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Abstract—This paper introduces a novel type of sequences
called C4-sequences. C4-sequences share similar optimal auto-
correlation properties with Zadoff-Chu sequences. However, C4-
sequences offer the additional advantage of being also optimal
(in the sense of minimal Euclidean distance between sequences)
for four truncation lengths, providing flexibility in adapting to
different channel conditions without compromising performance.
Moreover, unlike Zadoff-Chu sequences, the points of a con-
stellation associated with a C4-sequence are not limited to the
unit circle. This opens up possibilities for achieving shaping
gain, leading to enhanced spectral efficiency. By combining a
truncated C4-sequence modulation as an inner code with a fixed-
rate non-binary outer code, flexible and performant rate-adaptive
communication systems can also be achieved. Finally, the notion
of C4-sequences can be generalized.

Index Terms—Low SNR, Rate-adaptive, CCSK, truncated,
sequence, short message.

I. INTRODUCTION

THe Cyclic Code Shift Keying (CCSK) modulation is a
widely recognized spreading technique [1], utilized to en-

hance the spectral efficiency of a spreading sequence of length
q. It achieves this by employing its q circularly rotated versions
to encode m = log2(q) bits per sequence transmission. In
addition, [1] suggested truncating the CCSK sequence to its
first l elements in order to increase the spectral efficiency.
Recently, Marchand et al. introduced a coded-modulation
scheme that integrates a fixed-rate non-binary outer code with
a variable-rate inner code based on variable-length truncated
CCSK modulation. They utilize a binary CCSK sequence in
[2] and a q-ary CCSK sequence in [3] to devise efficient
rate-adaptive communication schemes. In [4], the q-CCSK
sequences found in [3] are generalized to define the class of
C4-sequence. This paper is an extension of [4]. It presents
a systematic mathematical construction method for generating
optimal q-ary CCSK sequences of length q, which are referred
to as C4-sequences. The term “C” stands for the first letter
“C” of the four words: “Constellation”, “Cross”, “Circular”,
and “Correlation”. It also refers to the four truncation lengths
that yield an inner code with an optimal distance property,
namely q/4, q/2, 3q/4, and q. In addition, the paper shows
that when the sequence is not truncated (i.e., a sequence
of length q), C4-sequences exhibit the same autocorrelation
property as the well-known Zadoff-Chu (ZC) sequences [5],
[6] or the chirp spread spectrum (CSS) modulation used in
LoRaWAN system (Long Range wide area network [7]). The
current paper gives the demonstrations that were not given

in [4]. It also describes a method to optimize C4-sequence,
and presents new simulation results and theoretical results
on the asymptotic spectral efficiency of C4-sequences and
the distances between two distinct truncated C4-sequences.
Finally, it generalizes C4-sequences to C3-sequences or C5-
sequences, or more generally, to any Cn sequences, with n an
integer greater than 1.

The rest of the paper is organized as follows. Section II
defines the C4-sequence and presents its main properties.
Section III is dedicated to the optimization of a C4-sequence
for a specific objective. Section IV introduces the truncated
C4-sequence and its use in a concatenated coded modulation
system consisting of a fixed rate non-binary outer code and a
variable length truncated C4-sequence as inner code. Section
V deals with the distance properties of a set of C4-sequences
for multi-user applications, while Section VI generalizes C4-
sequences to arbitrary Cn sequences. Finally, Section VII
concludes the paper.

Notations: The complex vector x =
(x(0), x(1), . . . , x(n), . . .) is a q-periodic infinite vector
of complex numbers. The vector xa represents the vector x
left-shifted by a positions, i.e., for all n, xa(n) = x(n+a). The
vector xa+l−1

a denotes the truncated vector obtained by taking
the first l values of xa, i.e., xa+l−1

a = (x(n+ a))n=0,1,...,l−1.
The notation ⟨x, y⟩ represents the complex scalar product
over a period between the vectors x and y. It is defined as
⟨x, y⟩ =

∑q−1
n=0 x(n)y(n)

′, where y(n)′ denotes the complex
conjugate of y(n). The inter-correlation vector between x and
y is denoted Rxy, where its τ th component Rxy(τ) equals
to Rxy(τ) = ⟨x, yτ ⟩ =

∑q−1
n=0 x(n)y(n + τ)′. Finally, R(x)

represents the real part of x.

