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Abstract

Many neurodegenerative diseases (NDs) are characterized by the slow spatial spread of
toxic protein species in the brain. The toxic proteins can induce neuronal stress, triggering the
Unfolded Protein Response (UPR), which slows or stops protein translation and can indirectly
reduce the toxic load. However, the UPR may also trigger processes leading to apoptotic cell
death and the UPR is implicated in the progression of several NDs. In this paper, we develop a
novel mathematical model to describe the spatiotemporal dynamics of the UPR mechanism for
prion diseases. Our model is centered around a single neuron, with representative proteins P
(healthy) and S (toxic) interacting with heterodimer dynamics (S interacts with P to form two
S’s). The model takes the form of a coupled system of nonlinear reaction-diffusion equations
with a delayed, nonlinear flux for P (delay from the UPR). Through the delay, we find parameter
regimes that exhibit oscillations in the P- and S-protein levels. We find that oscillations are
more pronounced when the S-clearance rate and S-diffusivity are small in comparison to the
P-clearance rate and P-diffusivity, respectively. The oscillations become more pronounced as
delays in initiating the UPR increase. We also consider quasi-realistic clinical parameters to
understand how possible drug therapies can alter the course of a prion disease. We find that
decreasing the production of P, decreasing the recruitment rate, increasing the diffusivity of
S, increasing the UPR S-threshold, and increasing the S clearance rate appear to be the most
powerful modifications to reduce the mean UPR intensity and potentially moderate the disease
progression.
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1 Introduction

Neurodegenerative diseases (NDs) are devastating conditions affecting the brain and central nervous
system. Two of the most common NDs are Alzheimer’s Disease [1], with the gradual loss of memory
and capacity to function independently, and Parkinson’s Disease [2], with loss of muscle coordination
and cognitive impairment. While various hypotheses exist as to the origins and etiologies of NDs,
medicine is not yet able to cure most of them [3].

Despite their vastly different presentations and affected brain regions, many NDs share a com-
mon set of features. The main commonality is the presence of toxic proteins, that are thought to
impair neuronal function or cause cell death, spreading through the brain [4]. During this spreading,
there is a recruitment process where normal proteins can become toxic through interacting with
other toxic proteins in prion diseases [5] or can become toxic through forming various oligomers [6].
In the case of AD, the toxic proteins are thought to be Amyloid-beta oligomers [6, 7]; in Parkinson’s,
Alpha-synuclein[8]; in prion diseases, Scrapie proteins [9]; and so on.

When subjected to the stress of a toxin, neurons are known to exhibit the Unfolded Protein
Response (UPR) [10] and may temporarily shut down or limit their cellular processes, reducing their
production of healthy, endogenous proteins [11]. This limiting thereby cuts down on the supply
chain that could yield more toxic proteins, and allows natural clearance mechanisms of the toxins to
take place. When the stress is lowered, the neuron can commence its normal cellular functions again.
The activation of the UPR may also cause damage and apoptosis to the neurons. When activated,
the UPR results in increasing production of the endoplasmic reticulum (ER) kinases, PERK and
Ire1, which reduce protein translation. But, these proteins also lead to apoptosis through a cascade
of processes [12]. Post-mortem autopsies of ND patients suggest the UPR has been activated [11].
It is also suggested that weakened UPR mechanisms may be implicated in the progression of NDs
[13].

Given the innate complexities of biological systems, it is extremely difficult to study how individ-
ual mechanisms affect disease etiologies. This is where mathematical modelling can be extremely
useful, giving researchers a mechanism to put together a set of assumptions and to observe the
outcomes of model systems subject to those assumptions. Mathematical models have been used to
study a host of different disorders and mechanisms, including AD [14, 15, 16], PD[17, 18, 19], CJD
[20, 21], the UPR [22, 23, 24], and many others. The models considered cover a range of scales
from studies of a single neuron or two [22], to the spatial spreading of toxic proteins in the brain
through modelling the connectome and how it evolves [25].

In recent work, a simple compartment model, comprised of a nonlinear system of Delay Differ-
ential Equations (DDEs), was introduced to model the UPR in prion diseases [22]. This yielded
intriguing results whereby the presence of delay was able to induce oscillations in the levels of toxic
proteins, and these oscillations could be turned on/off in different parameter regimes. Moreover,
the parameters could be tuned to drive the toxic protein concentration to zero.

In this paper, our objective is to extend the prior model of [22] to a delayed spatiotemporal
model. We develop a nonlinear system of Reaction Diffusion Equations, with a nonlinear flux
term exhibiting a delay. Our model focuses on prion diseases using heterodimer dynamics [26],
centered around a single neuron. Cellular prion protein, PrPC is produced by neurons; through its
interaction with misfolded, toxic scrapie prion proteins, PrPSc, PrPC misfolds into PrPSc [27, 28].
We numerically investigate parameters that yield oscillations and which parameter modifications
can reduce select measures of disease severity.

Our paper is organized as follows: we present our method of study, a mathematical model, in
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Section 2; an exploration of the model and its general behavior is covered in Section 3; we focus on
the biological parameters and treatment implications for prion diseases in Section 4; and our work
is concluded in Section 5. The Appendices A and B provide additional mathematical details not
located in the main text.

2 Materials and Methods

We focus on gaining an understanding into the UPR mechanism and its relation to prion diseases
at the neuron scale. In isolation, different mechanisms have been studied experimentally; however,
at present, an in-depth knowledge of in vivo parameters of biological significance is lacking. For
this reason, we combine multiple well-established biological processes into a mathematical model,
to simulate a system and glean understanding into its dynamics. The hope is that enough of
the important biology is present in the model for it to provide clinically relevant insights, even if
only in approximation. Our experiments then take the form of numerical simulations, where each
parameter can be carefully controlled.

A reader less focused on the mathematics, with more interest in the biology, should consider
reading Section 2.1.1 and then reading Sections 3 and 4. It would also be useful to refer to Table
1 to see the different parameters studied in our model.

2.1 Model

This section concerns developing a mathematical model.

2.1.1 Overview

Our objectives with this model are to uncover the spatiotemporal dynamics of the Unfolded Protein
Response. For simplicity, we consider two representative protein species, P (healthy proteins,
different forms of the cellular prion protein, PrPC) and S (misfolded proteins, different forms of
the toxic scrapie protein, PrPSc). The S-proteins can recruit P-proteins to become S-proteins. We
do not model higher-order structures — dimers, higher-order oligomers, nuclei, and fibrils are not
present. We argue that the capacity for S to recruit P is at least representative of the more detailed
biochemistry whereby misfolded proteins can form oligomers and nuclei, which can fragment to
generate further recruitment. This is often referred to as a heterodimer model.

Our model centers around one neuron, with dynamics taking place in the interstitial fluid sur-
rounding it. The P-proteins are produced within the neuron and released through the membrane
into the intercellular space. We note cellular prion protein and scrapie protein can be found as
both membrane-bound and extracellular forms [29, 30], but we focus upon the latter here to build
a simple model. Through a buildup of S near the membrane, the P-production is lowered (due to
the UPR) after some delay representing the processing time needed to stop/slow translation.

Figure 1 depicts the relevant mechanisms. Our simulations center around the geometries de-
picted in Figure 2.

