(t) of an activity j ∈ J on a resource k ∈ Rj \ k∗
at each time period t depends linearly on rj,k∗(t). A model close to the FRCPSP, the continu-
ous energy-constrainted scheduling problem (CECSP), is considered in [6, 29, 30], with a single
resource and activity time windows. The major difference between the CTRTP-TW and the
FRCPSP/CECSP models is that in the CTRTP-TW, the processing rate is a variable that must
keep the same value from the start to the end of an activity. In this paper we exploit this strong
characteristic with dedicated algorithms.

The study of the CTRTP-TW was motivated by a work carried out in the context of the
H2020 GEO-SAFE European project [19]. The overall objective of GEO-SAFE was to develop
methods and tools enabling to set up an integrated decision support system to assist authorities
in optimizing the resources during the response phase to some wildfire. In such a circumstance,
decisions to be taken aim at fighting the cause of the disaster, adapting standard logistics (food,
drinkable water, health,. . . ) to the current state of infrastructures and evacuating endangered
areas [34]. The problem related to the CTRTP-TW is the Late Evacuation problem (LEP [2]).
The LEP consists in computing an evacuation schedule for people (and possibly critical goods),
which had been staying at their location as long as possible (late evacuees). While in practice
evacuation planning is mainly managed in an empirical way, optimization approaches have been
proposed [2, 3, 8, 16, 31, 22] according to a 2-step process: the first step (pre-process) involves
the identification of the routes that evacuees are going to follow; the second step, which has to be
performed in real time, aims at scheduling the evacuation of estimated late evacuees along those
routes. This last step involves 2 distinct work pieces, one about forecasting, which is difficult in
the case of wildfires because of their dependence on topography and meteorology [34], and the
second one about the specification of priority rules and evacuation rates imposed to evacuees
[8, 15]. We only deal with this last issue and do not address forecasting. In order to ensure the
robustness of the evacuation process, practitioners require evacuees to be clustered into groups
with same original locations and pre-computed routes, and they do in such a way that these
routes define a tree. Besides, they impose that once a group starts moving, it keeps on at the
same evacuation rate until reaching his target safe area. It can be remarked that resulting LEP
models may be cast into the CTRTP-TW framework. Such an approach was initiated in [16]
in the context of evacuations due to floodings, with the difference that the activity rates and
durations where constrained to be integer, which yielded the DTRTP model. In the context of the
GEOSAFE project, the same model (with integer variables) was used to represent evacuation
problems in case of wildfire [2, 3]. Under the same context, the CTRTP-TW framework was
introduced for the first time in [31]. Using continuous (rational) variables instead of integer ones
has modeling benefits. The paper proposed a flow-based formulation for the problem.

Furthermore, one can also remark that CTRTP-TW may also arise in industrial contexts,
when assembly processes involving pipelining mechanisms have to be scheduled [12, 21, 23].

In this paper we prove that even special cases of the CTRTP-TW are NP-hard while other
relaxations, including the preemptive one, can be solved in polynomial time. We deal with
CTRTP-TW through both a heuristic algorithm implementings fast network flow techniques,
well-fitted to real-time management, and an exact branch-and-bound algorithm relying on upper
bounds derived from the exact characterization of optimal preemptive solutions.
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The paper is structured as follows: Section 2 describes the general CTRTP-TW model and
provides a complexity analysis. Section 3 discusses a first formulation of CTRTP-TW relying on
a bi-level decomposition of the problem into a combinatorial master level, which addresses the
sequencing of the activities and a convex slave level, which deals with continuous evacuation rates.
Section 4 addresses the preemptive CTRTP-TW, shows that it can be solved in polynomial time
through a sequence of rational linear programs, and derives upper bounds as well as relaxation-
induced heuristics for the non-preemptive CTRTP-TW. Section 5 proposes a second, network
flow-oriented, reformulation of the CTRTP-TW and describes a branch-and-cut exact method
and a flow-based heuristic. A dedicated branch-and-bound algorithm proposed in Section 6.
Section 7 is devoted to numerical tests involving late evacuation planning instances as well as
general CTRTP-TW instances. Note that the paper is an extended version of the short paper
[4].

2 The CTRTP-TW: continuous time-resource tradeoff schedul-
ing problem with time windows and safety maximization

We give a formal model of CTRTP-TW in Section 2.1. Complexity results are subsequently
established (Section 2.2).

2.1 A formal CTRTP-TW model
The CTRTP-TW takes as input a set J of activities and a set R of resources. Each activity
j ∈ J is characterized by a release date rj , a deadline dj , a total work content Pj , a minimum
processing rate smin

j and a maximum processing rate smax
j . Each resource k ∈ R has a capacity

Rk and a set of activities Jk ⊆ J that must be processed by the resource. We define the subset
of resources required by activity j as Rj = {k ∈ R|j ∈ Jk}.

The output of the problem is fully specified by a start time Sj and a processing rate (speed)
sj , for each activity j ∈ J , that maximize objective (1) and satisfy constraints (2–6).

maximizemin
j∈J

(dj − Cj) (1)

s.t. Cj = Sj + Pj/sj ∀j ∈ J (2)
Sj ≥ rj ∀j ∈ J (3)
Cj ≤ dj ∀j ∈ J (4)

smin
j ≤ sj ≤ smax

j ∀j ∈ J (5)∑
j′∈Jk

Sj′<Cj ,Sj<Cj′

sj′ ≤ Rk ∀k ∈ R,∀j ∈ Jk (6)

To simplify the expression, the formulation uses the redundant completion time Cj variable.
Objective (1) consists in maximizing the safety margin. Constraints (2) express that the dura-
tion of each activity is equal to the total work content divided by the processing rate (speed).
Constraints (3) and (4) force each activity to be scheduled within its time window. Constraints
(5) set lower and upper bounds for the processing rate of each activity. Resource constraints (6),
state that when an activity starts, the cumulated processing rate of the activities that share the
same resources and that are in progress cannot exceed the resource capacity.

It must be remarked that to be able to satisfy the total work content constraint (2) we must
have

sj ≥ Pj/(dj − rj) ∀j ∈ J
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This allows to adjust smin
j accordingly.

Example 1. To give some insight on the problem structure, consider a simple example with 2
activities, a single resource of capacity 2, and the following parameters: r1 = 3, P1 = 6, d1 = 11,
r2 = 4, P2 = 4, d2 = 8, smin

1 = smin
2 = 0, smax

1 = 1, and smax
2 = 2. We can solve analytically

the problem by first remarking that there are only three possibilities for the relative sequencing
of the two activities. If activity 1 is scheduled before activity 2 then, at the earliest, activity
2 starts at time r1 + P1/s

max
1 = 9 and ends at 9 + P2/s

max
2 = 12, which violates the deadline

of activity 2. Conversely if activity 1 is scheduled after activity 2, then activity 1 cannot start
before r2 + P2/s

max
2 = 6 and end before 6 + P1/s

max
1 = 12, which also violates the deadline of

activity 1. Consequently, to obtain a positive safety margin. activities 1 and 2 must overlap.
In this condition, there also exists an optimal solution such that each activity is scheduled at its
release date. Otherwise, one could left-shift the activity that does not start at its release date
without increasing the minimum margin until the release date is reached. Similarly, we can show
that there exists an optimal solution such that rates s1 and s2 saturate the resource capacity
(i.e. s1 + s2 = Rk). Otherwise, one could increase the rate of activity 2, which is bounded by
the capacity until the capacity is saturated, which would reduce the duration of activity 2, hence
increasing its margin. Given these assumptions we can now write the problem as follows:

maximize λ = min(d1 − r1 − P1/s1, d2 − r2 − P2/s2)

s.t. s1 ≤ 1

s1 + s2 = 2

Hence by replacing s2 by 2−s1, we obtain the objective function min (8− 6/s1, 4− 4/(2− s1)).
For s1 ∈ (0, 1], the left term is an increasing function from −∞ to 2 while the right term is a
decreasing function from 2 to 0. It follows that the maximum of the minimum of the two terms
is attained at the equality, which yields the following polynomial equation:

2s2
1 − 9s1 + 6 = 0

The only root of this polynomial in (0, 1[ is s∗1 = 9−
√

33
4 ' 0.81, which yields s∗2 =

√
33−1
4 ' 1.19

and λ∗ = 48−8
√

33
9−
√

33
' 0.63.

Example 2. Consider a second example with J = {1, 2, 3}, P = {3, 3, 4}, r = {3, 3, 4}, d =
{13, 13, 7}, and 2 resources of capacities R = {1, 2} such that J1 = {1, 2} and J1 = {1, 2, 3}. We
get an optimal schedule by starting activity 3 at time S3 = 4 according to full rate s3 = 2, yielding
C3 = 6. Activities 1 and 2 both start at S1 = S2 = 6 with rate s1 = s2 = 1/2 and complete at
time C1 = C2 = 12. We observe a minimum satefy margin of d1 −C1 = d2 −C2 = d3 −C3 = 1.
This optimal schedule is displayed in Figure 1.

Example 3. Let us now change example 2 by considering different deadlines d = {9, 9, 8}. An
optimal schedule is obtained by reducing the rate of activity 3 to 1, which allows to start the
evacuation of activities 1 and 2 at time 3 at the same rate (see Figure 2). Now the minimum
safety margin reduces to d1 − C1 = d2 − C2 = d3 − C3 = 0.
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Figure 1: Optimal solution of CTRTP-TW example 2
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Figure 2: Optimal solution of CTRTP-TW example 3

2.2 Complexity of CTRTP-TW with a single resource
Here we consider the case where there is a unique resource k shared by all activities and, in
particular, its decision version of whether there exists a solution of cost less than some value λ.
We show exactly which constraints on start times and evacuation rates make this particular case
NP-complete or polynomial. We denote S-CTRTP-TW(C) the single resource CTRTP-TW with
constraints C where C ⊆ {r, d, smin, smax} with the following meaning :

• r 6∈ C means that the release dates are all equal to 0.

• d 6∈ C means that the problem aims at minimizing the makespan

• smin 6∈ C means that the minimum rates are all equal to 0.

• smax 6∈ C means that the maximum rates are all equal to Rk.

Theorem 1. S-CTRTP-TW(C) is strongly NP-hard if |C| ≥ 2 and C 6= {x, smin} with x ∈ {r, d}

Proof. We first show that the decision S-CTRTP-TW, which asks if there exists a solution of
at least λ, is in NP. Indeed, once the start time Sj , the completion time Cj , and the rate sj
have been fixed for each activity, the time window constraints (3) and (4), the rate limitation
constraints (5), the duration constraints (2), and the objective function value (1) can be checked
in O(|J |) time. The resource constraints (6) can be checked in O(|J |2|R|) time by enumerating,
for each resource, the start times of every activity and then by computing the cumulated rate of
activities on the same resource, which overlap with this time point.