II. DEFINITION AND PROPERTIES OF THE C4-SEQUENCES

This section reminds the definition of C4-sequences along
with certain characteristics [4]. In this study, C4-sequences of
length q = 2m are under consideration, where m is a small
integer. Given a C4-sequence of length q, it is feasible to
generate q distinct sequences denoted as xa, where a ranges
from 0 to q − 1, thereby encoding log2(q) = m bits of
information. The variable p is introduced as p = q/4, or
equivalently p = 2m−2, which holds specific significance.
It is worth mentioning that there exist several equivalent
methods to define a C4-sequence, including its auto-correlation
function, discrete Fourier transform (DFT) function, or directly
through its time-domain distance property. In this paper, a
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C4-sequence is defined based on its circular auto-correlation
property. Suppose x represents a sequence of length q. Its
circular auto-correlation, denoted by Rxx, is a vector of length
q defined as

Rxx(τ) = ⟨x, xτ ⟩, τ = 0, 1, . . . , q − 1. (1)

Definition 2.1: A complex sequence of constellation points
x = (x(n))n=0,1,...,q−1, q ⩾ 4, is said to be a C4-sequence if
and only if its circular auto-correlation Rxx vector verifies

Rxx(τ) =

{
qj−ck, for τ = kq/4, k = 0, 1, 2, 3

0 otherwise,
(2)

with c a sign value, i.e., c ∈ {−1, 1} and j the imaginary
number verifying j2 = −1. By convention, when c = 1,
the C4-sequence is referred to as clockwise C4-sequence
since the non-null values of Rxx(τ) take sequentially the
values Rxx(0) = q, Rxx(p) = −jq, Rxx(2p) = −q and
Rxx(3p) = jq (i.e., a clockwise rotation direction). Symmet-
rically, when c = −1, the non-null value of Rxx(τ) takes
the value Rxx(0) = q, Rxx(p) = jq, Rxx(2p) = −q and
Rxx(3p) = −jq. This type of sequences is thus referred to as
a counter-clockwise C4-sequences.

Theorem 2.2: A length q sequence x is a C4-sequence if
and only if its Discrete Fourier Transform (DFT) X = F(x)
verifies, for all k = 0, 1, . . . , q − 1

|X(k)|2 =

{
4q if (k + c) mod 4 = 0,

0 otherwise,
(3)

with c ∈ {−1, 1}.
Proof: Consider a C4-sequence x of length q. By computing
the circular auto-correlation Rxx defined in (2) in the fre-
quency domain, the following expression is obtained

Rxx = F−1(F(x)⊙F(x)′), (4)

where ⊙ represents the term-by-term component multiplica-
tion of the two vectors. Considering the DFT of both terms in
(4) yields F(Rxx) = (F ◦ F−1)(F(x)⊙F(x)′), and thus

F(Rxx) = F(x)⊙F(x)′ = X⊙ X′. (5)

Using the formal expression of the kth terms F(Rxx)(k)
of F(Rxx) and by permuting the left and the right terms, (5)
gives

X(k)X(k)′ = |X(k)|2 =

q−1∑
τ=0

Rxx(τ)e
−2πjτk

q . (6)

According to (2), Rxx(τ) contains only 4 non-null terms
for τ = 0, q/4, q/2 and 3q/4, thus, (6) gives

|X(k)|2 =

3∑
m=0

qj−cme
−2πjm

q
4
k

q (7)

= q

3∑
m=0

j−(k+c)m. (8)

According to (8), |X(k)|2 is equal to the product of q with
the sum of the first 4 terms of a geometric series with a
common ratio ρ = j−(k+c). This sum equals 4 if the common
ratio ρ is equal to 1, which occurs when (k + c) mod 4 = 0,
and the sum equals 0 otherwise. Reciprocally, if X = F(x)
verifies (3), then (4) implies that Rxx verifies (2), which gives
x as a C4-sequence □

Theorem 2.2 thus provides an explicit method for construct-
ing a length-q C4-sequence x. In fact, for k + c = 0 mod 4,
|X(k)|2 = 4q implies that X(k) is a point of the complex
circle with radius

√
4q, so it can be expressed as X(k) =

√
4qe

2πjs(k)
q with s(k) ∈ [0, q[. Starting from a seed vector s of

length q/4, algorithm 1 defines the C4-sequence construction
function x = G(s). In Algorithm 1, the operator kron(a,b)

Algorithm 1 Generation of a C4-sequence of length q by the
function x = G(s)

Input A seed vector s of size p = q/4 composed of q/4 reals
on the interval [0, q[, a value of c in the set {−1, 1}.
Output A clockwise (c = 1) or counter-clockwise (c = −1)
C4-sequence x of length q

for k ← 0 to q/4− 1 do
Es(k)←

√
4q × e2πj

s(k)
q

end for
X← kron(Es, [0, I0(c+ 1), 0, I0(c− 1)])
x← F−1(X)
Return x

represents the Kronecker product between vectors a and b.
The function I0(x) is the 0-indicator function, i.e. it takes the
value 1 if x = 0, otherwise 0. Thus, c = 1 (clockwise C4-
sequence) yields a Kronecker product performed on the vector
[0, 0, 0, 1], while c = −1 (counter-clockwise C4-sequence)
yields a Kronecker product performed on the vector [0, 1, 0, 0].