2.1.2 Derivation

We denote P the concentration of P-proteins and S the concentration of S-proteins. We use x for
position and t for time.
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From a chemical reaction perspective, we assume that

• P and S combine at a rate c ≥ 0 to form two separate S proteins;

• P is cleared at a rate a ≥ 0;

• S is cleared at a rate b ≥ 0, with b ≤ a;

• spontaneously, P can misfold to become S at a rate f ≥ 0; and

• P and S have diffusivities within the interneuronal space of DP and DS , respectively, with
0 ≤ DS ≤ DP .

The fact that DS ≤ DP stems from the fact that we expect, in general, a single S-protein is at least
as massive as a single P-protein (recall we are not directly modelling oligomers but S represents
misfolded proteins of all sizes). We also anticipate that b ≤ a as larger proteins likely take longer
to break down. Given the relative rarity of prion diseases, we expect that f ≪ a.

To account for the UPR mechanism, we prescribe that the rate that P-proteins are produced
and released decreases as the S concentration at the cell membrane increases. More precisely, the
magnitude of the flux, J, of P from the neuron on the neuron boundary at time t is given by the
proportionality relation

J ∝ (1 + (⟨S(·, t− td)⟩/Sc)
m)−1, (1)

with the constant of proportionality A > 0 being the maximum possible P-flux and where Sc > 0,
m > 0, and td ≥ 0 are prescribed constants. The ⟨·⟩ denotes the mean value over the membrane.
The value Sc is more or less a sensitivity of the neurons to S: when ⟨S⟩ > Sc, the flux may decrease
very rapidly and when ⟨S⟩ < Sc, the flux stays near its maximum. The value m controls how
rapidly the neuron switches from maximum P-flux to near zero P-flux. The delay td models the
fact that during stress, the P-production cannot shut down immediately; a cascade of signals needs
to be transmitted to decrease P-production, which is modelled by td. The same principle applies
to increasing P production when S is cleared.

We consider the system in d-dimensional space. While d = 3 is most natural, certain geometric
arrangements of neurons could be modelled as being 1 or 2 dimensional. We let the neuron occupy a
bounded, closed, and connected region Θ ⊂ Rd containing the origin. In d = 1 we assume, without
loss of generality, that Θ = [−R,R] for some length R > 0. For d = 2, 3, we further assume a smooth
boundary and that a characteristic length scale for Θ is R > 0. The computational domain is the
region Ω := Rd \ Θ and the cell membrane is given by ∂Θ = ∂Ω. With d = 1, we only model the
region (R,∞) so that ⟨S(·, t−td)⟩ = S(R, t−td). For d = 2, 3, ⟨S(·, t−td)⟩ = 1

|∂Ω|
∫
∂Ω

S(x, t−td)dx.
For boundary conditions, we assume that P and S tend to 0 as |x| → ∞ (exponential decay is

common in diffusion problems) and that there is no flux of S on the boundary ∂Ω. The flux of P
on ∂Ω is based on the UPR assumptions outlined above.

From our preceding assumptions, our model amounts to the following system on Ω× (0,∞):

P,t =

diffusion︷ ︸︸ ︷
DP △ P −

recruitment loss︷︸︸︷
cPS −

spontaneous misfolding︷︸︸︷
fP −

breakdown︷︸︸︷
aP, (2)

S,t =

diffusion︷ ︸︸ ︷
DS △ S+

recruitment gain︷︸︸︷
cPS +

spontaneous misfolding︷︸︸︷
fP −

breakdown︷︸︸︷
bS, (3)
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Figure 1: Representative sketch of model. Left: a cell produces protein P that is released into
the intercellular space and diffuses with a rate DP . P may be recruited to become S that diffuses
with a rate DS . The neuron is sensitive to S at a concentration Sc and will reduce its maximum
flux of P from A in the presence of S. Right Spontaneous misfolding from P- to S-proteins occurs
at a rate f , recruitment by interaction with an S-protein happens with a rate c, and degradation
rates for P- and S-proteins are respectively a and b.

with

P, S → 0, |x| → ∞, (4)

−DP∇P (x, t) · n̂ =
−A

1 + ( ⟨S(·,t−td)⟩
Sc

)m
, x ∈ ∂Ω, t ≥ 0 (5)

−DS∇S · n̂ = 0, on ∂Ω, (6)

(P (x, 0), S(x, 0)) = (P0(x), S0(x)), x ∈ Ω̄, (7)

S(x, t) = S−(x, t), x ∈ ∂Ω, t ∈ [−td, 0]. (8)

Note that n̂, the outward unit normal is based on the frame of Ω. Hence, for the influx, we
have −A in Eq. 5. We assume that S0(x) = S−(x, 0) on ∂Ω. We prescribe that P0 and S0

satisfy the proper boundary conditions, namely P0, S0 → 0 as |x| → ∞, ∇S0 · n̂ = 0 on ∂Ω, and
−DP∇P0(x) · n̂ = −A

1+(
S−(x,−td)

Sc
)m

on ∂Ω. We note this is likely not strictly necessary as equations

with diffusion tend to smooth out irregularities instantaneously. We also assume a finite total
amount of protein in the system so that

∫
Ω
P0(x)dx,

∫
Ω
S0(x)dx < ∞. See Table 1 for a listing of

all dimensional parameters. Figure 1 depicts this system.
Since a sustained UPR mechanism itself may cause damage to the cells [31, 32], we are interested

in coming up with a proxy for what fraction of time the mechanism is active and to what extent.
To that end, given the P-flux magnitude, J , we note that the quantity

h = 1− J/A ∈ [0, 1) (9)

effectively describes whether the UPR is on or off at any given time and the closer h is to 1, the
more strongly the UPR is activated. Then, the time average havg, gives a loose estimate for the
fraction of time the UPR is active — an effective UPR intensity.
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Parameter SI Base Units Interpretation

DP L2/T diffusion coefficient of P
DS L2/T diffusion coefficient of S
c L3/(MT ) rate of combination of P and S
f 1/T spontaneous misfolding rate of P
a 1/T clearance rate of P
b 1/T clearance rate of S
td T delay time of the UPR
A M/(L2T ) maximum possible P-flux
Sc M/L3 critical S-concentration
R L representative neuron size/radius

Table 1: All dimensional parameters in the model where M = mass, L = length, and T = time.

Scale SI Base Units Definition Interpretation

t̄ T 1/a characteristic time for P to be
cleared

x̄ L
√
Dp/a characteristic distance P diffuses

before being cleared

P̄ M/L3 A√
DP a

characteristic scale of P as mea-
sured on the diffusive scale x̄,
given the flux

S̄ M/L3 Sc critical S-concentration to trigger
decreased P-production

Table 2: Scales chosen where M = mass, L = length, and T = time.

An alternative point of study would be to consider the frequency of UPR activations over times
on (0, T ). We define

WT =
1

T

∣∣{t|t is a strict local maximum for h on (0, T )}
∣∣, (10)

which computes an average frequency of h-peaks on (0, T ).