The fact that S-CTRTP-TW(C) is NP−hard if {smin, smax} ⊆ C can be easily shown by
remarking that any instance of the parallel machine problem P ||Cmax can be reduced to a S-
CTRTP-TW({smin, smax}) instance as follows. We have n activities of duration pi to be scheduled
on m identical machines. By simply setting Rk = m and, for each activity j = 1, . . . , n, smin

j =
smax
j = 1 and Pj = pi, we obtain the parallel machine problem, which is strongly NP-hard. We
could also use the CuSP to obtain the same result.

Now we show that S-CTRTP-TW(C) is NP−hard when {x, y} ⊆ C with smin 6∈ {x, y} by
reduction from the 3-Partition problem. Let M be an integer, n = (n1, . . . , nN ) with N = 3M
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be a non negative integral vector, and M ·T =
∑N
q=1 nq. The 3-Partition problem on instance

n is to decide whether there is a partition of n into M triplets of equal sum. This problem is
known to be strongly NP-complete even if every element is strictly between T/4 and T/2 [18].
We consider this restriction of the problem and we show that it can be polynomially reduced to
any S-CTRTP-TW(x, y) instance with smin 6∈ {x, y}.

For that purpose, we build an S-CTRTP-TW instance as follows. We define a single re-
source (R = {k}). The capacity of k is Rk = 3T and an activity set J = {1, . . . , N} ∪
{sep1, . . . , sepM−1} ∪ {fill1, . . . , fillM} with:

• For all j = 1, . . . , N , Pj = nj .

• For all i = 1, . . . ,M , Psepi = 3T

• For all i = 1, . . . ,M − 1, Pfilli = 2T

Furthermore, depending on the problem type we define the additional constraints:

• If (x, y) = (r, d), we set rj = 0, dj = M , ∀j = 1, . . . , N , rsepi = 2i − 1, dsepi = 2i,
∀i = 1, . . . ,M − 1, rfilli = 2i− 2, dfilli = 2i− 1 , ∀i = 1, . . . ,M − 1.

• If (x, y) = (r, smax), we set rj = 0, smax
j = T , ∀j = 1, . . . , N , rsepi = 2i − 1, smax

sepi = 2T ,
∀i = 1, . . . ,M − 1, rfilli = 2i− 2, smax

filli
= 3T , ∀i = 1, . . . ,M − 1.

• If (x, y) = (smax, d), we set dj = M , smax
j = T , ∀j = 1, . . . , N , dsepi = 2i, smax

sepi = 2T ,
∀i = 1, . . . ,M − 1, dfilli = 2i− 1, smax

filli
= 3T , ∀i = 1, . . . ,M − 1.

We want to schedule these activities while achieving a zero safety margin within a makespan of
2M−1. Suppose first that we have a solution of the 3-Partition problem. It follows that we can
partition the set of activities J intoM triplets J1, . . . ,JM such that ∀i ∈ {1, . . . ,M},

∑
j∈Ji Pj =

T . We show that we can then obtain a feasible schedule as follows:

• For each i ∈ {1, . . . ,M − 1}, we set Ssepi = 2i− 1, Csepi = 2i, and ssepi = 3T ;

• For each i ∈ {1, . . . ,M}, we set Sfilli = 2i− 2, Cfilli = 2i− 1, and sfilli = 2T ;

• For each i ∈ {1, . . . ,M}, let Ji = {a, b, c}, we set sa = sb = sc = T , Sa = 2i − 2,
Ca = Sb = 2i− 2 + a/T , Cb = Sc = 2i− 1− c/T , and Cb = 2i− 1.

This solution is illustrated in Figure 3 and one can check that none of the additional constraints
for any considered {x, y} case is violated by this solution.

fill1

sep1

fill2

sep2

fill3

sep3

fill4

sep4

fill5

sep5

fill6

T

0 1 2 3 4 5 6 7 8 9 10 11

3T

0

Figure 3: Illustration of the reduction of SubsetSum to CTRTP-TW

Conversely, we show that given a feasible schedule, we can build a solution of the 3-Partition
problem. There are three remaining cases for the pair (x, y), we first show that the activities
sep1, . . . , sepM−1 and fill1, . . . , fillM are scheduled in the same way in all cases:
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• If (x, y) = (r, d), because of the release dates and deadlines, the activities sep1, . . . , sepM−1

and fill1, . . . , fillM have no freedom, their start times must be equal to their release dates
and their completion times to their deadlines. It follows that their rates are all equal to
3T and 2T , respectively, and hence no other task can be processed on intervals of the form
[2i− 1, 2i].

• If (x, y) = (r, smax), we use an induction with the following hypothesis: Sfilli = 2i − 2,
sfilli = 2T , Ssepi−1 = 2i − 3, and ssepi = 3T . Activity fillM can only end before its
deadline if its rate is maximum and if it starts at its release date. Now for sepM−1 to
overlap with fillM , it must have a rate less than or equal to T and hence a start time less
than or equal to 2M − 4, which is a contradiction. Since it does not overlap with sepM−1,
it must have a rate of 3T and start at 2M − 3. Now suppose that the induction is true
for all i > k. By the induction hypothesis, on the interval [2k − 1, 2M − 1], no activity
of work content greater than T can be executed, hence activity fillk must start before
2k − 1. Moreover, since activity sepk has rate 3T , any activity that starts before 2k − 1
must be finished at 2k − 1. Since rfillk = 2k − 2, Pfillk = 2T , and smax

fillk
= 2T , we have

Sfillk = 2k − 2 and sfillk = 2T . With a similar argument, we have Ssepk−1
= 2k − 3 and

ssepk−1
= 2T .

• if (x, y) = (smax, d), the reasoning is symmetric to the previous case.

Notice that the instance is built in such a way that a solution does not waste any time or
resource. Therefore, in all cases and for all i ∈ {1, . . . ,M}, the activities processed on the
interval [2i−2, 2i−1] have a total work content of 3T . Since job Pfilli = 2T , the jobs {1, . . . , N}
processed on this interval have a total work content of T . Moreover, there must be exactly three
of them since T/4 < Pj < T/2,∀i ∈ {1, . . . , N}, and hence a feasible schedule corresponds to a
3-partition.

We now show that all the other cases are polynomial.

Theorem 2. S-CTRTP-TW(smax), S-CTRTP-TW(r, smin), S-CTRTP-TW(d, smin) can all be
solved in polynomial time

Proof. For S-CTRTP-TW(smax), the minimum duration of each activity is Pj/smax
j . The prob-

lem is infeasible if Pj/smax
j > λ for some activity j. Otherwise we set the rate of each activity

to λ/Pj and each start time Sj = 0. The problem is feasible if and only if
∑
j∈J λ/Pj ≤ Rk.

For S-CTRTP-TW(r, smin), S-CTRTP-TW(d, smin), release dates and deadlines clearly play a
symmetric role. So we give here the proof for S-CTRTP-TW(smin, d). Since there is no maximum
rate, the rate of each activity can be set to sj = Rk and we obtain the decision variant of the
one-machine problem (denoted 1||Lmax in the standard three-field scheduling notation) that can
be solved in O(|J | log(|J |)) with the EDD rule.

Table 1 synthesizes the complexity results for the S-CTRTP-TW, leaving no open cases.

3 CTRTP-TW with fixed sequencing

3.1 A bilevel formulation of CTRTP-TW
We first give a bilevel formulation for CTRTP-TW equivalent to formulation (1–6) introducing a
binary sequencing variable πj1,j2 ∈ {0, 1}, for each pair of activities j1, j2 ∈ J such that πj1,j2 = 1
if and only if precedence relation Cj1 ≤ Sj2 holds. It follows that two activities overlap if and
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Constraints Complexity
smax P
r, smin P
d, smin P
smin, smax strongly NP -complete
r, smax strongly NP -complete
d, smax strongly NP -complete
r, d strongly NP -complete

Table 1: Complexity map of S-CTRTP-TW

only if πj1,j2 = πj2,j1 = 0. Now, given a fixed sequencing π, a slave problem CTRTP-TW(π) can
be written as :

maximize min
j∈J

(dj − Cj) (7)

Cj ≥ Sj + Pj/sj ∀j ∈ J (8)
Sj2 ≥ Cj1 ∀j1, j2 ∈ J , πj1,j2 = 1 (9)
Sj ≥ rj ∀j ∈ J (10)
Cj ≤ dj ∀j ∈ J (11)

smin
j ≤ sj ≤ smax

j ∀j ∈ J (12)∑
j∈I∩Jk

sj ≤ Rk ∀k ∈ R,∀I ⊆ J such that ∀j1, j2 ∈ I, πj1,j2 = πj2,j1 = 0 (13)

Let z(π) denote the optimal solution of CTRTP-TW(π). Let Π denote the set of valid sequenc-
ings. Then CTRTP-TW can be defined as the master problem to find the sequencing π∗ that
maximizes the maximin safety margin with fixed sequencing as follows:

z(π∗) = max
π∈Π

z(π)

3.2 A compact convex program
Theorem 3. CTRTP-TW with fixed sequencing is convex.

Proof. It comes in a straightforward way from the fact that function x→ 1
x is convex

Despite the fact that CTRTP-TW(π) is convex, it remains that there is in general an exponen-
tial number of constraints (13) due to the enumeration of all subsets of overlapping activities. Let
us consider the undirected graph G̃(π) with a node for each activity and an edge linking two nodes
such that the corresponding activities j1 and j2 satisfy the overlapping relation πj1,j2 = πj2,j1 = 0.
It is trivially verifiable that the set of subsets I ⊆ J such that ∀j1, j2 ∈ I, πj1,j2 = πj2,j1 = 0
maps the set of cliques in this graph. It is also easy to notice that only the constraints linked
to the maximal cliques of the G̃(π) need be considered. In general, in an n-node graph, there
is an exponential number of cliques that can be optimally enumerated in O(3n/3) time by the
Bron–Kerbosch algorithm [37]. However, we remark that for the sequencing π derived from any
feasible solution to the CTRTP-TW, G̃(π) is an interval graph. The set of valid sequencings
Π can even be mapped to the set of |J |-node interval graphs, which has a number of maximal
cliques not greater than |J | + 1 that can be enumerated in O(|J | log(|J |)) [20]. Hence under
the restriction that G̃(π) is an interval graph, which can be checked in O(|G̃(π)|), |G̃(π)| denoting

9



the sum of edge and vertices numbers, CTRTP-TW(π) is a compact convex program, i.e. with
a polynomial number of variables and constraints.