Figure 1 shows the clockwise length-32 C4-sequence
x = G(s) obtained with the seed sequence s =
(25, 23, 0, 11, 11, 24, 8, 22), where G(s) is the function de-
fined in Algorithm 1. The plot labels the first five elements
x(0), x(1), . . . , x(5) and the last element x(31) of the C4-
sequence. Each successive pair of points in x is connected by
a line, and the last point x(31) is also connected to the first
point x(0).

Prior to presenting a theorem that explicitly asserts the op-
timality of the C4-sequences, several lemmas are established.

Lemma 2.3: The square of the ℓ2-norm of a C4-sequence x
of length q is given by ∥x∥2 = q. This implies that the average
energy of the components of x is equal to 1.
Proof: This constitutes a direct application of Parseval’s
theorem, which asserts that

∑q−1
n=0|x(n)|2 = 1

q

∑q−1
k=0|X(k)|2.

According to Theorem 2.2, ∥X∥2 contains precisely q
4 non-

zero values, each equal to 4q. Thus, ∥X∥2 = q
4 × 4q = q2,

thereby leading to ∥x∥2 = q □
Lemma 2.4: Let x be a C4-sequence of length q, Then, for

all n and for all k ∈ {0, 1, 2, 3}, x(n+ kq/4) = j−kcx(n).
Proof: The proof of this lemma is given in APPENDIX I.

This lemma implies that x exhibits a 4-fold rotational
symmetry, meaning it remains unaltered under a rotation of
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Fig. 1. Example of randomly generated C4-sequence

π/2, as depicted in Fig. 1.
Definition 2.5: Let us consider a vector (or sequence) x

of length q. The notation xa+l−1
a denotes the subsequence of

length l of x that spans from index a to index a+ l − 1.
From the definition of a length l truncated sequence, the

following theorem is derived:
Theorem 2.6: Let x be a C4-sequence of length q and let p =

q/4. For any l ∈ {p, 2p, 3p, 4p} and any pair (a, b) of integers
between 0 and q−1, a ̸= b⇒

∥∥xa+l−1
a − xb+l−1

b

∥∥2 ⩾ 2l. Ad-
ditionally, if b− a ̸= 2p (mod q) then

∥∥xa+l−1
a − xb+l−1

b

∥∥2 =
2l.
Proof: The proof is given in APPENDIX II □

Let the Normalized Minimum Square (NMS)
distance D2

l (x) between two sequences from the set
{xa+l−1

a }a=0,1,...,q−1 [3] be defined as

D2
l (x) =

1

l
min

a,b,a̸=b
{
∥∥xa+l−1

a − xb+l−1
b

∥∥2}. (9)

According to Theorem 2.6, D2
l (x) = 2 for l ∈

{p, 2p, 3p, 4p = q}. Fig. 2 illustrates the variation of the
NMS-Distance D2

l (x) as a function of the truncation length
l for the C4-sequence x shown in Fig. 1. It also gives, for
comparison, the evolution of D2

l (z), with c the ZC sequence
[5], [6] defined by c = (exp(πjn2/32))n=0,1,...,31 (note that
it is also equivalent to the length-32 CSS sequence).

In summary, C4-sequences are easy to construct and are
optimal for truncation lengths p, 2p, 3p, and 4p. Before dis-
cussing the application of truncated sequences, the following
section focuses on the optimization of the C4-sequence for a
given objective.

III. OPTIMIZATION OF C4-SEQUENCES

As described in Algorithm 1, it is easy to construct a
C4-sequence of size q from a vector random vector of size
p = q/4. However, each C4-sequence has its own distinct
characteristics. They can thus be optimized according to a
criterion (or set of criteria) that is application dependent. In
this paper, three objective functions are considered: ψD(x)
the weighted sum of the NMS distances, ψI(x) the mutual
information (MI) of the l = 1 truncated C4-sequence for
a given signal-to-noise ratio (SNR) and ψU (x), the peak to
average power ratio (PAPR) of the C4-sequence.