2.1.3 Nondimensionalization

Nondimensionalizing and rescaling our system via x = x̄x̃, Ω = x̄Ω̃, t = t̄t̃, P (x, t) = P̄ p(x̃, t̃), and
S(x, t) = S̄s(x̃, t̃) (see Table 2), after simplifying and removing tildes, on Ω× (0,∞), we have

p,t = △p− γps− (1 + σ)p (11)

s,t = δ△ s+ ηγps+ ησp− βs (12)

6



Parameter Definition Interpretation

γ cSc

a ratio of (the rate P is converted
to S when S concentration is Sc)
to (the rate P is cleared)

σ ≪ 1 f/a ratio of the rate P misfolds to the
rate it is cleared

δ ≤ 1 DS/DP ratio of S diffusivity to P diffusiv-
ity

η A
Sc

√
DP a

ratio of characteristic P-
concentration to Sc

β ≤ 1 b/a ratio of rate S is cleared to the
rate P is cleared

τ atd delay relative to P-clearance time

ρ R
√
a√

DP
ratio of (the characteristic cell
size) to (the characteristic dis-
tance P travels before being
cleared)

m > 0 chosen value controls abruptness of switch

Table 3: Dimensionless parameters appearing in the model.

with

p, s→ 0, |x| → ∞ (13)

−∇p · n̂ =
−1

1 + ⟨s(·, t− τ)⟩m
x ∈ ∂Ω, t ≥ 0 (14)

−∇s · n̂ = 0, on ∂Ω (15)

(p(x, 0), s(x, 0)) = (p∗0(x), s
∗
0(x)), x ∈ Ω̄ (16)

s(x, t) = s∗−(x, t), x ∈ ∂Ω, t ∈ [−τ, 0] (17)

where p∗0 and s∗0 satisfy the correct boundary conditions at t = 0 and s0(x) = s∗−(x, 0) on ∂Ω. The
definitions of the dimensionless parameters are found in Table 3.

Given the diffusive nature of the system, we anticipate smooth solutions to the system of Equa-
tions (11)-(17) that exist globally in time. The proof of existence of such solutions and the prop-
erties they enjoy is left as future work. Hereafter, we assume the existence of classical solutions
p, s ∈ C2x ∩ C1t (Ω, [0,∞)).

Note that through nondimensionalization and rescaling, we reduce a system with 10 dimensional
parameters (Table 1) to a dimensionless system involving 7 dimensionless parameters (Table 3),
excluding m. It is useful to consider that all dimensional systems resulting in the same set of
dimensionless parameters have the same dimensionless solutions.

2.1.4 Simplified Geometries

As specific scenarios, we consider d = 1 in a planar geometry and d = 2, 3 in radially symmetric
geometries — effectively describing an idealized “spherical neuron” in different dimensions. See

7



Figure 2. We denote r = |x| and reduce Ω to B = (ρ,∞). Then∫
Ω

z(x)dx = Cd

∫ ∞

ρ

z(r)rd−1dr

where

Cd =


1, d = 1,

2π, d = 2,

4π, d = 3

is a surface area factor.
In the symmetric geometry, on B × (0,∞), we have

p,t = p,rr +
d− 1

r
p,r − γps− (1 + σ)p, (18)

s,t = δ(s,rr +
d− 1

r
s,r) + ηγps+ ησp− βs, (19)

with

p, s→ 0, r →∞, (20)

p,r|r=ρ =
−1

1 + s(ρ, t− τ)m
t ≥ 0, (21)

s,r|r=ρ = 0, (22)

(p(r, 0), s(r, 0)) = (p0(r), s0(r)), r ∈ B̄, (23)

s(ρ, t) = s−(t), t ∈ [−τ, 0], (24)

havg = lim
Υ→∞

1

Υ

∫ Υ

0

(1− 1

1 + s(ρ, t− τ)m
)dt, (25)

ωavg = lim
Υ→∞

1

Υ
×∣∣{t|t is a strict local maximum for s(ρ, t− τ) on (0,Υ)}

∣∣, (26)

where p0 and s0 satisfy the correct boundary conditions at t = 0, and where s−(0) = s0(ρ). We have
added the formulas for the average fraction of time the UPR is activated, Eq. (25), and the average
dimensionless frequency of UPR activations, Eq. (26). We shall keep m = 10 fixed throughout this
work as it allows for a relatively rapid switch term.

We choose initial conditions to model the introduction of a highly localized quantity of S at
position r = r∗ > ρ so that initially s ≈ 0 is negligibly small at r = ρ. We let

ip := Cd

∫ ∞

ρ

rd−1p0(r)dr (27)

and

is := Cd

∫ ∞

ρ

rd−1s0(r)dr (28)

represent the initial quantity of the proteins and

−p0,r|r=ρ = np (29)
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Figure 2: Reductions to 1−dimensional (left), 2−dimensional radially symmetric (middle), and
3−dimensional radially symmetric (right) geometries, respectively. The green dots represent the P
proteins, while the red rods represent the S proteins.

specify the normal derivative of p0 at the cell boundary where s0 = 0. We then choose

p0(r) = c1dr
1−de−c2d(r−ρ)−(r−ρ)2 , (30)

s0(r) =
isr

1−d

Cdω
(
1 + tanh( r∗−ρ

ω )
) sech2(r − r∗

ω
), (31)

s−(t) = s0(ρ), t ∈ [−τ, 0], (32)

where c1d and c2d satisfy the system

√
πc1d
2

ec
2
2d/4erfc(c2d/2) = ip/Cd,

c1dc2dρ
1−d + (d− 1)c1dc

−d
2d = np,

and ω = 0.2 is a shape parameter. Under this setup, Cd

∫∞
ρ

rd−1s0(r)dr = is. With ω small, s0 and

its derivatives are very small for r∗ − r = O(1) so that s0(ρ), s
′
0(ρ) ≈ 0 are negligibly small. Then

with s0(ρ) = 0, boundary conditions require that p′0(ρ) = −1. The constants c1d and c2d ensure
p′0(ρ) = −np and Cd

∫∞
ρ

rd−1p0(r)dr = ip. For most problems, ip = is = np = 1, but this system is
more general.

We make one final remark on the total protein quantity. In d = 1, we interpret the system
as describing protein concentrations in a very narrow, straight region. The cell membrane is one
boundary and concentration variations orthogonal to the direction pointing away from the cell are
negligible. Thus, the system has a small cross-sectional area and is effectively one-dimensional.
Likewise, in d = 2, we interpret the system as describing protein concentrations when primarily
confined to a plane with limited variation normal to the plane, with concentration varying with
distance from a circular cell membrane. The system has a narrow height and is primarily two
dimensional with the cell membrane being a circle. In d = 3, we interpret the system as concen-
trations of proteins as their radial distance from the centre of a sphere varies. Thus, for d = 1, ip
is expressing a dimensionless total quantity of P per unit area of the region. Likewise with d = 2,
ip is the total dimensionless quantity of P per unit height of the region. Then with d = 3, ip is the
total dimensionless quantity of P. The same applies to is.

9



2.2 Numerical Method

Owing to the challenging nature of the equations, we analyze our model numerically. Full details
can be found in the Appendix A. In brief: we implement a finite difference scheme that is first order
in time, second order in space, with semi-implicit timestepping.

3 Math and Model Investigations

This section is dedicated to studying the qualitative behavior of the model itself over a range of
parameters. Numerical specifications are given in Appendix B.1.