4 Upper and lower bounds based on the preemptive case
We now consider the preemptive relaxation P-CTRTP-TW in which any activity j ∈ J can
be interrupted at any time and restarted later. Its rate has to remain lower than smax

j but
the minimum rate constraint is also relaxed. Solving P-CTRTP-TW yields obviously an upper
bound for CTRTP-TW.

Example 4. Let us change again the deadlines in Example 2 instance by d1 = d1 = 12 and
d3 = 7. The preemptive solution displayed in Figure 4 has a safety margin of 1 unit, which is not
reachable with a non-preemptive solution. Indeed the optimal non-preemptive solution, displayed
in Figure 5, is reached with S1 = S2 = 3, S3 = 4, s1 = s2 = 1/3, and s3 = 4/3 for a zero safety
margin.

4
11
22

5 3
22
11

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4: P-CTRTP-TW optimal solution for r1 =r2 =3, r3 =4, d1 =d2 =12, d3 =7

4 1
2

5
3

1
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 5: (Non-preemptive) CTRTP-TW optimal solution for r1 = r2 = 3, r3 = 4, d1 = d2 = 12,
d3 =7

4.1 Solving P-CTRTP-TW
We consider first the decisional problem P-CTRTP-TW(λ) of finding a preemptive schedule
having a safety margin of at least λ. We show that P-CTRTP-TW can be solved in polynomial
time by linear programming using an extension of the max-flow formulation proposed in [24] for
the decision variant of the preemptive parallel machine problem with release dates and maximum
lateness minimization (denoted P |ri|Lmax in the standard three-field scheduling notation). We
introduce for each activity j ∈ J a deadline d̃j = dj − λ. Then we consider the ordered set
T = {t1, . . . t|T |} of distinct release dates and deadlines.

We remark that any preemptive schedule can be changed into a schedule where every activity
has a constant rate for tq+1 − tq time units in every interval [tq, tq+1] with q ∈ {1, . . . |T | − 1}

10



in which it is processed. This is due to the relaxation of the minimum rate constraints and to
the absence of precedence constraints between the activities. Consider now the following linear
program:

We define a continuous variable sqj ≥ 0 that represents the constant rate of activity j during
interval [tq, tq+1], q ∈ Q. Then P-CTRTP-TW(λ) amounts to finding a solution to the following
a system of linear equations and inequalities, which can be solved with an LP solver.∑

q∈Q
(tq+1 − tq)sqj = Pj ∀j ∈ J (14)

∑
j∈Jk

sqj ≤ Rk ∀k ∈ R,∀q ∈ Q (15)

sqj = 0 ∀j ∈ J ,∀q ∈ Q, tq+1 ≤ rj ∧ tq ≥ d̃j (16)

0 ≤ sqj ≤ s
max
j ∀j ∈ J ,∀q ∈ Q (17)

Since |T | ≤ 2|J |, the linear program has a polynomial number of variables and constraints,
and can consequently be solved in polynomial time. Then, solving P-CTRTP-TW can be achieved
by a binary search in polynomial time w.r.t. the required precision.

4.2 Relaxation-induced heuristics for the CTRTP-TW
In this section, we propose a preemptive relaxation-induced heuristic to turn a preemptive solu-
tion into a feasible non-preemptive one. Suppose that a feasible preemptive solution (sqj)

q∈Q
j∈J is

available for a given P-CTRTP-TW(λ). Then several approached may be tried:

• Smooth the solution while keeping the same safety margin λ: In most cases such an ap-
proach will fail in satisfying the capacity constraints.

• Derive from the solution (sqj)
q∈Q
j∈J a sequencing π for the activities and then search for

optimal evacuation rates by solving the CTRTP-TW(π) of Section 3.

4.2.1 Smoothing the processing rate while maintaining the safety margin

We propose in this context two relaxation-induced heuristics.

Heuristic RIH1 computes for each activity j ∈ J the time point indices qmin
j = minq∈Q,sqj>0 q,

qmax
j = maxq∈Q,sqj>0 q, and the sets the start and end times of the activities to Sj = tqmin

j
and

Cj = tqmax
j +1. A consistent evacuation rate is then set to sj = Pj/(Cj −Sj). A drawback is that

we may excessively increase the evacuation rates of the activities on some intervals, causing a
violation of the resource constraints, especially for the first interval [tqmin

j
, tqmin

j +1] and the last
one [tqmax

j
, tqmax

j +1].

To deal with this issue, heuristic RIH2 identifies the activities whose processing rate in the first
interval and/or in the last interval is smaller than the mean value. Let sj = Pj/(tqmax

j +1− tqmin
j

)

denote the average processing rate value. The set of activities J 0 is built with activities such that

qmax
j ≥ qmin

j + 2 (activities that cover at least three intervals) and that are such that s
qmin
j

j ≤ s

and s
qmax
j

j ≤ s. The set of activities J 1 (resp. J 2) is built with activities j 6∈ J 0 such that

qmax
j ≥ qmin

j + 1 (activities that cover at least two intervals) and such that s
qmin
j

j ≤ s (resp.

s
qmax
j

j ≤ s).

11



Note that the three sets are disjoint and form a partition of the activities having at least
one interval among the first one and the last one that has a rate lower than the mean value.
An activity of J 0 is excluded by construction from both J 1 and J 2. Sets J 1 and J 2 are also
disjoint: if the activity covers more than three intervals then its rate cannot be lower than the
mean both for the first and last interval, otherwise it would belong to in J 0. Such an activity
belongs by definition either to J 1 or to J 2, but not to both. If the activity covers only two
intervals, then by definition its rate cannot be lower than the mean value both at the first and
second interval.

The heuristic then assigns the following processing rates, start times and end times to the
activities:

∀j ∈ J 0, sj =
Pj − (tqmin

j +1 − tqmin
j

)s
qmin
j

j − (tqmax
j +1 − tqmax

j
)s
qmax
j

j

tqmax
j
− tqmin

j +1

∀j ∈ J 1, sj =
Pj − (tqmin

j +1 − tqmin
j

)s
qmin
j

j

tqmax
j +1 − tqmin

j +1

∀j ∈ J 2, sj =
Pj − (tqmax

j +1 − tqmax
j

)s
qmax
j

j

tqmax
j
− tqmin

j

∀j ∈ J 0 ∪ J 1, Sj = tqmin
j +1 −

(tqmin
j +1 − tqmin

j
)s
qmin
j

j

sj

∀j ∈ J 0 ∪ J 2, Cj = tqmax
j

+
(tqmax

j +1 − tqmax
j

)s
qmax
j

j

sj

∀j ∈ J 1, Cj = tqmax
j +1

∀j ∈ J 2, Sj = tqmin
j

These assignments have the objective to avoid scheduling the activities at the beginning of
their first interval and at the end of their last interval when they used less resource than the
average consumption.

4.2.2 Derive sequencing first, schedule second

The values Sj and Cj computed for each activity j ∈ J by heuristic RIH1 can be used to derive
a sequencing π. Then we solve the convex CTRTP-TW(π).

5 Flow-based Exact and heuristic methods

5.1 A flow-based branch-and-cut approach for the the CTRTP-TW
We propose a convex MINLP formulation based on the resource flow network model previously
proposed for the RCPSP [7, 17]. This model considers resource units as flow units transferred
from one activity to another and has already been used in case of continuous resources in [38].

12



Let Φkj1,j2 be a positive, continuous variable that gives the number of units of resource k ∈ R
transferred from activity j1 ∈ Jk to activity j2 ∈ Jk. We introduce additional dummy activities
0 and |J | + 1 that represent the start and end of the schedule, respectively. The flow-based
formulation is then obtained by replacing the resource constraints (6) by the following ones:

∑
j∈J∪{|J |+1}

Φk0,j =
∑

j∈J∪{0}

Φkj,|J |+1 = Rk ∀k ∈ R (18)

∑
i∈(Jk∪{0})\{j}

Φki,j =
∑

i∈(Jk∪{|J |+1})\{j}

Φkj,i = sj ∀k ∈ R,∀j ∈ Jk (19)

Φki,j > 0⇒ Ci ≤ Sj ∀k ∈ R,∀i, j ∈ Jk, i 6= j (20)

Constraints (18) state that for each resource k ∈ R exactly Rk flow units are carried from the
source node 0 to the sink node |J | + 1. Constraints (19) are the flow conservation constraints
applied for each resource k ∈ R to each activity j ∈ Jk. Finally, constraints (20) link the flow
variables, the start and the end variables in such a way that activity i can only send flow units
to an activity j that starts after the completion of i.

Note that the only nonlinear constraints, in the resulting formulation (7–12,18–20) are the
convex duration constraints (8) and implication constraints (20).

A convex MINLP formulation is obtained by replacing the implication constraints (20) by
the following constraint set [7], which require the introduction of a binary variable xi,j , ∀i, j ∈
J , i 6= j:

Φki,j ≤ min(smax
i , smax

j )xi,j ∀i, j ∈ ∀k ∈ R,∀i, j ∈ Jk, i 6= j (21)

Sj ≥ Ci − (di − rj)(1− xi,j) ∀i, j ∈ J , i 6= j (22)
xi,j ∈ {0, 1} ∀i, j ∈ J , i 6= j (23)

We opt for a branch-and-cut approach for solving this convex MINLP. Convex constraints
(8) can be replaced by the following constraint set:

Cj − Sj ≥ (−sj + w)Pj/w
2 + Pj/w ∀j ∈ J ,∀w ∈ Q (24)

These constraints tell us that for any w, the 2D-point (sj , Cj − Sj) must be located above the
tangent line in (w,Pj/w) to the hyperbolic curve whose equation is x→ Pj/x. These constraints
are difficult to handle since they are indexed on the rational numbers. We choose an integer K
and we only keep among constraints (24) those which are related to a set of unformly chosenK+1
values w = wj,k =

(
ksmin
j + (K − k)smax

j

)
/K for each activity j ∈ J , and for each k = 0, . . . ,K.

Then at each node of the branch-and-cut tree after Solving the LP relaxation, we search for
j0 and w0 that violate (24). If such a pair cannot be found, the process stops. Otherwise the
constraint related to j0 and w0 is inserted and the LP relaxation is solved again.