4 8 12 16 20 24 28 32
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C4-sequence
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Fig. 2. Normalized square minimum distance D2
l (x) as a function of l for

the C4-sequence given in Fig. 1.

A. C4-sequence optimization with Greedy algorithm

Considering an objective function ψ(x) to be maximized, it
is possible to use a greedy search algorithm on the seed vector
s to maximize ψ(x), with x = G(s). Algorithm 2 introduces
the algorithm used in the paper. First, the step θ is fixed to a
size θ = p, then a modification of each element of s(i) of s is
tested with s(i)+θ and s(i)−θ. If a modification improves the
objective function, it is kept. If a local optima is reached, the
value of θ is halved and the process is repeated. The process
ends when the value of θ is small enough (arbitrarily set to
2−4 in Algorithm 2).

Note that Algorithm 2 is one of many possible algorithms
for optimization and may not be the most efficient. However,
it is relatively simple to implement and fast to execute.
Its performance can be significantly improved by running it
several times with different initial seed sequences and selecting
the best result.

B. Maximizing NMS distances for small l values

In a first experiment, the cost function ψD(x) is given as

ψD(x) = 6D2
1(x) + 3D2

2(x) + 2D2
3(x) +D2

6(x), (10)

to achieve a trade-off between maximization of NMS distance
with truncation lengths of l = 1, 2, 3 and 6. The best C4-
sequence xD obtained with this cost function has a score
of ψD(xD) = 2.85. The values of D2

l (xD) for the targeted
truncation lengths l are provided in Table I.

C. Optimization of the Mutual-information for l = 1

In a second experiment, we utilize the cost function
ψI(x,SNR) defined as the MI obtained with the C4-sequence
with truncation length l = 1 in the complex AWGN channel
with a Signal-to-Noise Ratio (SNR). Since this sequence
comprises the set of q distinct points that support the C4-
sequence, it is termed the C4-constellation. The evaluation of
the cost function ψI(x,SNR) is achieved using the method
described in [8].
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Fig. 3. Constellations associated to C4-sequences optimized for 0 dB, 5 dB and 10 dB of SNR.

Algorithm 2 Greedy search algorithm
Input An initial seed vector s of size p = q/4, the nature of
the C4-sequence x to optimize (clockwise (c = 1) or counter-
clockwise (c = −1)) and the objective function ψ(x) to be
maximized.
Output Optimized C4-sequence xopt for the objective function
ψ(x).
θ ← p; % Initial step of the greedy search.
sopt ← s; xopt ← G(sopt); ψopt ← ψ(xopt);
while θ > 2−4 do

improved ← true;
while improved do

improved = false;
for i = 0 to p− 1 do

sn ← s;
sn(i)← s(i)− θ; xn ← G(sn);
if ψ(xn) > ψopt then

improved ← true; ψopt ← ψ(xn);
sopt ← sn; xopt ← xn;

end if
sn(i)← s(i) + θ; xn = G(sn);
if ψ(xn) > ψopt then

improved = true; ψopt ← ψ(xn);
sopt ← sn; xopt ← xn;

end if
s← sopt;

end for
end while
θ ← θ/2;

end while
Return xopt

Fig. 3 shows 3 different C4-constellations optimized at
different SNR. Fig. 3.a) shows the obtained constellation
optimized at 0 dB of SNR. For this SNR, the MI is 0.9998
bit/s/Hz, very close to the channel capacity of 1 bit/s/Hz.
Note that 8 points are regularly distributed around an outer
circle. Fig. 3.b) shows the obtained constellation optimized
for 5 dB of SNR. For this constellation, the achieved MI is
2.0536 bit/s/Hz, again very close to the channel capacity of
2.057 bit/s/Hz. The shape of the constellation is different from

the 0 dB case (outer circle with 12 points). Finally, Fig. 3.c)
shows the optimized constellation for 10 dB of SNR, with a MI
of 3.4192 bit/s/Hz for a channel capacity of 3.4594 bit/s/Hz.
Again, the shape of the constellation is different, with the dots
distributed more regularly in space.