3.1 Model Simulations

To study how the system responds to different parameters, we begin by considering variations in
β and δ at different fixed values of τ . In making these explorations, we focus primarily on phase
portraits for d = 1 dimensions depicting the protein concentrations at the cell membrane over time
(since this is the driving mechanism of the UPR). This is found in Figures 3-7. We also consider
the spatiotemporal spreading of the proteins with further experiments in Figures 8 and 9. We wish
to caution the reader that the ranges of values along the vertical differ between trials.

From the phase portraits, Figures 3-7, we observe that oscillations tend to decrease in intensity
and are dampened out as β increases, as δ increases, and as τ decreases. The UPR intensity havg

tends to decrease as β and δ increase, and does not vary significantly as τ varies in the experiments.
The UPR frequency ωavg, when present, is quite consistent in its values across the phase portraits
for fixed τ -values, and tends to decrease as τ increases.

From the spatiotemporal plots for parameter variations, Figures 8-9, we observe that the oscilla-
tions become less pronounced as the dimension d increases. We again observe how decreasing δ and
β can make the system oscillatory. Increasing γ makes these oscillations more pronounced. The
effect of σ on the oscillations is quite small. Increasing η makes the oscillations more pronounced
in the d = 2 case and drastically increases the s-values in d = 3. Finally, when ρ is increased,
the d = 2 system becomes more oscillatory and the d = 3 system begins to oscillate (the only
set of oscillations observed in the spatiotemporal plots). The fact that ρ has no effect in d = 1 is
unsurprising since there is no geometric d−1

r ∂r term appearing in the Laplacian. As ρ increases, the
d = 2 and d = 3 systems are more planar on the cell membrane, so it makes sense that with d = 1
being highly oscillatory in general, increasing ρ should make d = 2 and d = 3 more oscillatory.

In Figure 10, we illustrate how the oscillations and UPR intensity are weakened as the dimension
of the system d increases.

3.2 Comparison with Previous Work

Having explored many of the parameters in our model, we briefly turn to the question of how
this new model compares with the DDE model of Adimy [22] which inspired this work. The DDE
model also studied a heterodimer system with a production rate for healthy monomers with delay,
clearance rates for both the healthy and toxic proteins, and a recruitment rate to convert healthy
proteins to toxic proteins. The authors found that for low levels of delay, the system could be stable
(without oscillations) and that a bifurcation could take place by increasing the delay to yield an
oscillatory solution. With the DDEs, a locally and globally asymptotically stable disease-free steady
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Figure 3: Phase diagram at τ = 0 with d = 1 along membrane r = ρ. The horizontal axis is t, the
vertical axis is concentration with p solid blue and s dashed red. Unspecified parameter values are
γ = 1, σ = 0.02, η = 1, and ρ = 0.25.

11



Figure 4: Phase diagram at τ = 1 with d = 1 along membrane r = ρ. The horizontal axis is t, the
vertical axis is concentration with p solid blue and s dashed red. Unspecified parameter values are
γ = 1, σ = 0.02, η = 1, and ρ = 0.25.
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Figure 5: Phase diagram at τ = 2 with d = 1 along membrane r = ρ. The horizontal axis is t, the
vertical axis is concentration with p solid blue and s dashed red. Unspecified parameter values are
γ = 1, σ = 0.02, η = 1, and ρ = 0.25.
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Figure 6: Phase diagram at τ = 3 with d = 1 along membrane r = ρ. The horizontal axis is t, the
vertical axis is concentration with p solid blue and s dashed red. Unspecified parameter values are
γ = 1, σ = 0.02, η = 1, and ρ = 0.25.
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Figure 7: Phase diagram at τ = 4 with d = 1 along membrane r = ρ. The horizontal axis is t, the
vertical axis is concentration with p solid blue and s dashed red. Unspecified parameter values are
γ = 1, σ = 0.02, η = 1, and ρ = 0.25.
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Figure 8: Behavior of p with varying parameters.
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Figure 9: Behavior of s with varying parameters.
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Figure 10: Temporal variations in concentration at r = ρ in d = 1 (left), d = 2 (middle), and d = 3
(right) with p solid blue and s dashed red. Parameters are γ = 6, σ = 0, δ = β = 0.075, η = 0.9,
τ = 1.25, and ρ = 0.5.

Figure 11: Temporal variations in concentration at r = ρ with d = 1 with p solid blue and s dashed
red. From left to right: disease-free (γ = 0.2, σ = 0, δ = 0.2, η = 0.5, β = 1, τ = 0.2, and ρ = 0.25);
endemic, no oscillations ( γ = 3, σ = 0, δ = 0.2, η = 0.5, β = 0.2, τ = 0.2, and ρ = 0.25 ); endemic,
oscillations ( γ = 3, σ = 0, δ = 0.2, η = 0.5, β = 0.2, τ = 2, and ρ = 0.25 ); and endemic, no
oscillations ( γ = 3, σ = 0, δ = 1, η = 0.5, β = 0.2, τ = 2, and ρ = 0.25 ).

state was found when the reproductive ratio R0 < 1, where R0 gives the ratio of the product of the
peak production rate and recruitment rate to the product of the clearance rates. When R0 > 1,
the disease takes overand oscillatory solutions may occur.

Here, we illustrate how our system observes similar behavior. In Figure 11, we begin with
parameters for a disease-free state with small γ and large β, bring about a disease state with
increasing γ, induce oscillations with an increase in τ , and then eliminate the oscillations with an
increase in δ. We note that while the behavior is similar to the DDE model, factors like δ stemming
from diffusion also play a role. And as noted in Figures 8-10, geometric factors such as the cell size
ρ and the dimension d of the spatial domain are relevant.

3.3 Mathematical Perspective

Given the nonlinear structure in the model, especially within the delayed flux boundary condition
for P, there are open questions as to the well-posedness of the PDE system and to the solution
properties. For example, a function in g ∈ C2xC1t (Ω; (0,∞)) could exhibit unbounded behavior for x
near ∂Ω as t→∞ while retaining a bounded normal derivative. We expect solutions with intuitive,
physical bounds to exist, but this is left as a future work in mathematics. Additionally, while delay
differential equations are well-studied, having a delay in the boundary condition itself is somewhat
unique.
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We additionally observe several “bifurcations” that emerge in our system, such as the turning
off/on of oscillations as model parameters vary or going from a disease-free to diseased state. We
have 7 dimensionless parameters (excluding m) and it would be of great interest to understand their
individual effects from a rigorous, theoretical perspective. We also note that, due to the limitations
of a numerical study, some of the observed oscillations that appear to be damped may actually
be sustained at a small amplitude in the limit, and some of the systems that appear to have no
oscillations may actually oscillate. This makes further mathematical study important.

4 Biological Implications

We now focus our attention on the biological and medical insights provided by the model.

4.1 Parameter Estimation and Setup

To our knowledge, extant literature does not provide data to accurately determine the many pa-
rameters used in our model. It would be of interest to conduct experiments that directly measure
the chemical reaction rates, diffusivities, etc., in vivo. Nevertheless, we venture to obtain very loose
estimates for the parameters based on the literature to then model, as best possible, a representative
biological system. The data we use come from a variety of animal models, tissue types, and mathe-
matical models with different objectives than our own. Our parameters are listed in Table 4 in cgs
units and justifications follow in the paragraphs below. The resulting dimensionless parameters are
then given in Table 5. We only utilize one significant figure to reflect the parameter uncertainty.