Figure 6 presents the network flow model of the CTRTP-TW solution of Fig. 1 with two
differents flows, one for each resource.

5.2 An adaptive global insertion heuristic scheme
We now propose a heuristic that exploits the flow model. The main component of the heuristic
is a procedure Insert(λ,L) that progressively inserts the activities in the flow network following
a priority list L and trying to find a schedule with a safety margin of at least λ. The global
procedure (Algorithm 1) takes as input a feasible λmin (we set λmin = 0 in the experiments), an
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Figure 6: A network flow model of the CTRTP-TW solution of Fig. 1

upper bound λmax on the safety margin (we use the preemtive upper bound), and searches the
largest safety margin calling the Insert procedure inside a binary search.

If Insert is successful to find a schedule of at least λ, a sequencing π is derived from the
obtained solution and a possibly improving solution is computed by solving the fixed sequencing
convex problem CTRTP-TW(π), as explained in Section 3.

In case of failure, the Insert procedure returns a list L̄ of forbidden ordered pairs of activities
meaning that the next call of procedure Insert should change the relative order of the activities
in each forbidden pair in the input list L. To that purpose the forbidden pair list just returned by
Insert is added to the forbidden pair tabu-like list F and the Update procedure searches for a
new list compatible with the forbidden pairs in F . If such a list is found, the Insert procedure is
called again. Otherwise (the forbidden pairs in F are inconsistent), a trial counter is incremented
and the list is reinitialized randomly to diversify the search, while F is empied. The process stops
when the desired precision is reached for the safety margin or if the trial counter reaches the
maximal allowed value.

We explain how the list of activities L is initialized (Step 1). Intuitively, priority should be
given to activities having both a small work content (i) and a small expected safety margin (ii):
indeed (i) makes these activities easier to insert and (ii) means that these activities are more
critical than the others and should be completed earlier. We define this expected safety margin
as the quantity λ̄j = dj − λ− rj − 2Pj/(s

max
j + smin

j ). So we impose, for every generated list L
that if j1 and j2 are such that Pj1 < Pj2 and λ̄j1 < λ̄j2 then j1 ≺L j2.

The Insert procedure is precisey described and illustrated in Appendix A.

6 An exact dedicated branch-and-bound algorithm
Finally, we propose an exact Branch-and-Bound algorithm, which solves CTRTP-TW in an exact
way, at least for small instances. This algorithm relies on the components that were presented
during previous sections. Namely, the method embeds the optimistic estimation (upper bound)
and the related relaxation-induced heuristics according to Section 4, and the flow-based insertion
heuristic described in Section 5.2, all these methods making use of the fixed-sequencing solution
procedure described in Section 3. What remains to be described is the nodes of related search
tree and the branching scheme, the way the optimistic estimation of Section 4 is updated, the
branching Strategy and the global tree search process.
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Algorithm 1: The adaptive insertion heuristic
Input: a CTRTP-TW problem instance, an initial solution (S,C, s) of safety margin

λmin, an upper bound λmax, a precision ε, a maximum number of trials
maxtrials

Output: An improved solution (S,C, s) of safety margin λ
1 Initialize priority list L;
2 end←false;
3 count← 0;
4 while λmax − λmin ≥ ε and count < maxtrials do
5 λ← (λmin + λmax)/2;
6 F ← ∅;
7 success←false;
8 while ¬success and count < maxtrials do
9 (success, S, C, s, L̄)← Insert(λ,L);

10 if success then
11 λmin ← λ;
12 count← 0;
13 Derive a sequencing π from the solution and solve CTRTP-TW(π) to

tentatively improve λmin;
14 else
15 F ← F ∪ L̄;
16 if ¬Update(L,F) then
17 F ← ∅;
18 count← count+ 1;
19 Randomly generate a new list L;
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6.1 Nodes of the search tree, branching scheme, and global search tree
process

A node n of the search tree is a 5-tuple
(

(r̂j)j∈J , (d̂j)j∈J ,M, (mj)j∈M, (mj)j∈M

)
n
, where r̂j

is the release date of activity j ∈ J , d̂j is the deadline of activity j ∈ J , M ⊆ J is the subset
of activities j that are forced to have a mandatory part inside a “middle” interval [mj ,mj ]. The
node elements must satisfy r̂j < d̂j , ∀j ∈ J and if M 6= ∅, r̂j ≤ mj < mj ≤ d̂j , ∀j ∈ M.
The meaning of the middle interval for the concerned activities in setM is that to compute the
preemptive relaxation associated with the node, we will force the variable processing rate sj(t)
of each activity j ∈ M to be a constant if t ∈ [mj ,mj ], to be increasing if t ∈ [r̂j ,m], and to
be decreasing if t ∈ [mj , d̂j ]. Informally, the rate of each activity in M is constrained to be a
quasiconcave step function of time.

Note that an activity j ∈M such that r̂j = mj and d̂j = mj has a fixed start and completion
time in solution space represented by the current node.

The branching scheme is based on an activity j∗ and two time values α, β with [α, β] ⊂
[r̂j∗ , d̂j∗ ]. At most three children are generated from a given node:

• The “left” node, defined if r̂j∗ < α, is obtained by replacing the release date r̂j∗ by α: the
task is constrained to start after α.

• The “middle” node, defined if j∗ 6∈ M or if j∗ ∈ M, and [α, β] ⊃ [mj∗ ,mj∗ ] is obtained
by inserting j∗ in M (if not already present) and by setting or updating mj∗ ← α and
mj∗ ← β: the task is constrained to be fully in process at a constant rate in [α, β].

• The “right” node, defined if d̂j∗ > β, is obtained by replacing the deadline d̂j∗ by β: the
task is constrained to end before β.

The union of the children solution spaces gives the father solution space and the solution space of
each child node is strictly smaller than that of the father node. The triple (j∗, α, β) from which
is issued the node is called the branching signature.

Now the global search tree is as follow. An initial lower bound is obtained by the flow-based
heuristic presented in Section 5.2. At each node, an upper bound is computed via the preemptive
relaxation, and relaxation-induced heuristics (both described in Section 4) are used to possibly
update the upper bound. If the node cannot be pruned the branching scheme is applied by
analysing the shape of the discrete rate function of the activities in the preemtpive schedule,
with different stragegies depending on the concavity of the discrete rate function.

If there exists at least a non-quasiconcave activity l, i.e. the activity rate decreases after some
time point tq1 and increases after another time point tq2 (q1 < q2) then a branching signature
is created with α = tq1+1, β = tq2 , and l ∈ M. If all activities have a quasiconcave step rate
function, we distinguish between the activities that have at least three pieces in the rate function
(type 1) and those that have only two pieces. For type 1 activities, we will set α and β to the
start and end periods of the decreasing or the increasing part based on the highest decrease or
increase. For type 2 activities, we just need one breakpoint α or β and we select one based on a
rule aiming at smoothing the resource profile.

The upper-lower bounding process is described in Section 6.2. The branching strategy is de-
tailed and illustrated in Appendix B. The completeness and finiteness proof is given in Appendix
D.
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6.2 Upper and lower bounds
An upper bound can be computed for each node by modifying the preemptive problem formula-
tion P-CTRTP-TW(λ) described in Section 4.1 to take the contraints linked to the activities in
M into account. Let λ denote a target safety margin. Let T̂ = {t1, . . . , t|T |} denote the set of
different release dates r̂j , deadlines d̂j −λ for j ∈ J , left bounds mj , right bounds m for j ∈M.
Let Q̂ denote the interval index set Q̂ = {1, . . . , |T | − 1}. The preemptive relaxation to check
the feasibility of a given safety margin λ at each node n, P-CTRTP-TW(λ, n) is obtained from
formulation (14–17), by replacing Q by Q̂ and adding the following constraints:

sq+1
j ≤ sqj ∀j ∈M,∀q ∈ Q̂ : tq ≥ mj (25)

sq+1
j ≥ sqj ∀j ∈M,∀q ∈ Q̂ : tq+1 ≤ mj (26)

Note that these constraints enforce the increasing, then constant in [mj ,mj ], then decreasing
profile of sqj for all j ∈M.

Remark 1. If M = J , r̂j = mj, d̂j = mj for all j ∈ M, then if P-CTRTP-TW(λ, n) admits
a feasible solution, it is also feasible for CTRTP-TW(λ). Otherwise CTRTP-TW(λ) has no
solution for node n.

Now for a given node n, the upper bound is computed by a binary search to find the maximum
preemptively feasible λ∗ in [λ, λ] where λ is the best known lower bound (feasible solution) and
λ is the upper bound passed by the father node.

Note that each time a feasible preemptive solution is found in the binary search, the relaxation-
induced procedures RIH1, RIH2, and RIH6 (see Section 4.2.1) are applied to possibly update the
lower bound λ and the associated best known solution (S,C, s). The flow-based convex program
CTRTP-TW(πn) can also be applied with the sequencing πn induced by intervals [mj ,mj ] for
j ∈M.

As the upper bound optimization process depends on a required precision ε, during the
generation of the linear program P-CTRTP-TW(λ, n), we merge any consecutive time points tq,
tq+1 such that tq+1 − tq < ε.

At the end of the binary search, we classically fall into one of these four possibilities:

• All linear programs P-CTRTP-TW(λ, n) where infeasible: no feasible preemptive solution
exists and the node is pruned by infeasibility,

• The obtained upper bound λ∗ (the best found preemptive solution) is such that λ∗ ≤ λ.
There is no need to further examine the node, which is pruned by bound.

• The obtained upper bound λ∗ could be turned into a feasible solution with safety margin
λ∗ . The node is then pruned by local optimality.

• The obtained upper bound λ∗ could not be turned into a feasible solution with the same
safety margin and is such that λ∗ > λ. In this case the node cannot be pruned. We update
λ← λ∗ and resort to branching.

7 Numerical Experiments
We ran the numerical experiments on a Linux (CentOS 7) Server with processors Intel Xeon
CPU E7-8890 v3@2.50 GHz. The algorithms were implemented in C++ and compiled with gcc
7.3. The (mixed integer) linear models were solved using Cplex 12.8 in a single-thread mode with
all its parameters set to their default values. The time limit was fixed to 1 hour. All software,
data and results are available for download [5].
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7.1 Instance generation and experimental setup
A part of the instances come from the GEOSAFE project and an evacuation network simulator
(see [3]). They are related to the tree late evacuation problem (T-LEP), which gave rise to
our general CTRTP-TW model. In this problem the evacuation network is a tree whose leaves
are the places to be evacuated, the root is the safe node where evacuees must be regrouped,
and the arcs have capacities corresponding to resource availabilities and lengths, which define
the activity processing times. We refer to [16] and [3] to obtain the transformation from T-
LEP to CTRTP-TW. The instances are clustered into 10 instance groups dense_x, medium_x,
sparse_x, where x is the number of evacuee groups (corresponding to the number of activities),
and dense, medium and sparse are related to the mean degree of the nodes in the related tree
and an estimation of the congestion level on the arc-resources. Those instances are most often
tight, in the sense that computing a feasible solution is difficult and in some cases impossible.
We discard instances that have been checked not to admit any feasible solution.