D. Optimization of the PAPR: Unitary C4-sequence
Peak-to-average power ratio (PAPR) can be an impor-

tant feature of a low-cost/low-power wireless communication
scheme. In fact, a low PAPR is desirable because it allows
the RF power amplifier to be used at its maximum effi-
ciency. In the case of a C4-sequence x, the average energy
is one by construction, so the PAPR β(x) of x is defined as
β(x) = maxi=0,1,...,q−1(|x(i)|2). Thus, the minimum PAPR
is obtained when all points of the C4-sequence are on the
unit circle: in this case, β(x) = 1 (unitary C4-sequence).
Using the heuristic optimization process with the cost function
ψU (x) = −β(x) allows generating C4-sequences with a PAPR
slightly higher than 1 (typically 1.12), but not to reach the min-
imum value. However, in [4] a formal technique is proposed
to construct unitary C4-sequences directly with PAPR equal
to 1. This result shows that the implemented greedy search
algorithm (Algo. 2) is not optimal.

The construction of a unitary C4-sequence xu can be
obtained as xu = G(su) (see Algo. 1), where su is a
constrained seed sequence, called a unitary seed sequence
(since it generates a unitary C4-sequence). For q = 22t, (with t
a positive integer) the kth element su(k), k = 0, 1, . . . , 22t−2

of the unitary seed vector su can be defined by

su(k) = d(rk) + qkγ(rk)2
t+1, k = 0, 1, . . . , 22t−2 − 1, (11)

with rk = k mod 2t−1 and qk = (k − rk)/2
t−1 (thus,

k = qk2
t−1 + rk), d a real vector of size 2t−1 taking its

values in the interval [0, q[ and γ a permutation over the set
{0, 1, . . . , 2t−1 − 1}.

Theorem 3.1: If su is a unitary sequence defined by (11),
then xu = G(su) is a unitary C4-sequence. Moreover, the nth

term of xu is given as

xu(n) = exp

(
2πj(n+ d(γ−1(−n)) + 4nγ−1(−n))

q

)
,

(12)
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with 0 ≤ γ−1(−n) < 2t−1 the unique solution of the equation
γ(γ−1(−n)) = −n mod 2t−1.
Proof: The proof of theorem 3.1 is given in APPENDIX III
□

While a seed sequence s has p = q/4 degrees of freedom
(the dimension of the vector s), a unitary seed sequence is
more constrained, since it is itself generated by a vector d
of size 2t−1 (and a permutation γ ) when q = 22t. Note that
when q = 22t+1, the degrees of freedom of su are respectively
2 and 4 for q = 32 and q = 128, respectively [4]. However,
for the sizes q = 22t+1 with t > 3, the general construction
of a unitary C4-sequence from a unitary seed sequence is still
an open problem.

Thus, it is possible to adapt Algo. 2 to also optimize
unitary C4-sequences by replacing modifications on the seed
vector s directly by modifications on the vector d, which
generates a unitary seed vector su. For example, using the
objective function ψD(x) (see section III.B), we obtained
the unitary C4-sequence xU of length q = 64 shown in
Fig. 4, with ψ(xU ) = 2.791 (su is generated with d =
[0.445, 37.878, 16.445, 61.878], γ = {1, 2, 3, 0}) and c = −1).
The NMS distances D2

l (xU ) for the targeted truncation lengths
are also given in the Table I.

Finally, it is worth mentioning that the ability to construct
unitary C4-sequences provides an alternative/complement to
the well-known ZC [5], [6] sequences used in the Physical
Random Access Channel (PRACH) of the 3GPP standard [9]
and the CSS sequence used in LoRaWAN [7].

The next section presents the association of a truncated-C4-
sequence (T-C4-sequence) with an outer non-binary code.

IV. TRUNCATED C4-SEQUENCES FOR SINGLE-USER
APPLICATIONS

A T-C4-sequence can be used alone to encode a few bits
message. It can also be used in a concatenated coding scheme
as an inner coder combined with an outer non-binary code.

A. Modulation with T-C4-sequence

As mentioned in the introduction, a length q = 2m C4-
sequence, and its truncated version, can be used to transmit

m bits of information (bm−1, bm−2, . . . , b1, b0) by using the
length l sequence xl+M

M as the modulation sequence, with the
integer index M =

∑m−1
i=0 2ibi. The truncation length l allows

to adjust the spectral efficiency to the channel conditions. Table
I characterizes the C4-sequences xD and xU defined in sections
III.B and III.D, respectively. It gives the NMS distance D2

l (x)
for truncation lengths l = 1, 2, 3 and 6, as well as the resulting
MI (in bit/s/Hz) in the AWGN channel. These characteristics
are compared with the use of standard modulations, denoted
by the generic term s, to transmit 6 bits of information. For
instance, s refers to 64-QAM for l = 1, a pair of 8-PSK
symbols for l = 2, a triplet of QPSK symbols for l = 3, and
6 BPSK symbols for l = 6.