Parameters DP and DS: The cellular prion protein PrPC has a molecular mass of 27− 30 kDa
[33]. We shall use 28.5 kDa. Interstitial fluid has been reported to have a range of viscosities of
0.7− 3.5 cP [34] and we shall use the mean of the extremes for a value 2.1 cP. A useful engineering
approximation is that the diffusivity of a protein is given by

D ≈ ζT

vm1/3
(33)

where ζ = 8.34× 10−8 cm2·cP·Da1/3

s·(◦K) , T is the absolute temperature, v is the solvent viscosity, and m

is the molar mass of the solute [35]. However, due to tortuosity, this is scaled down further by ι2

where ι ≈ 1.6 is the tortuosity of the brain [36]. At T = 310◦K, this yields DP ≈ 2× 10−7 cm2/s.
In a nucleated polymerization model based on mouse brain data, the mean number of monomers

in a PrPSc protein is estimated at 100 − 10000 [37]. Using the geometric mean, this suggests our
S-proteins should have a mass that is 1000 times larger than our P-proteins. Based on diffusivity
scaling with the inverse cube root of molecular mass in Equation (33), we find DS ≈ 2 × 10−8

cm2/s.

Parameters a and b: Based on mouse and hamster brain data, a nucleated polymerization model
estimated the clearance rate of PrPC at approximately 3−5 day−1 [37]. We use a value of 4 day−1 so
a ≈ 5×10−5 s−1. The rate of clearance of toxic Scrapie proteins was also estimated to be 0.03−0.2
day−1 and we use the geometric mean of the extremes yielding b ≈ 0.0775 day−1 ≈ 9× 10−7 s−1.
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Parameter Sc: For hamsters at the terminal stage of Scrapie, the concentration of Scrapie pro-
teins was measured to be about 100 µg per gram of brain tissue [38]. The density of brain tissue
is approximately 1 g/cm3 [39]. Taking the terminal concentration as the critical concentration Sc,
we have Sc = 100 µg/cm3 = 1× 10−4 g/cm3.

Parameter f : Due to the rarity of spontaneous prion diseases, we take f = 0 s−1.

Parameter c: Based on hamster data, a heterodimer model estimates the combination rate at

0.15 g brain
µg·day [40]. Again with a brain density of 1 g/cm3 [39], we find c ≈ 0.15 cm3

µg·day ≈ 2 cm3

g·s .

Parameter td: A study that infected human fibrosarcoma cells with Dengue Virus found an
increase in phosphorylated elF2α — indicating the activation of Integrated Stress Response arm of
the UPR — at approximately 6 hours post infection [41]. At at 24− 36 hours in that same study,
the inositol-requiring-protein-1 UPR pathway was activated. This suggests a timescale for the UPR
may be in the loose range of 6− 36 hours, and we use the mean of the extremes, td ≈ 21 hours or
td ≈ 80000 s.

Parameter A: The most challenging parameter to estimate is the maximum flux of P-proteins.
We first note that a heterodimer model on hamster data estimates the rate of monomer production
to be λ = 4 µg

(g brain)·day [40], which with brain density of 1 g/cm3 [39], we have λ ≈ 5× 10−11 g
cm3s .

There are approximately 2×109 neurons per cm3 [42] across many species. Neuronal perikaryal
diameters range from about 6 to 80 µm and the perikarya accounts for approximately 10% of the
neuron surface area [43]. By these estimate and with the geometric mean of the diameter lower and
upper bounds taken as a length scale, the surface area of a neuron is ∼ 5000 µm2 or 5× 10−5 cm2.

Then, as a ballpark figure for the flux of P-proteins from a single neuron, we obtain A∗ ≈
5×10−11

2×109×5×10−5 = 5 × 10−16 g
cm2·s . To this figure, we make a scaling correction. As our intent with

the model is to understand the dynamics experienced by a single typical neuron, we need to take into
account that no neuron functions in isolation and the brain is full of neurons. Neurons in a nearby
vicinity will also experience similar stresses due to the presence of S-proteins. We thereby choose
to scale A∗ by a ballpark estimate of the number of neurons that could influence any particular
neuron through their release of P-proteins.

On average, a P-protein survives a time of 1/a, resulting in a characteristic diffusive lengthscale
of

√
Dp/a ≈ 0.06 cm. Within a volume of 0.063 cm3, there are approximately 4× 105 neurons, and

we scale A∗ up by this to give a nominal flux of A ≈ 2× 10−10 g
cm2·s .

Parameter R: cells of the globus pallidus in humans can have dendritic extends of ≈ 1000 µm
and soma radii of ≈ 16.5 µm [44]. To come up with a representative length scale for an idealized
“spherical neuron”, we take a geometric mean of these length scales giving R ∼ 128 µm ≈ 0.01 cm.

Setup for Systems We focus on the behavior of our model with the estimated biological pa-
rameters. Numerical specifications for our biologically-driven study are given in Appendix B.2.
The parameters of Table 4 define characteristic scales of t̄ = 20000 s, x̄ = 0.06 cm, P̄ = 6 × 10−5

g/cm3, and S̄ = 0.0001 g/cm3. Throughout all simulations, we choose initial conditions so that the
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Parameter Value Source

DP 2× 10−7 cm2/s [33, 34, 35]
DS 2× 10−8 cm2/s [33, 34, 37, 35]
a 5× 10−5 s−1 [37]
b 9× 10−7 s−1 [37]
Sc 1× 10−4 g/cm3 [38, 39]
f 0 s−1 N/A

c 2 cm3

gs [40, 39]

td 8× 104 s [41]
A 2× 10−10 g

cm2·s
∗

[40, 39, 42, 43]
R 1× 10−2 cm [44]

Table 4: Loose estimates of parameter values. ∗: value reported is 4× 105 times the true estimated
flux of a single neuron in isolation — see explanation in text.

Parameter Value

γ 4
σ 0
δ 0.1
η 3.16
β 0.018
τ 4
ρ 0.158

Table 5: Dimensionless values for clinical model.
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dimensional values of ic and is of Eqs. (27) and (28) are

IP = P̄ x̄d ≈


4× 10−6g/cm

2
, d = 1

3× 10−7g/cm, d = 2

2× 10−8g, d = 3

(34)

IS = S̄x̄d ≈


6× 10−6g/cm

2
, d = 1

4× 10−7g/cm, d = 2

3× 10−8g, d = 3

(35)

when ip = is = 1. We also ensure the initial concentration profiles match exactly in dimensional
units across all systems.

To retain a consistent dimensional point of comparison with identical initial conditions, we
nondimensionalize according to the baselines parameters and simulate; this results in a slightly
more general nondimensionalization discussed in Appendix A.1.

4.2 Sensitivity Analysis

The capacity for medicine to modify some or most of the parameters seems likely. We therefore
consider how small, 30%, changes in each modifiable parameter in the system affect the UPR
mechanism. Specifically, we look at havg (Eq. (25)) and

Wavg := ωavg/t̄, (36)

the dimensional value of ωavg (Eq. (26)). We comment that havg is already dimensionless.
For baseline, we use the parameter values of Table 4. Then, we vary each parameter individually

by 30% up and down, keeping all others fixed at baseline. We assume cell sizes are fixed and do
not change R. The results are found in Tables 6 and 7 in differing dimensions.