For any group of 10 instances, we compute several indicators:

• A priori indicators:

– The number of nodes of the related tree;

– The minimal duration capRelax of the evacuation process in case capacity constraints
are relaxed;

– The mean (over all nodes x) ratio congest, between the sum of the capacities of the
arc-resources that enter into x and the capacity of the arc-resource emanating from
x.

• A posteriori indicators that express, for any instance, the characteristics of its optimal
solution:

– The ratio compress (weighted average for all Pj between maximal evacuation rate
smaxj and real rate sj according to this optimal solution: a compression of the rate,
which can also be seen as a congestion measure);

– The global duration duration of the process.

– The average number paralAv of activities that are simultaneously performed at some
time t.

– The maximal number paralMax of activities that are simultaneously performed at
some time t.
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A priori indicators A posteriori indicators

Instances nodes capRelax congest compress duration paralAv paralMax

dense_10 19.8 155.06 1.69 4.14 311.27 3.2 5.7
dense_15 29.1 160.08 1.78 4.24 409.78 4 6.9
dense_20 (9) 38.6 164.88 1.84 8.10 453.36 5.57 9.44
medium_10 19.7 152.83 1.71 6.33 339.96 3.72 5.8
medium_15 29.1 159.39 1.8 5.9 401.75 4.31 7
medium_20 (9) 38.2 160.69 1.86 6.75 474.96 5.37 9.33
medium_25 46.8 169.91 1.91 7.18 476.32 7.53 12
sparse_10 19.5 146.17 1.75 4.88 289.82 3.93 6.3
sparse_15 28.8 153.92 1.87 6.42 373.13 5.15 8.7
sparse_20 38.3 157.78 1.87 7.3 446.69 5.26 9.9
sparse_25 47.6 154.73 1.89 7.15 473.83 7.14 11.5

Table 2: T-LEP Instances characteristics

As the CTRTP-TW instances issued from T-LEP instances have a particular structure, we
also generated general CTRTP-TW instances. We generated families of instances of 10 instances
each. Each family is denoted genX_a_b with X = {1, 2} the resource tightness factor, a ∈
{15, 20, 25} the number of activities, b ∈ {2, 5, 10} the number of resources.

For each instance, the release dates are generated uniformly between 0 and 200. For each
resource k, its capacity is uniformly generated between 50 and 100. For each resource k, each
activity is added to Rk with probability 0.4. For each activity i, the maximum rate smax

i is set
to the minimum capacity of the resources it requires. The total work content Pi is uniformly
generated between 1000 and 4000.

To obtain feasible instances, we build an auxiliary instance identical to the main instance,
except that each activity i has now a fixed rate that depends on the resource tightness factor
X. If X = 1, the fixed rate of an activity i in the auxiliary instance is equal to smax

i

4 . If X = 2,
the rate is fixed to mink∈Ri

2
|Jk|Rk. The auxiliary activity duration is set to Pi

si
. Then a feasible

schedule for the auxiliary instance is obtained by the serial schedule generation scheme [25]
taking the activities in the lexicographic order. The deadline of the activity in the main instance
is set to its completion time in this solution. This way, the problem is feasible. The lower the
resource factor tightness, the higher the resource consumption of the auxiliary task. So the time
windows of the activities are tighter, which induces less possibilities for a parallel execution of
the activities.

In the following sections, we compare the results obtained by the different methods with
different parameters and we give average results for each group of instances studied.

The average is taken on the 10 instances of each group except when the compared methods
do not provide a solution for all the instances of the group. In this case, the average is calculated
only on the instances for which the compared methods have all given a solution.

7.2 Results
We first evaluate the quality of the preemptive bound, w.r.t the best lower bound found among
all methods. Table 3 presents, for each instance family, the number of instances for which a
feasible solution could be found by at least one evaluated method (column #feas), the number
of instances for which the optimal solution is known (column #opt) and the number of instances
for which the preemptive bound is tight (column opt-p). For all instances for which a feasible
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solution is found, the table displays the average gap above the best found lower bound (av gap
LB∗), the avarage gap below the best found upper bound (av gap UB∗), and the average cpu time.
The table displays also the average gap below the optimal safety margin when the optimum is
known (column av gap opt).

Instances #feas #opt #opt-p av gap LB∗ av gap opt av gap UB∗ cpu (s)

dense_10 10 9 9 0.20% 0.00% -0.21% 0.028
dense_15 10 9 7 3.99% 2.92% -3.93% 0.052
dense_20 9 8 8 4.39% 0.00% 0.00% 0.077
medium_10 10 9 9 0.64% 0.00% -0.68% 0.024
medium_15 10 7 6 1.64% 0.82% -1.28% 0.052
medium_20 9 6 5 3.84% 1.77% -1.22% 0.080
medium_25 10 9 9 6.65% 0.00% 0.00% 0.101
sparse_10 10 10 9 0.02% 0.02% -0.02% 0.028
sparse_15 10 9 9 0.00% 0.00% -0.01% 0.040
sparse_20 10 6 6 1.96% 0.00% -0.16% 0.078
sparse_25 10 7 7 3.24% 0.00% 0.00% 0.103

gen1_15_2 10 9 6 4.81% 2.73% -4.72% 0.041
gen1_15_5 10 10 7 6.51% 6.51% -6.52% 0.043
gen1_15_10 10 10 5 6.63% 6.63% -6.63% 0.049
gen1_20_2 10 7 4 7.94% 3.68% -3.00% 0.074
gen1_20_5 10 8 6 5.28% 3.04% -4.76% 0.061
gen1_20_10 10 5 2 10.18% 9.61% -6.84% 0.075
gen1_25_2 10 8 8 1.43% 0.00% 0.00% 0.082
gen1_25_5 10 7 7 3.18% 0.00% -0.29% 0.095
gen1_25_10 10 3 2 19.49% 6.08% -3.07% 0.105

gen2_15_2 10 10 6 5.92% 5.92% -5.92% 0.040
gen2_15_5 10 10 7 5.82% 5.82% -5.82% 0.042
gen2_15_10 10 10 5 19.06% 19.06% -19.06% 0.051
gen2_20_2 10 10 8 1.36% 1.36% -1.36% 0.063
gen2_20_5 10 10 5 7.35% 7.35% -7.35% 0.071
gen2_20_10 10 8 5 3.18% 1.78% -2.03% 0.081
gen2_25_2 10 9 9 0.13% 0.00% 0.00% 0.093
gen2_25_5 10 9 8 1.69% 1.67% -1.50% 0.114
gen2_25_10 10 6 4 3.65% 3.49% -2.23% 0.126

Table 3: Preemptive bound evaluation

Column #opt gives an indication about the instance difficulty for the tested methods. Clearly
the number of known optima decreases with the number of activities for the evacuation instances
and with the number of activities and resources for the general instances. Furthermore, the gen1
instances are more difficult than the gen2 instances. The quality of the preemtive bound is rather
good for the evacuation instances (less than 7% from the best LB for the worst average). For the
general instances the distance from the best UB increases with the number of resources (except
for instances gen2_20).

We now evaluate the adaptive insertion heuristic. The results are displayed in Table 4.
Columns #feas and #opt give the number of times the heuristic found a feasible (resp. optimal)
solution. As for the preceding table, the other columns give the average gap below the best
known solution, below the optimal solution when it is known, and below the best known upper
bound for each instance family.
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Instances #feas #opt av gap LB∗ av gap opt av gap UB∗ cpu (s)

dense_10 10 7 -0.28% -0.18% 0.27% 2.37
dense_15 10 8 -1.69% -0.30% 1.75% 14.60
dense_20 8 7 -2.63% -2.63% 2.63% 39.64
medium_10 10 8 -0.59% -0.04% 0.55% 1.90
medium_15 10 5 -4.24% -2.02% 4.57% 17.28
medium_20 8 6 -6.79% 0.00% 7.31% 76.44
medium_25 9 7 -3.74% -3.74% 3.74% 95.73
sparse_10 10 9 -0.02% -0.02% 0.02% 3.04
sparse_15 10 9 -0.69% 0.00% 0.68% 4.67
sparse_20 10 6 -4.99% 0.00% 6.63% 33.90
sparse_25 9 5 -8.76% -2.12% 9.80% 137.73

gen1_15_2 10 6 -4.63% -3.49% 4.73% 2.53
gen1_15_5 10 6 -2.58% -2.58% 2.58% 4.54
gen1_15_10 10 4 -11.19% -11.19% 11.19% 8.22
gen1_20_2 10 3 -22.21% -10.55% 24.21% 7.68
gen1_20_5 10 2 -26.93% -22.69% 27.34% 12.16
gen1_20_10 10 1 -30.95% -29.58% 32.71% 23.01
gen1_25_2 10 2 -16.13% -18.65% 17.48% 9.76
gen1_25_5 9 1 -26.12% -19.83% 26.64% 21.24
gen1_25_10 8 0 -41.11% -29.75% 45.22% 34.24

gen2_15_2 10 6 -4.63% -3.49% 4.73% 2.53
gen2_15_5 10 6 -9.76% -9.76% 9.75% 5.23
gen2_15_10 10 3 -10.19% -10.19% 10.19% 8.43
gen2_20_2 10 7 -3.25% -3.25% 3.25% 2.44
gen2_20_5 10 5 -18.30% -18.30% 18.30% 9.89
gen2_20_10 10 3 -20.16% -17.43% 21.06% 18.12
gen2_25_2 10 7 -1.83% -0.89% 1.94% 5.50
gen2_25_5 10 6 -9.95% -7.91% 10.08% 11.70
gen2_25_10 10 3 -15.03% -4.74% 16.08% 31.25

Table 4: Adaptive insertion heuristic evaluation

For the evacuation instances, the gap from the best known solution increases with the instance
size. However the gap from the optimum is remarkably low when the optimum is known. For the
general instances, the gaps are much higher and they systematically increase with the number of
resources. The gaps are also much higher for the gen1 instances than for the gen2 instances. A
possible explanation for this behavior is that the gen2 instances allow more parallelism among
activity execution, which is better exploited by the heuristic. To support this hypothesis, we
display in Figure 7, the schedule obtained by the heuristic for one of the gen2 instances (at the
top right of the figure) and for a gen1 instance (at the bottom right of the figure). The figure
displays at the top left the fixed-rate schedule that was used to generate the gen2 instance,
while et the bottom left, the fixed-rate schedule that we used to generate the gen1 instance is
displayed. One observes much more parallelism in the gen2 schedules than in the gen1 schedules.
Furthermore, there is also a high level of parallelism allowed in the evacuation instances because
the deadlines are initially assigned to the resources (arcs of the evacuation network see [2, 16])
where all the evacuated population converge.