TABLE I
COMPARISON OF CLASSICAL MODULATIONS WITH A T-C4-SEQUENCES
FOR TRANSMITTING A LENGTH-6 MESSAGE. THE MI IS EXPRESSED IN

BIT/S/HZ.

.

l = 1 l = 2 l = 3 l = 6
D2

l (s) 0.0952 0.2929 0.6667 0.6667
D2

l (xD) 0.0120 0.2984 0.4621 0.9506
D2

l (xU ) 0.0018 0.1877 0.5546 1.1077
MI(s) @ 0 dB 0.992 1.962 2.916 4.329

MI(xD) @ 0 dB 0.997 1.975 2.908 4.929
MI(xU ) @ 0 dB 0.981 1.957 2.925 4.951
MI(s) @ 5 dB 1.993 3.724 5.155 5.857

MI(xD) @ 5 dB 2.029 3.855 5.143 5.984
MI(xU ) @ 5 dB 1.863 3.665 5.167 5.987
MI(s) @ 10 dB 3.269 5.355 5.981 ≈ 6

MI(xD) @ 10 dB 3.311 5.504 5.975 ≈ 6
MI(xU ) @ 10 dB 2.746 5.167 5.980 ≈ 6

According to Table I, for a truncation length of l = 1,
the minimum distance of the classical constellation (i.e. a 64-
QAM) is significantly higher than for the C4-sequence xD and
xU , however, this higher distance does not directly translate
to a higher MI for xD. The advantage of the C4-sequence
becomes predominant for l = 6, as both the NMS-distance
and MI significantly surpass those of classical constellations.

B. Principle of concatenated scheme

As proposed in [2], [3], it is feasible to concatenate an outer
Non-Binary Error Correcting Code (NB-ECC) over GF(q)
with an inner code composed of a Truncated-C4-sequence, as
shown in Fig. 5. In this configuration, the outer code takes k
GF(q) symbols (i.e., m-tuple binary vector, with m = log2(q))
to generate n GF(q) symbols (coding rate R = k/n). Each of
the GF(q) symbols is then employed to modulate a Truncated-
C4-sequence of length l, where l is a parameter that allows
flexibility to precisely match the spectral efficiency to the
channel condition. The total spectral efficiency of this coding
scheme is thus

S(l) =
Rm

l
bit/s/Hz. (13)

The decoding of the T-C4-sequence involves computing the
Log Likelihood Ratio (LLR) for all the q possible codewords
of the T-C4-sequence sequence, based on the length-l received
sequence. These LLRs are then utilized by the outer code to
recover the transmitted message.
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Fig. 5. Concatenation of an NB outer code and a Truncated-C4-sequence.

C. Asymptotic spectral efficiency

In this section, the asymptotic spectral efficiency of a T-C4-
sequence of length q = 2m is analyzed when it is combined
with an external non-binary code of rate R. To ensure that
the outer code can reliably decode the transmitted codeword
with an arbitrary low probability of error, the average amount
of received information associated with a transmitted code-
word should be greater than the information contained in the
message itself. Consider a code rate of R, where a message
of size k contains km bits of information. The length of the
encoded message is n = k/R m-ary symbols. The average
MI between a transmitted T-C4-sequence of length l and the
received sequence through the AWGN channel at a given SNR
is defined as µSNR(l). The maximum amount of information
available for the outer code is then µSNR(l)n. To ensure reliable
decoding, µSNR(l)n is required to be greater than km, which
gives us the following relation between the outer code rate R
and the MI µSNR(l)

R <
km

µSNR(l)n
. (14)

The minimum MI bound µSNR is thus given as µSNR = Rm.
Since µSNR(l) > µSNR, the spectral efficiency SSNR(l) is upper-
bounded by SSNR = Rm/l bits/s/Hz.

D. Estimation of the maximum spectral efficiency

Let’s consider an AWGN channel with a fixed SNR (the
subscript “SNR” is omitted in the following). Also assume a
constant rate R outer code in the asymptotic mode. The aim is
to determine the maximum spectral efficiency achievable with
a T-C4-sequence. To achieve the required MI µ at the receiver
side, the minimum truncation length lm is given as

lm = argmin
l
{µ(l) ⩾ µ}. (15)