In the case d = 1, the model has large havg-values, suggesting a very diseased state. In that case,
even 30% changes in many parameters do not result in large changes because so many parameters
contribute to high S-presence. We notice much larger changes with d = 2 where the S-presence is
smaller. For d = 1, the most beneficial changes were decreasing A, increasing Sc, increasing b, and
increasing DS . For d = 2, the most beneficial changes were decreasing A, decreasing c, increasing
DS , and increasing Sc. Both d = 1 and d = 2 show the same pattern of increase/decrease with the
different parameter changes. The d = 3 cases did not show notable disease prevalence with havg = 0
and no oscillations.

As for the oscillation frequency, Wavg, most of the parameters had little effect. The only
parameter that had an appreciable effect was the UPR delay td. Oscillations tended not to occur
much above d = 1, but when present in d = 1 and d = 2, they tended to be very close in value.

4.3 Case Study

It appears the drug pentosan polysulfate (PPS) can extend survival times in patients with prion
diseases [45]. One man survived 10 years with CJD while receiving that drug treatment [46].
Researchers have suggested the drug inhibiting the binding of PrPSc to PrPC or causing the frag-
mentation of PrPSc as possible mechanisms [47]. It appears PPS does not affect levels of PrPC [47].
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Parameter Changes havg (1D) havg (2D)

baseline 0.830 0.0687
DP ← 0.7DP 0.831 (+0.1%) 0.124 (+80.5%)
DP ← 1.3DP 0.828 (-0.2%) 0.032 (-53.7%)
DS ← 0.7DS 0.842 (+1.4%) 0.187 (+172%)
DS ← 1.3DS 0.812 (-2.2%) 0.0107 (-84.4%)
a← 0.7a 0.840 (+1.2%) 0.108 (+57.2%)
a← 1.3a 0.821 (-1.1%) 0.037 (-46.1%)
b← 0.7b 0.847 (+2.0%) 0.0947 (+37.8%)
b← 1.3b 0.810 (-2.4%) 0.047 (-31.6%)
c← 0.7c 0.815 (-1.8%) 0.00211 (-96.9%)
c← 1.3c 0.838 (+1.0%) 0.140 (+103.8%)
A← 0.7A 0.772 (-7.0%) 0.000128 (-99.8%)
A← 1.3A 0.860 (+3.6%) 0.218 (+217.3%)
td ← 0.7td 0.836 (+0.7%) 0.0696 (+1.3%)
td ← 1.3td 0.823 (-0.8%) 0.0678 (-13.5%)
Sc ← 0.7Sc 0.861 (+3.7%) 0.160 (+132.9%)
Sc ← 1.3Sc 0.792 (-4.6%) 0.0197 (-71.3%)

Table 6: Values of havg under various parameter changes with changes relative to baseline in
parentheses. The havg values were 0 for all 3D cases.

Parameter Changes Wavg [µHz] (1D) Wavg [µHz] (2D)

baseline 3.85 0
DP ← 0.7DP 3.91 0
DP ← 1.3DP 3.79 0
DS ← 0.7DS 3.79 4.06
DS ← 1.3DS 3.87 0
a← 0.7a 3.84 0
a← 1.3a 3.85 0
b← 0.7b 3.78 0
b← 1.3b 3.80 0
c← 0.7c 3.74 0
c← 1.3c 3.92 4.10
A← 0.7A 3.81 0
A← 1.3A 3.87 4.20
td ← 0.7td 5.19 0
td ← 1.3td 3.02 0
Sc ← 0.7Sc 3.76 4.03
Sc ← 1.3Sc 3.88 0

Table 7: Values of Wavg at various parameter changes. No oscillations were noted for any 3D cases.
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Figure 12: Variations in havg and Wavg at various potencies.

Other drugs have also been studied where PrPC levels were made significantly lower — through
chloropromazine (CPZ) and U18666A [47].

To speculate quantitatively on drug treatments in our model, we consider a hypothetical con-
coction of drugs that (1) increases the clearance rate of PrPSc, (2) increases the diffusivity of PrPSc,
(3) reduces the capacity of PrPSc to convert PrPC, and (4) reduces the production of PrPC. Items
(1)-(2) are inspired by the speculation on the PPS drug, where we assume fragmented PrPSc will be
cleared more readily and diffuse more easily. Item (3) is again a possible benefit of PPS, and item
(4) is based on the possible effects of CPZ and U18666A. Numerically, we investigate how havg and
Wavg change as the drug “potency” changes. We define the potency λ ∈ [1,∞) so that at potency
λ, the values of Ds and b are both increased by a factor λ relative to baseline (Table 4) and the
values of c and A are both decreased by a factor of λ relative to baseline (Table 4). The resulting
outcomes are found in Figure 12. We observe that havg is nearly zero and oscillations stop above
λ ≈ 2.4.

4.4 Clinical Relevance

At this point, we discuss the potential clinical significance of our model. From Table 6, we note
that the change in each dimensional parameter has a corresponding change in the strength of the
UPR response havg. This suggests that medical interventions that increase the diffusivities of either
or both proteins; reduce the P-S conversion rate; enhance the rate that either or both proteins are
cleared; shorten the UPR delay; decrease the maximum flux of P; and increase the threshold at
which the UPR is triggered, may benefit patients clinically. The most significant reductions in the
UPR intensity seem to come about through decreasing the maximum rate P is released, decreasing
the recruitment rate, increasing the diffusivity of S, increasing the rate at which S is cleared, and
increasing the threshold sensitivity of the UPR to S. We note these results may vary depending on
the point about which sensitivity is studied. We remark that based on the possible effects of drugs
used in prion disease treatment to date, their methods of action are strongly aligned with these
targets.

An experimentalist may be able to identify signs of the UPRmechanism through reduced produc-
tion of PrPC. Based on our simulations, we expect that oscillations will become more pronounced
when the relative diffusivity of PrPSc relative to PrPC is small, the relative clearance rate of PrPSc

relative to PrPC is small, and the UPR delay is large relative to the PrPC clearance time. It is also
expected that the temporal frequency of oscillations will decrease as the UPR delay time increases
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and that for large enough diffusivities or clearances of PrPSc, the oscillations may entirely fade
away.

4.5 Model Limitations

To arrive at the system we studied, we had to make several assumptions. A proper understanding of
the resulting limitations is indispensable for healthy scientific scepticism in interpreting the model
results and in developing better, more insightful models. We include a list of limitations below
along with possible remedies.

• Only two proteins: instead of including multitudes of oligomeric states and stable nuclei,
we chose to only include P- and S-proteins. A more refined model could consider assortments
of assembly sizes, with associated mass-dependent diffusivities and clearance rates.

• Only one neuron: we centered our model on one neuron, but it is possible to consider
multiple neurons, with associated positions in space so that species that diffuse away from
one neuron can affect another.

• Simplified neuron geometry: we used simplified geometries for the neuron shape. Due
to the long axons relative to the cell body size, radial symmetry is not accurate. Through a
finite element approach, a more complicated geometry could be tackled.

• Constant reaction rates: through the ageing process, the rates of misfolding or clearance,
among other parameters, may vary. It is possible to consider time-dependent parameters as
well.