We provide the results of the branch-and-cut method for each instance family in Table 5.
Column #feas gives the number of times the branch-and-cut issued a feasible solution. Column
opt provides the number of optimal solutions found and proved to be optimal. Column av gap
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Figure 7: Comparing generation and solution for gen2 (top) and gen1 (bottom) instances
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gives the average gap at the end of the branch-and-bound process. Column av gap LB∗ gives
the average gap between the obtained LB and the best LB found by all methods. Column av
gap UB∗ displays the average gap beween the best UB in the branch-and-bound tree and the the
best UB found by all methods. Column #cuts gives the average number of generated cuts (24),
column #nodes gives the average total number of explored nodes, and column #cpu gives the
average cpu time.

Instances #feas #opt av gap av gap LB∗ av gap UB∗ #cuts #nodes cpu (s)

dense_10 10 10 0.00% 0.00% 0.00% 210.9 20479.7 49.6
dense_15 10 9 1.54% -0.01% 1.45% 508.4 62867.4 392.0
dense_20 7 6 10.96% 0.00% 10.96% 802.2 322689.7 1932.1
medium_10 10 10 0.00% 0.00% 0.04% 218.3 106121.4 117.9
medium_15 10 6 20.80% -0.10% 20.00% 825.2 416296 1462.8
medium_20 8 6 30.34% 0.00% 28.27% 836.7 206646.7 1522.4
medium_25 9 7 5.15% -0.18% 4.98% 1647.6 114938 1890.9
sparse_10 10 10 0.00% 0.00% 0.00% 170.7 1360 5.2
sparse_15 10 10 0.00% 0.00% 0.00% 331.7 22610.1 98.8
sparse_20 10 6 7.38% 0.00% 5.21% 1499.4 144521.9 1476.5
sparse_25 9 4 61.62% 0.00% 57.16% 2276.2 158238.3 2512.9

gen1_15_2 10 9 4.46% 0.00% 4.28% 293 341379 360.1
gen1_15_5 10 10 0.00% 0.00% 0.00% 256.4 1003.9 1.0
gen1_15_10 10 10 0.00% 0.00% 0.00% 358.9 31335.4 40.9
gen1_20_2 10 6 8.14% 0.00% 1.41% 1294.9 925538 1456.9
gen1_20_5 10 8 0.56% 0.00% 0.00% 992.3 381065 1090.6
gen1_20_10 10 3 6.24% -0.06% 2.04% 1388 413470 3197.5
gen1_25_2 10 7 2.02% -0.46% 0.00% 2097 747578 2191.4
gen1_25_5 9 7 0.87% 0.00% 0.00% 2160.9 351608.4 2524.2
gen1_25_10 9 3 81.51% -10.76% 1.26% 3231.7 195242.6 3245.0

gen2_15_2 10 10 0.00% 0.00% 0.00% 252.3 3472.9 4.0
gen2_15_5 10 10 0.00% 0.00% 0.00% 208.6 470.4 0.4
gen2_15_10 10 10 0.00% 0.00% 0.00% 515.2 5114.7 7.9
gen2_20_2 10 10 0.00% 0.00% 0.00% 914.3 96602.8 217.7
gen2_20_5 10 10 0.00% 0.00% 0.00% 1133 73190 302.5
gen2_20_10 10 8 1.72% 0.00% 0.60% 1081.9 201398 1608.4
gen2_25_2 10 7 1.76% -0.02% 1.77% 1446.8 374876 1118.6
gen2_25_5 10 8 0.84% -0.66% 0.00% 2526.8 235104 1618.8
gen2_25_10 10 5 4.58% -3.39% 0.00% 2035.1 125233 1957.3

Table 5: Flow-based branch-and-cut results

Results displayed in bold indicate that the method obtained the best average lower or upper
bound. The result show that in terms of best solutions found, the branch-and-cut method per-
forms remarkably well compared to the other tested methods for both the general and evacuation
instances. An exception is for the generalized instances with 25 activities and 10 resources, where
the discrete model finds on average better solutions. The branch-and-cut experiences difficulties
in closing the evacuation and gen1 instances, for which large gaps can be seen. However, the
method obtains the best upper bounds for almost all generalized instances.

The results of the dedicated branch-and-bound method are displayed in Table 6. The table
displays the same indicators as for the branch-and-cut method, except for the #cuts column.
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Instances #feas #opt av gap av gap LB∗ av gap UB∗ #nodes cpu (s)

dense_10 10 10 0.00% 0.00% 0.00% 6525 150
dense_15 10 7 2.99% -0.01% 2.92% 28983 1089
dense_20 8 8 0.00% 0.00% 0.00% 10385 726
medium_10 10 10 0.00% -0.04% 0.00% 8529 269
medium_15 10 6 1.59% -0.65% 0.53% 28139 1441
medium_20 8 5 8.41% -4.43% 0.94% 30211 1800
medium_25 9 7 1.59% -1.48% 0.00% 10420 1080
sparse_10 10 9 0.02% 0.00% 0.02% 41509 360
sparse_15 10 9 0.00% 0.00% 0.01% 12331 360
sparse_20 10 6 4.02% -1.64% 0.00% 16689 1440
sparse_25 9 6 9.14% -5.28% 0.00% 12220 1440

gen1_15_2 10 7 2.75% -2.10% 0.28% 55548 1470
gen1_15_5 10 6 6.64% -1.23% 5.30% 42615 1449
gen1_15_10 10 6 8.28% -4.32% 2.92% 28392 1477
gen1_20_2 10 3 29.51% -10.51% 2.10% 52563 2521
gen1_20_5 10 3 19.91% -9.99% 4.48% 53809 2677
gen1_20_10 10 1 23.00% -9.60% 5.80% 40250 3240
gen1_25_2 10 2 14.74% -10.96% 0.00% 47223 2880
gen1_25_5 10 2 67.77% -24.61% 0.30% 43057 2880
gen1_25_10 10 1 77.17% -22.42% 2.28% 23920 3545

gen2_15_2 10 8 4.20% -3.70% 0.64% 28693 1038
gen2_15_5 10 8 2.85% -0.39% 3.27% 49250 1440
gen2_15_10 10 4 11.85% -1.26% 14.44% 35708 2198
gen2_20_2 10 8 3.20% -2.52% 0.86% 17081 721
gen2_20_5 10 5 11.78% -5.78% 9.18% 33102 1804
gen2_20_10 10 3 9.34% -7.08% 1.35% 37447 2520
gen2_25_2 10 7 1.59% -1.48% 0.00% 15717 1080
gen2_25_5 10 6 7.76% -6.43% 1.77% 10401 1440
gen2_25_10 10 4 15.13% -12.21% 2.38% 15809 2200

Table 6: Branch-and-bound results

In terms of best lower bounds, the branch-and-bound method is generally outperformed by
the branch-and-cut method except for about half of the evacuation instances. On these intances,
the branch-and-bound method finds better upper bounds than the branch-and-cut method. The
branch-and-bound method appears to be sensitive to the quality of the preemtive bound and
of the initialization heuristic. When both values are close to the optimum, as it happens on
evacuation instances, only a few nodes are explored and the branch-and-bound quickly converges
towards the optimum. On the general instances, both the preemptive bound and the insertion
heuristic have larger optimality gaps. In this case, the gap stays rather high and the time limit
is reached. An important element is the precision ε, which was fixed here to ε = 0.001. We
observed empirically that changing the precision has little influence on the CPU time. The best
upper bound is also stable. However the lower bound is more sensitive to the precision change
(see Appendix C).

Finally, we compare the continuous and discrete model by solving the DTRTD-TW model
detailed in [16] with the CP Optimizer solver, under a 3600s time limit. The results are displayed
in Table 7.
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Instances #feas av gap LB∗ cpu (s)

dense_10 10 -1.27% 0.57
dense_15 10 -2.80% 3.09
dense_20 9 -8.20% 719.38
medium_10 10 -0.83% 0.13
medium_15 10 -1.84% 364.92
medium_20 9 -1.15% 1097.35
medium_25 9 -1.68% 717.75
sparse_10 10 -0.76% 0.02
sparse_15 10 -1.39% 0.08
sparse_20 10 -1.55% 376.56
sparse_25 10 -4.81% 1437.12

gen1_15_2 10 -3.07% 0.03
gen1_15_5 10 -2.45% 0.10
gen1_15_10 10 -2.89% 0.13
gen1_20_2 10 -3.12% 0.16
gen1_20_5 10 -3.63% 0.36
gen1_20_10 10 -2.93% 4.05
gen1_25_2 10 -3.21% 0.28
gen1_25_5 10 -2.85% 80.80
gen1_25_10 10 -4.16% 374.26

gen2_15_2 10 -3.05% 0.01
gen2_15_5 10 -3.49% 0.07
gen2_15_10 10 -4.97% 0.19
gen2_20_2 10 -1.30% 0.05
gen2_20_5 10 -2.76% 0.19
gen2_20_10 10 -1.88% 0.94
gen2_25_2 10 -1.26% 0.16
gen2_25_5 10 -1.63% 2.01
gen2_25_10 10 -1.35% 3.09

Table 7: Discrete model results

The results show that smaller satefy margins are obtained due to discretization, sometimes
significantly. Evacuation instances are challenging even in the discrete setting, as the time limit
is reached several times without proving optimality. However, solving the discrete model is a
good heuristic, as it even gets the best average gaps from the best known lower bound for the
two largest generalized instances.