When lm goes from 1 to 2, the spectral efficiency is imme-
diately divided by 2. This quantization effect is detrimental to
the precise adaptation of the spectral efficiency to the channel
condition. To solve this problem, the method proposed in [2]
is used. For each SNR, a proportion α of T-C4-sequences of
length lm is mixed with a proportion (1−α) of T-C4-sequences
of length lm−1 so that αµ(lm)+(1−α)µ(lm−1) = µ. Since
µ(lm) ⩾ µ > µ(lm−1), the solution α is unique. The average
length is therefore

l̄m = αlm + (1− α)(lm − 1), (16)

and the associated spectral efficiency is S(l̄m) = Rm/l̄m.
For a given SNR and a specific truncation length, the MI

µ(l) can be estimated through a Monte Carlo simulation by
averaging the received MI over multiple trials (typically 105

trials). This approach enables the estimation of asymptotic
spectral efficiency of the non-binary code combined with
a Truncated-C4-sequence. Figure 6 illustrates the resulting
capacity for three different coding rates: R = 1/3, R = 1/2,
and R = 2/3. The plot shows that the overall system achieves
higher efficiency when the outer code rate is set to R = 1/3
compared to R = 1/2 or R = 2/3. To highlight the results
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Fig. 6. Capacity of concatenated non-binary code with T-C4-sequences for
several coding rates

presented in Fig. 6, Fig. 7 displays the distance ∆SNR (in
dB) between the Shannon capacity and the maximum spectral
efficiency. The performance of the Zadoff-Chu sequences is
also given to illustrate the better performance of the C4-
sequence. As shown in Fig. 7, with a fixed outer code rate of

-20 -15 -10 -5 0 5 10 15
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Fig. 7. Distance comparison to the channel capacity between NB-T-C4-
sequence and ZC sequence.

1/3, the performance asymptotically approaches the channel
capacity of less than 0.2 dB in the range of -15 dB to 10 dB.
In addition, the C4-sequence significantly outperforms the ZC
sequence. The figure needs further comment. For high SNR,
lm = 1 and thus using a sequence of length lm− 1 as in (16)
just means that the symbols are punctured. It is interesting
to observe that the spectral efficiency for the 3 coding rates
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merge at high SNR: they all then follow the spectral efficiency
of the C4-constellation alone. Since the C4-sequence used for
this simulation is the one optimized for 5 dB, for rate 1/3, the
overall spectral efficiency is very close to the channel capacity.
Between l = 1 and l = 2 a degradation is visible (see the
”dome shape” for R = 2/3), which shows that the mixing
technique given in (16), although effective, is not optimal. The
same attenuated dome shape also appears between l = 2 and
l = 3.

E. Simulation results with a single parity check of GF(64)

In this section, an outer code consisting of a single parity
check of degree 4 over GF(64) is considered. This code allows
encoding a message of 3 GF(64) symbols (corresponding to
18 bits of information) into a codeword of 4 GF(64) symbols.
For a given truncation length l, the spectral efficiency S(l) of
this coding scheme is thus given by S(l) = 9

2l , as stated in
(13).

Fig. 8 shows the performance of the C4-sequences xD,
xU and the ZC sequence c for truncation lengths l ∈
{1, 2, 3, 6, 12, 24, 60}, resulting in spectral efficiencies ranging
from 4.5 bit/s/Hz (l = 1) to 0.075 bit/s/Hz (l = 60) as
indicated by (13). This concatenated coding scheme can be ef-
fectively used to fine-tune the spectral efficiency to the channel
condition. It is also well suited for use in a hybrid automatic
request communication scheme. In case of a decoding failure,
the receiver can request the transmitter to send the subsequent
symbols of the truncated sequences to effectively increase the
truncation length. Note that the performance of the T-C4-
sequence associated with a stronger outer code (a regular non-
binary low-density parity check code) is available in [3].
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Fig. 8. Performance of an outer code composed of a degree 4 parity check
over GF(64) and a Truncated-C4-sequence as the inner code.

Fig. 8 shows that the ZC-sequence and the C4-sequences
have equivalent performance for high truncation lengths, but
when l is small, the T-C4-sequences outperform the truncated
ZC sequence.