• No membrane-bound P-protein: we did not consider a form of P-protein that is bound
to the cell membrane. Further refinements could add this.

• Protein production not impacted by UPR: the model could be adapted to include a
reduction in maximal P-protein production due to cumulative effects of the UPR. Likewise,
since the UPR may be a mechanism of cell death, the model could be extended to determine
when the neuron dies.

• Only one cell type: there are many cell types in the brain, but we focused only on neurons.
By including other cell types, we could better model the effects of stress and inflammation.

• Lack of data-driven parameters: due to the uncertainty of the different model param-
eters, we focused mostly on the qualitative aspects of the model. Our clinical exploration
study provided interesting insights with regards to possible medical treatments, but accurate
measurements of parameters are needed.

However, even with these limitations, our simple approach already highlights some important
features of these complex mechanisms, as well as the role of key parameters involved.

5 Conclusion and Future Work

In this paper, we presented a nonlinear, coupled system of reaction-diffusion equations with non-
linear, delayed boundary conditions to model the Unfolded Protein Response in a simplified setting
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with representative healthy and unhealthy proteins. We found that oscillations in neuronal activity
may be found under certain parameters and that through modifying certain biological parameters
it may be possible to lessen intensity of the UPR.

To extend our work and make it more applicable to neurological systems and the study of
neurodegenerative diseases, we consider obtaining accurate estimates for the model parameters
based on clinical and experimental data, incorporating additional biological features and realism
(see limitations section), and coming to a theoretical understanding of the effects of each model
parameter.
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A Numerical Method

A.1 Different Nondimensionalization

With scales t̄, x̄, P̄ , and S̄ chosen from the baseline parameters, the dimensionless system, more
generally, takes the form

p,t = δp(p,rr +
d− 1

r
p,r)− γps− (α+ σ)p, (37)

s,t = δs(s,rr +
d− 1

r
s,r) + ηγps+ ησp− βs, (38)

p,r|r=ρ =
−θ

1 + (µs(ρ, t− τ))m
(39)

havg = lim
Υ→∞

∫ Υ

0

(1− 1

1 + (µs(ρ, t− τ))m
)dt, (40)

where we have suppressed equations that do not change their form. Here, δp = t̄DP

x̄2 , γ = S̄t̄c,

α = t̄a, σ = t̄f, η = P̄
S̄
, δs = t̄DS

x̄2 , β = t̄b, ρ = R
x̄ , θ = x̄A

P̄DP
, µ = S̄

Sc
, and τ = td

t̄ . With the baseline
parameters, δp = α = θ = µ = 1.

A.2 Implementation

We solve the dimensionless system of Appendix A.1. The domain for r, [ρ,∞), is unbounded
and we need to truncate the computational domain at some value, r∞. From a back-of-the-
envelope calculation, we note that for s = 0, a one-dimensional steady state solution is p(r) =

1√
1+σ

exp(−
√
1 + σ(r − ρ)) ≤ exp(−(r − ρ)). And if we impose p(r∞) = 0 with r∞ = ρ + 7, the

truncation error is ∼ 0.0009. And p and s are coupled together, with p being the only source for s.
Solutions tend to decay faster in 2 and 3 dimensions. Thus, for O(1) solutions and data, choosing
r∞ = ρ+ 7, we anticipate associated truncation errors to be ∼ 0.001 in the far field.
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We choose positive integers Nr and Nt to be the meshing parameters in space and time. For a
computational domain running from r = ρ to r = r∞ and t = 0 to t = t∞, we define the spatial
and temporal step sizes by

∆r =
r∞ − ρ

Nr
, ∆t =

t∞
Nt

.

Then for i = 0, 1, 2, ..., Nr and j = 0, 1, ..., Nt, we define ri = ρ + i∆r and tj = j∆t. We denote

pji as the numerical approximation to p(xi, tj) and sji as the numerical approximation to s(ri, tj).
We furthermore take the delay τ = k∆t for some k ∈ {0, 1, 2, . . .}. At step j, second-order spatial
discretizations of the diffusion and reaction terms for p and s are given by

M̄p = δp
pj+1
i+1 − 2pj+1

i + pj+1
i−1

∆r2
− γpj+1

i sji

− (1 + σ)pj+1
i , 0 ≤ i ≤ Nr − 1, j = 0, 1, 2, ..., (41)

M̄s = δs
sj+1
i+1 − 2sj+1

i + sj+1
i−1

∆r2
+ ηγpjis

j+1
i

+ ησpji − βsj+1
i , 0 ≤ i ≤ Nr − 1, j = 0, 1, 2, ..., (42)

respectively.
Handling the derivative conditions at i = 0 requires ghost points at the fictitious position

r−1 = ρ−∆r, and the far-field at i = Nr, zero values are imposed. Thus:

pjNr
= sjNr

= 0, j = 0, 1, 2, ... (43)

pj1 − pj−1

2∆r
=

−θ
1 + (µsj−k

0 )
m , j = 0, 1, 2, ... (44)

sj1 − sj−1

2∆r
= 0, j = 0, 1, 2, ... . (45)

To handle the delay, we assume s−1
0 , s−2

0 , . . . , s−k
0 are given where τ = k∆t. For initial conditions,

we assume pi
0, si

0 are given for 0 ≤ i ≤ Nr.
These equations can be converted to matrix-vector form. We denote pj = (pj0, p

j
1, ..., p

j
Nr−1)

⊺

and sj = (sj0, s
j
1, ..., s

j
Nr−1)

⊺. Let I ∈ RNr×Nr be the identity matrix, D2 ∈ RNr×Nr be given by

D2 =
1

∆r2



−2 2 0 · · · 0 0
1 −2 1 · · · 0 0

0
. . .

. . .
. . .

...
...

... · · ·
. . .

. . .
. . .

...
0 0 · · · 1 −2 1
0 0 · · · 0 1 −2


,
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D1 ∈ RNr×Nr be given by

D1 =



(d−1)
2∆r



0 0 0 · · · 0 0

−1/r1 0 1/r1 · · · 0 0

0
. . .

. . .
. . .

...
...

... · · ·
. . .

. . .
. . .

...

0 0 · · · −1/rNr−2 0 1/rNr−2

0 0 · · · 0 −1/rNr−1 0


, d = 2, 3,

0, d = 1,

and V j ∈ RNr×1 be given by

V j = (
2θδp

∆r(1 + (µs0j−k)m)
, 0, 0, . . . , 0)⊺ +

{
(

−θδp(d−1)
ρ(1+(µs0j−k)m)

, 0, 0, . . . , 0)⊺, d = 2, 3,

0, d = 1.

Defining functions Mp,Ms : RNr×1 → RNr×Nr via

Mp(s) = δp(D2 +D1)− γ diag(s)− (σ + α)I

Ms(p) = δs(D2 +D1) + ηγ diag(p)− βI,

we can define a weighted semi-implicit first-order time-stepping via

pj+1 − pj

∆t
= w(Mp(s

j)pj+1 + V j+1) + (1− w)(Mp(s
j)pj + V j)

sj+1 − sj

∆t
= wMs(p

j)sj+1 + (1− w)Ms(p
j)sj + ησpj

where 0 ≤ w ≤ 1. With w = 0 this is the Euler method. With w = 1, this is a standard semi-implicit
method. We take inspiration from the implicit Crank-Nicholson method [48] and take w = 1/2. In
practice, we find w = 1/2 yields smaller errors with our semi-implicit approach. The semi-implicit
systems require simple linear solves of two systems of size Nr. In contrast, Crank-Nicholson would
require nonlinear solves of systems of size 2Nr and we find that the semi-implicit method is faster.
When k = 0 (no delay), we compute V j+1 by first estimating sj+1 with the Improved Euler method.