8 Conclusion
We have introduced a variant of the cumulative scheduling problem (CuSP) with Safety Margin
criterion, which involves both discrete features and continuous ones. This model can be used to
schedule evacuation processes in case of natural disaster. We have provided a full complexity map
of the problem and showed that it is difficult to handle in the general case. We have formulated
the fixed-sequencing variant of the problem as a convex program, from which we derive a branch-
and-cut method to solve the general problem. We have studied the preemptive version of the
problem, which can be solved by linear programming and provides upper bounds. A network
flow-based heuristic has been proposed to obtain a lower bound. An exact branch-and-bound
algorithm for the general problem uses these lower and upper bounding components as well as
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an original branching scheme. The computational experiments have shown the merits and the
drawbacks of the dedicated branch-and-bound method compared to the flow-based branch-and-
cut algorithm on evacuation-based and general instances. They have also shown the interest of
the continuous model compared to the discrete approximation proposed in [16]. Further work
will aim at:

• Enhancing the filtering ability of the branch-and-bound algorithm, through constraint prop-
agation and the use of a better fitted branching mechanism;

• Extending the model to precedence constraints;

• Studying the way the model may be applied to potential industrial applications or evacu-
ation issues in the case when the evacuation network is not a tree.
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A The Insert procedure
We describe the main Insert procedure. The procedure takes the activities in the order defined
by list L and inserts them one by one in the flow to build the schedule. Algorithm 2 describes
the procedure. A list of already scheduled activities is initialized to the dummy start activity 0
(Step 1) and the flow values are all set to 0 (Step 2). The main loop (Steps 3–32) scans all the
activities j in the input list L. Let Φ̄ki,j denote the maximum amount of flow that can be sent
from an already inserted activity i to the activity j to be inserted. On each resource k, Steps
5–6 set this flow to the minimum between the maximum rate of activity j and the part of si
not already sent to another activity of Q, with the particular case of i = 0 having a maximum
number of units to send equal to Rk.

Then, for each resource k, in loop 9–15, the already scheduled activities of Q are scanned in
the increasing order of their completion times as candidates for sending the flow units required
by j. Because all resources are treated separately at this stage, the start time and the number of
units may differ on each resource required by j and are consequently stored in auxiliary variables
Skj and skj , respectively. For each such activity i ∈ Q∩Jk, the maximum amount of flow received
by j considering the additional units sent by i is stored in auxrate (Step 10). Because of the
ordering of set Q, the earliest start time on resource k for activity j if it receives some units
of flow sent from i as well as from predecessors of i in Q is equal to max(rj , Ci). If auxrate
satisfies the minimum rate requirement of activity j and if the start time plus the duration
obtained with auxrate does not exceed the safety margin (condition checked at Step 11), then a
feasible insertion has been found. The start time is set and the rate of the activity is decreased
to get the closest possible to the satefy margin, w.r.t. the minimum rate (Step 12). This avoids
oversubscribing the resources while keeping the safety margin. The flow from i to j and the rate
of j on the resource are then updated and, since a success is obtained for resource k, the scan
of Q stops (Step 13). If the condition of Step 11 is not reached, the rate of the activity remains
too low to keep the safety margin, more flow is needed to decrease its duration. The maximum
flow is then set from i to j (Step 15) and the next activity of Q is considered.

In case that no insertion for j was found after scanning Q ∩ Jk without violating the safety
margin on some resource, a forbidden list is returned. It contains a pair (i, j) with i ∈ Q ∩ Jk
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(Step 17). In case of success, it may happen that different rates and start times were obtained
on the resources required by j. In that case, the rate of the activity is set to the maximal one
obtained, which also corresponds to the maximal start time due to the continuous convex equality
constraint Cj = Sj + Pj/sj (Step 18). Then, a second step (loop 19–27) aims at increasing the
flow sent to activity j on the other resources to have the same activity rate on each resource as
required by the problem. This is achieved by scanning again the activities of Q ∩ Jk for each
resource on which rate skj < sj . The activities that complete before Sj are candidate for sending
additional flow until the rate is reached. If there is no such activity then a failure is reported by
returning a pair (i, j) in the forbidden list L̄ (Step 27).

In case the rate adjustment has been a success, a clustering phase aims at reducing the
number of activities sending flow to j in order to diminish the effect of the start time-flow
coupling constraints. This is achieved via loop 28–32. If an activity i ∈ Q sends flow to j on
only one resource k, then the algorithm tries to send the flow units sent by i to j from another
activity i′ ∈ Q already sending flow to j on k.

Then the activity j is added to the already inserted activity list Q sorted by increasing
completion times and the next activity of L is scanned.

A.1 Illustrative example
The following example shows how the three steps of the elementary activity insertion process
inside the Insert procedure works. Consider a 3 activity instance with two resources k1 and k2,
each of capacity Rk1 = Rk2 = 5. Each activity j ∈ {1, 2, 3} is such that smin

j = 0, smax
j = 5 and

rj = 0. We have d1 = 3, d2 = 4, d3 = 6, P1 = 4, P2 = 3 and P3 = 8. We aim at satisfying a
safety margin equal to λ = 2. We have Jk1 = {1, 2, 3} and Jk2 = {2, 3}. Suppose the input list
is L = (1, 2, 3) and that the already scheduled activities are 1 and 2 as displayed in Figure 8 (a).
Hence we visualize that we are at the step of procedure Insert where Q = {0, 1, 2} with the
partial solution S1 = 0, C1 = 1, s1 = 4, S2 = 1, C2 = 2, s2 = 3. The safety margin is satisfied.
The resource flows generated up to this point are such that Φk10,1 = 4 = s1, Φk11,2 = 3 = s2. At
Step 4 of Algorithm 2, activity 3 is dequeued from L. The maximal flows that activities from Q
can send to activity 3 are then computed at Steps 5 and 6: on resource k1, we have Φ̄k10,3 = 1,
Φ̄k11,3 = 1 and Φ̄k12,3 = 3, and on resource k2, we get Φ̄k20,3 = 2, Φ̄k22,3 = 3. Then the insertion process
starts by enumerating for each resource the activities of Q in increasing order of the completion
times (for loop at step 9). On resource k1, insertion after dummy activity 0 yields a solution
displayed in part (b) with auxrate = 1 that violates the safety margin (checked at Step 11). So
the flow Φk10,3 is set to the maximal value Φ̄k10,3 = 1 and the current rate of activity 3 on resource
k1 is sk13 = auxrate = 1 (Step 15). Sending flow from activity 1 allows to increase auxrate to 2,
which still violates the safety margin (see solution (c)), so again, Step 15 sets Φk11,3 = Φ̄k11,3 = 1

and sk13 = auxrate = 2. Adding the flow from activity 2 would allow a total rate auxrate = 5,
which would make activity 3 end at 2 + 8/5 < 4. Hence the safety margin is satisfied and an
insertion on k1 has been found. To meet exactly the safety margin, start time Sk13 is set to 2,
rate sk13 is set to 4 and flow Φk12,3 is set to 2 at Steps 12 and 13. This gives the solution displayed
for resource k1 on part (d). The same insertion process is then run for activity 3 on resource k2.
In this case, the flow from 0 allows to meet the deadline and thus we get Sk23 = 0, sk23 = 2 and
Φk20,3 = 2. The most constraining case corresponds to the maximal start time on all resources and
its corresponding rate, also maximal : so S3 is set to Sk13 = 2 and s3 is set to sk13 = 4 at Step 18.

Note that at this point the rate on resource k2 is too low. We enter the loop at Step 19
to try and adjust the rates. Traversing again list Q in increasing completion times, activity 2
appears to have enough available outgoing flow to obtain also rate 4 for activity 3 on resource
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Algorithm 2: The Insert procedure
Input: a CTRTP-TW problem instance, an ordered list of activities L, a safety margin

λ
Output: a boolean success, a solution (S,C, s), a forbidden pair L̄ in case of failure

1 Q ← {0} // list of scheduled activities sorted in increasing completion
times

2 ∀k ∈ R,∀i ∈ Jk ∪ {0},∀j ∈ Jk, i 6= j, Φki,j ← 0;
3 while L 6= ∅ do
4 get last element j from L and remove it from L;
5 ∀k ∈ R, Φ̄k0,j ← min(smax

j , Rk −
∑
i∈Q∩Jk

Φk0,i);
6 ∀i ∈ Q ∩ Jk, i 6= 0, Φ̄ki,j ← min(smax

j , si −
∑
i′∈Q∩Jk

Φki,i′);
7 for k ∈ Rj do
8 skj = 0; successres←false ;
9 for i ∈ Q ∩ Jk do

10 auxrate← min(smax
j , skj + Φ̄ki,j);

11 if auxrate ≥ smin
j and max(rj , Ci) + Pj/auxrate ≤ dj − λ then

12 Skj ← max(rj , Ci); auxrate← max
(
smin
j , Pj/(dj − λ− Skj )

)
;

13 Φki,j ← auxrate− skj ; skj ← auxrate; successres←true; break;
14 else
15 Φki,j ← auxrate− skj ; skj ← auxrate;

16 if ¬successres then
17 L̄ ← (i, j) for some i ∈ Q ∩ Jk; return (false, ∅, ∅, ∅, L̄);

18 sj ← maxk∈Rj
skj ; Sj ← maxk∈Rj

Skj ; Cj ← Sj + Pj/sj ;
19 for k ∈ Rj do
20 if skj < sj then
21 for i ∈ Q ∩ Jk, Φki,j < Φ̄ki,j do
22 if Ci ≤ Sj and sj − skj ≤ Φ̄ki,j − Φki,j then
23 Φki,j ← Φki,j + sj − skj ; skj ← sj ; break;
24 else if Ci ≤ Sj then
25 skj ← skj + Φ̄ki,j − Φki,j ; Φki,j ← Φ̄ki,j
26 else
27 L̄ ← (i, j) for some i ∈ Q ∩ Jk; return (false, ∅, ∅, ∅, L̄);

28 for i ∈ Q do
29 if ∃k ∈ Ri,Φki,j > 0 and ∀k′ ∈ Ri \ {k},Φk

′

i,j = 0 then
30 for i′ ∈ Q \ {i} do
31 if Φki′,j > 0 and Φ̄ki′,j ≥ Φki,j + Φki′,j then
32 Φki′,j ← Φki,j + Φki′,j ; Φki,j ← 0;

33 Q ← Q∪ {j};
34 return (true, S, C, s, ∅);
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k2 by assigning Φk22,3 = 2, which gives the feasible solution displayed at part (e).
Although the solution is feasible, we observe that on resource k1, activity 3 unnecessarily gets

flow from all the possible predecessors in Q, which may compromise further insertions. List Q is
scanned a last time in the loop starting at Step 28 to try and improve the flow usage. Activity 1
satisfies the condition checked at Step 30, i.e. activity 1 sends flow to activity 3 but on a unique
resource. The other activities of Q are search to see if they can replace activity 1 on resource k1,
which is the case of activity 2 and we get Φk11,3 = 0, Φk12,3 = 3. Finally the solution displayed at
part (f) is returned.
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Figure 8: Steps of activity 3 insertion on resources k1 and k2

B Branching strategy
At each node, after the upper and lower bounding process based on the binary search described in
Section 6.2, the branching process, if needed, is based on the analysis of the preemptive solution
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of problem P-CTRTP-TW(λ, n), identified by the processing rate sqj of each activity j ∈ J on
each interval q ∈ Q̂. The branching signature (j∗, α, β), according to the branching scheme
described in Section 6.1 is then computed according to the following configurations.

One activity j∗ that is processed at a non-constant rate in its processing interval will be
selected along with α and β values

Assume that s0
j = s

|T̂ |
j = 0.

We branch in priority on the activities that have not a quasiconcave step rate in the preemp-
tive solution, i.e. the activity rate decreases after some time point q1 and increases after another
time point q2 (q1 < q2).

If such activities exist, we select the activity j∗ and the ordered pair (q1, q2) with the largest
value ∆ =

∑q2−1
q=q1
|sq+1
j∗ − s

q
j∗ |, i.e. the total variation of sj∗ (ties are broken lexicographically)

and we set α = tq1+1, β = tq2 . The activity is then included inM.
To illustrate this strategy, Figure 9 show the evolution of the rate of such a “non-quasiconcave”

activity. For this activity we have ∆ = a+ b+ c, α = 16 and β = 26.

Figure 9: Selection of a “non-quasiconcave” activity for branching

If no such activity exists, we search for a quasiconcave activity that is not in M. Suppose
that we find one with increasing or decreasing parts of at least three pieces (type 1 activity).

For such an activity with an increasing part of at least three pieces starting at q1 and ending
at q2 with q1 < q2, we denote by ∆+

j =
∑q2−1
q=q1

sq+1
j∗ − s

q
j∗ the height of the total rate increase.

In the right part of Figure 10, we have tq1 = 10 and tq2 = 20 and ∆+
j = a + b. If the activity

has a decreasing part of at least 3 pieces starting at q1 and ending at q2, we denote by ∆−j =∑q2−1
q=q1

sqj∗ − s
q+1
j∗ the height of the total rate decrease. In the left part of Figure 10, we also have

tq1 = 10 and tq2 = 20 and ∆−j = a+ b.

Figure 10: Selection of a quasiconcave activity type 1 for branching
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We select an activity with the highest ∆j∗ = max(∆+
j∗ ,∆

−
j∗) and we set α = tq1+1 and

β = tq2 . In the case of Figure 10, the two activities have the same ∆ so one of them is selected
with α = 16 and β = 20.

If no such activity exist, we consider the activities for which neither the increasing nor the
decreasing part has more than two pieces (type 2 activity, see the two activities displayed in
Figure 11). For such activities, we cannot use breakpoints for both α and β.

If the activity has an increasing part of two pieces (q1, q1 + 1) (left part of Figure 11, type
2.1 activity) we compute α as the time point such that the same work as in [tq1 , tq1+1] with rate
sq1j would be achieved in [α, tq1+1] with rate sq1+1

j , i.e.

sq1j (tq1+1 − tq1) = sq1+1
j (tq1+1 − α)⇔ α =

sq1+1
j tq1+1 − sq1j (tq1+1 − tq1)

sq1+1
j

For β, we take tq1+1. For the activity in the left side of Figure 11, we have α = 20×8−6×(20−10)
8 =

12.5 and β = 20
If the activity has no increasing part of two pieces, it has a decreasing part of two pieces, such

as the right activity in Figure 11 (type 2.2 activity). In this case we take symmetrically α = tq1+1

and β =
s
q1+1
j (tq1+2−tq1+1)+tq1+1s

q1
j

s
q1
j

. For the right activity of Figure 11, this gives α = 20 and

β = 8×(26−20)+20×10
10 = 24.8.

Among type 2.1 and 2.2 activities, we select randomly one activity in the most populated
type.

Figure 11: Selection of a quasiconcave activity type 2 for branching

Note that for an activity j belonging toM, we make sure in addition that [mj ,mj ] ⊂ [α, β]

C Precision impact
In this section we evaluate the impact of the precision ε on the performance of the dedicated
branch-and-bound method presented in Section 6. For three values of ε and for the gen1 instances,
the column displays the average number of nodes in the tree, the average balue of the lower bound
and the average value of the upper bound. Numerical instabilities are observed with a verfy small
magnitude for the upper bound but a higher magnitude for the lower bound. This underlines
the correctness of the branching scheme while the heuristic used to obtain feasible solutions are
more unstable w.r.t. the precision. The number of nodes also fluctuates but the impact on the
CPU time is not significant.
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av. #nodes av. LB av UB
ε 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001
gen1_15_2 70835.2 65209.5 73015.1 32.712 32.975 32.897 33.366 33.471 33.316
gen1_15_5 53289.1 39781.1 37762.9 37.83 38.527 38.527 40.911 40.945 40.934
gen1_15_10 31875.3 26910.4 23492.6 40.275 40.386 40.275 42.823 42.904 42.925
gen1_20_2 55079 49253.6 49438.4 30.798 31.614 31.706 41.136 41.137 41.137
gen1_20_5 62105.8 39103.3 48431.8 30.557 30.926 30.069 37.403 37.465 37.441
gen1_20_10 55067 40268 44593.1 37.22 37.22 37.22 44.354 44.415 44.416
gen1_25_2 59605.4 47087.6 52534.4 31.869 31.554 31.269 40.299 40.299 40.299
gen1_25_5 32422.4 24241.4 25059.9 30.477 28.905 29.339 38.742 38.742 38.742
gen1_25_10 29299.3 21952 22363.6 28.158 29.391 29.14 50.513 50.604 50.594

Table 8: Impact of the precision on the branch-and-bound performance

D Completeness and finiteness of the branching scheme
In this section, we prove the finiteness and completeness of the branching scheme described in
Section 6. We limit ourselves, for the sake of simplicity, to the case when the safety margin λ
is fixed so the initial deadline of each activity j ∈ J is set to d̂j = dj − λ. Our problem then
becomes a satisfiability problem and checking the consistency and finiteness of our search process
means checking that:

• If there is no way to schedule the activities of J while meeting λ, then our algorithm should
be able to stop at some time and return a failure;

• If a schedule exists, which meets λ, then our algorithm should be able to stop at some time
and return a feasible schedule.

Any node of the search tree is associated with a subdivision ofQ intervals T̂ = {t0 = 0, t1, . . . , tQ =
T − λ}, where T is the time horizon. Each tq is either a release date of an activity, a deadline of
an activity, or one of the “middle” points mj and mj of an activity j ∈M. Let Active(j) the set
of time periods in T̂ for which activity j ∈ J is known to be processed at a constant rate, Idle(j)
the set of time periods in T̂ for which the activity is known to be absent and Uncertain(j) the
activity for which the activity status is undetermined

Lemma 1. For each activity, the total length of the periods in Uncertain(j) converges to 0 in
a finite number of steps for any precision ε > 0.

Proof. We first suppose that at each node, there exists an activity j 6∈ Mi, for which a branching
signature [α, β] with α ≥ r̂j+ε and β ≤ d̂j−ε is determined according to the procedure described
in Appendix B. The branching scheme creates three children nodes: (a) one by increasing the
activity realease date to α, (b) one by decreasing the deadline to β and (c) one by inserting this
activity inM. A node is obviously eliminated if rj > d̂j − Pj

smax
j

+ ε. Hence, at some finite time,
each non eliminated node satisfies one of the two following conditions:

• Due to successive branching (a) and (b), the activity time window is reduced to its minimum
feasible valie and |d̂j− Pj

smax
j
−r̂j | ≤ ε. The activity has a fixed rate smax

i and a fixed execution

interval Sj = r̂j and Cj = d̂j and the total length of the periods in Uncertain(j) is 0.

• Due to branching (c), the activity belongs toM. The activity rate is a quasiconcave step
function, increasing before mj , constant in [mj ,mj ] and decreasing after mj .
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We can now consider the case of activities that belong toM. For such an activity j, we define
as Idle(j) the union of intervals before [0, r̂j ] ∪ [d̂j , T − λ], Uncertain(j) the union of intervals
[r̂j ,mj ] ∪ [mj , d̂j ] and Active(j) is the interval [mj ,mj ]. For such an activity j, the branching
scheme selects [α, β] that strictly includes [mj ,mj ] with precision ε and generates three children
nodes, one by updating r̂j to α, one by updating mj to α and mj to β and one by updating d̂j to
β. In all cases, Uncertain(j) is reduced of at least ε. The process being repeated, Uncertain(j)
converges to 0 for all j ∈ J .

Theorem 4. The branching process described in Section 6 and Appendix B is consistent and
finite.

Proof. Suppose that there is no feasible schedule and that our algorthm is unable to detect
unfeasibility. Consider any path made of nodes Ω0, Ω1, Ω2, ... , Ωn, ... in the search three where
Ω0 is the root node. The schedule that assigns the exacution window Active(j) and the rate
ŝj computed by the preemptive relaxation for j in Active(j) to each job j is a feasible reduced
schedule for P̂j = |Active(j)| × sj < Pj . By a compactness argument and Lemma 1, we can
define a sequence of nodes where the workload Active(j) × ŝj converges to Pj , which yields a
feasible schedule, a contradiction. So, for some node n and some ε > 0, P-CTRTP-TW(λ, n) will
become unfeasible.

Suppose on the opposite that a feasible schedule exists and that the algorithm is unable to
find one for any precision ε > 0. Let σ = (S, s) a feasible schedule. Suppose there is a maximal
length path Ω0, Ω1, Ω2, ... , Ωn, ... in the search three where Ω0 is the root node such that σ
is consistent with Ω0, ω1, ... , Ωn. More precisely, for node Ωn, we have Active(j) ⊆ [Sj , Cj ]

and r̂j ≤ Sj ≤ Cj ≤ d̂j for each activity j. Let two activities j1 and j2 that are overlapping in
σ. Then, for some node n and some ε > 0, compactness argument and Lemma 1 that j1 and j2
will be such that Active(j1) and Active(j1) also overlap. Also if j1 and j2 do not overlap then
intervals Active(j1) and Active(j1) are sequenced in the same order. It follows that σ becomes
a feasible schedule for CTRTP-TW(πn), where πn is the sequencing defined by Active(j) for all
activities j ∈ J .
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