Overall our method, as subsequently validated in Appendix A.4, is second order in space and
first order in time.

A.3 Frequency

To estimate the mean frequency over a finite computational window, we make some modifications.
Because s can take a while to peak and a final peak may take place sufficiently before t∞ to
contribute a non-negligible error, we seek to estimate the mean peak-to-peak frequency of s(ρ, t−τ).
But because oscillations may stop altogether, we need to avoid giving a frequency for situations
where s(ρ, t− τ) peaks a few times early on and then stops. If there N ≤ 1 peaks for s(ρ, t− τ) on
(0, t∞), we define ωavg = 0 since a mean peak-to-peak interval cannot be computed for the frequency.
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Assuming there are N ≥ 2 peaks, let them occur at the times 0 < t1 < t2 < ... < tN < t∞. We
define a proxy for the mean frequency as

ω̂ =
N − 1

tN − t1
.

Then we define

ωavg =

{
ω̂, t∞ ≤ tN +max1≤i≤N−1(ti+1 − ti)

0, otherwise.
(46)

Intuitively, if the system is continuing to oscillate, then the end of the computational time t∞,
should occur before the estimated latest possible time for the (N + 1)st peak (otherwise there
should have been N + 1 peaks). If this condition fails, we define the frequency to be 0, indicating
the system stopped oscillating.

A.4 Validation of Numerical Scheme

Throughout the validation and simulations, the initial conditions prescribed are those of Equations
(30)-(32).

To validate the convergence rates, we shall use mesh refinements. Let Nr and Nt be the meshing
parameters. Denote Q(Nr, Nt)

j
i = (pji , q

j
i )

⊺ for 0 ≤ i ≤ Nr − 1, 0 ≤ j ≤ Nt} to be the numerical
approximation at r = ri and t = tj over the chosen grid. We define the operations

ΛrQ(Nr, Nt) = max
0≤i≤Nr−1
0≤j≤Nt

||Q(Nr, Nt)
j
i −Q(2Nr, Nt)

j
2i||∞

ΛtQ(Nr, Nt) = max
0≤i≤Nr−1
0≤j≤Nt

||Q(Nr, Nt)
j
i −Q(Nr, 2Nt)

2j
i ||∞

If qji = q(ri, tj) = (p(ri, tj), s(ri, tj))
⊺ is the exact solution on the same mesh as Q(Nr, Nt) then in

the asymptotic limit, we anticipate that

max
i,j
||Q(Nr, Nt)

j
i − qji ||∞ = O(∆r2) +O(∆t)

and we make the ansatz that

Q(Nr, Nt)
j
i − qji = H(ri, tj)/N

2
r +K(ri, tj)/Nt

for O(1) error functions H and K. From this, we have

Q(Nr, Nt)
j
i −Q(2Nr, Nt)

j
2i =

3H(ri, tj)

4N2
r

Q(Nr, Nt)
j
i −Q(Nr, 2Nt)

2j
i =

K(ri, tj)

2Nt
.

Finally, assuming the meshes are refined enough, we have that

ΛrQ(Nr, Nt) =
3H∗

4N2
r

ΛtQ(Nr, Nt) =
K∗

2Nt

29



d mr br H∗

1 −1.987 6.275 708.292
2 −2.006 7.177 1744.776
3 −1.999 5.362 284.106

Table 8: Spatial convergence results.

d mt bt K∗

1 −1.051 5.812 668.522
2 −0.999 4.282 144.800
3 −0.971 2.629 27.720

Table 9: Temporal convergence results

where H∗ = sup[ρ,r∞]×[0,t∞] ||H||∞ and K∗ = sup[ρ,r∞]×[0,t∞] ||K||∞.
In our validation, we focus our attention on simulations near the biologically relevant parameters

of Table 5 and the phase diagrams of Figures 3-7. With t∞ = 80, we choose γ = 5, σ = 0.01,
δ = 0.05, β = 0.01, η = 1, τ = 5, and ρ = 0.15.

Numerically, we fix Nt = 214 and vary Nr over the values 2i where i = 7, 8, 9, 10 to compute
Λr-values. Then we fix Nr = 210 and vary Nt over the values 2

j where j = 11, 12, 13, 14 to compute
Λt-values. We have

log ΛrQ(Nr, Nt) = (log(3/4) + log(H∗))− 2 logNr = br +mr logNr

log ΛtQ(Nr, Nt) = (log(1/2) + log(K∗))− logNt = bt +mt logNt

for slopes mr and mt we expect to be close to −2 and −1, respectively, and intercepts br and bt.
The values H∗ and K∗ can be found from br and bt. From lines of best fit, we estimate these values
in Tables 8 and 9. Convergence plots are found in Figure 13.

These results suggest that to keep the asymptotic errors in both space and time below 0.005,
we can use meshes as presented in Table 10.

B Numerical Specifications

B.1 Model Investigation

B.1.1 Phase Diagram (Figures 3-7)

For a computational domain, we used [ρ, r∞] with ρ = 0.25 and r∞ = 7.25 for r, and [0, t∞] with
t∞ = 80 for t. We used r∗ = (3ρ + r∞)/4, ip = is = np = 1. Our meshing parameters were those

d Nt Nr

1 150000 400
2 30000 600
3 6000 300

Table 10: Estimates of mesh parameters to keep asymptotic errors ≤ 0.005.
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Figure 13: Plots of convergence with best fit.
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d Nt Nr

1 140000 400
2 120000 500
3 80000 300

Table 11: Estimates of mesh parameters to keep asymptotic errors ≤ 0.005.

presented in Table 10. The switch parameter m = 10 was used.

B.1.2 Spatiotemporal Parameter Variations (Figures 8-10)

For a computational domain, we used [ρ, r∞] (with ρ as specified in the figures) with r∞ = ρ+7 for
r, and [0, t∞] with t∞ = 80 for t. We used r∗ = (3ρ + r∞)/4, ip = is = np = 1. To ensure similar
accuracy as in the phase diagram, we used meshing parameters outlined in Table 11. The switch
parameter m = 10 was used.

B.1.3 Comparison with Prior Work (Figure 11)

For a computational domain, we used [0.25, r∞] with r∞ = ρ + 7 for r, and [0, t∞] with t∞ = 80
for t. We used r∗ = (3ρ+ r∞)/4, ip = is = np = 1. We used meshing parameters outlined in Table
10. The switch parameter m = 10 was used.

B.2 Biological Investigation

B.2.1 Generation of Tables 6-7 and Figure 12

For a computational domain, we used [ρ, r∞] with ρ found in Table 5 and r∞ = ρ + 7 for r and
[0, t∞] with t∞ = 80 for t. We used r∗ = (3ρ+r∞)/4. Our meshing parameters were those presented
in Table 10. The switch parameter m = 10 was used. In this application, ip = is = 1 again, but np

varied depending on the parameter that changed.
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