V. DISTANCE BETWEEN C4-SEQUENCES FOR MULTI-USER
APPLICATIONS

In the context of a multi-user application, it is interesting to
determine the properties of the distance between two different
C4-sequences, with or without truncation. This section states
the problem and gives some preliminary results. The minimum
NMS distance D2

l (x, y) between two T-C4-sequences of length
l, x and y, can be defined from (9) as

D2
l (x, y) =

1

l
min
a,b
{
∥∥xa+l−1

a − yb+l−1
b

∥∥2}. (17)

A. Distance between C4-sequences

When the full length sequence are considered, the q-
periodicity of the C4-sequences x and y transforms (17) to

D2
q(x, y) =

1

q
min
τ
{∥x− yτ∥

2}. (18)

=
1

q
(∥x∥2 + ∥yτ∥

2 − 2max
τ
{R(⟨x, yτ ⟩)}). (19)

Let Rx,y be the inter-correlation vector between x and y
defined as Rx,y = (⟨x, yτ ⟩)τ=0,1,...,q−1. Therefore, (19) is
equivalent to

D2
q(x, y) = 2− 2

q
max{R(Rx,y)}. (20)

The computation of the inter-correlation function in the
frequency domain gives

Rx,y = F−1(X⊙ Y′)}, (21)

with X = F(x) and Y = F(y). By defining

Z =
1√
4q

(X⊙ Y′), (22)

and z = F−1(Z), we get Rx,y =
√
4q z. Thus, (19) can be

reformulated as

D2
q(x, y) = 2− 4

√
q
max{R(z)}). (23)

In summary, the study of the minimum square distance
D2

q(x, y) boils down to studying the vector z, or more pre-
cisely, to studying its maximum real value max{R(z)}. There
are two distinct cases: either x and y belong to the same type of
C4-sequences (i.e., both clockwise or both counter-clockwise),
or they do not.

In the latter case, let us assume, without loss of generality,
that x is a clockwise C4-sequence and y a counter-clockwise
C4-sequence. According to (3), X has non-null values at
positions k where k + 1 mod 4 = 0, while Y has non-
null values at positions k′ where k′ − 1 mod 4 = 0. This
implies that Z equals the null vector (see (22)), and thus, z
is also the null vector. In this case, maxR(z) = 0, and thus,
D2

q(x, y) = 2.
When both C4-sequences x and y are either clockwise or

counter-clockwise, the situation is less favorable. Without loss
of generality, let us consider two clockwise C4-sequences in
the sequel. According to (3) and (22), Z verifies
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|Z(k)|2 =
(

4q√
4q

)2

= 4q if k + 1 mod 4 = 0,

= 0 otherwise.
(24)

Thus, according to Theorem 2.2, z is a C4-sequence. The
determination of the minimum maximum value of the real part
of a C4-sequence is an open problem. However, if z is a unitary
C4-sequence, then max{R(z)} ≤ 1, and thus, D2

q(x, y) ≥
2(1 − 2√

q ). Note that the relationship between X, Y, and Z
in (22) can be transformed. One way is to express Y as a
function of X and Z by multiplying both terms of the equation
by 1

2qX. Thus, from any sequence X, it is possible to construct
a sequence Y that satisfies D2

q(x, y) ≥ 2(1− 2√
q ) by choosing

z as the unitary sequence.
To conclude, this section presents two preliminary results

about the NMS-distance between two C4-sequences of length
q: If one C4-sequence is clockwise and the other is counter-
clockwise, then the NMS-distance between the two sequences
is 2. Considering two C4-sequences of the same type, it is
possible to guarantee an NMS-distance of 2(1− 2√

q ). However,
the determination of the minimum distance in a set of more
than two C4-sequences remains an open problem. In the next
section, the generalization of C4-sequences is presented.

VI. GENERALIZATION OF C4-SEQUENCES

The construction method for C4-sequences can be gener-
alized to generate C3 or C5 sequences, and more generally
to generate any Cn sequences, where n is a strictly positive
integer, by modifying Algorithm 1 to Algorithm 3.

Algorithm 3 Generation of a Cn-sequence of length q by the
function x = G(s)

Input A seed vector s of size p = q/n composed of q/n reals
on the interval [0, q[, the order n of the Cn-sequence and index
c, 1 < c < n co-prime with n.
Output A Cn-sequence x of length q

for k ← 0 to q/n− 1 do
Es(k)←

√
nq × exp(2πj s(k)q )

end for
M ← [0, 0, . . . , 0]; % null vector of size n
M(c)← 1
X← kron(Es,M)
x← F−1(X)
Return x

The study of Cn constellations gives sequences with in-
teresting properties. Fig. 9.a gives an example of a C3-
sequence, Fig. 9.b its associated NMS-Distance and Fig. 9.c its
autocorrelation function (see the 3-branch star shape). The C3-
sequence possesses a 3-fold symmetry and its NMS-Distance
gets the optimal value for 3 different truncation lengths,
l = q/3, l = 2q/3 and l = q. Fig. 10 gives an example of a C5-
sequence. The C5-sequence possesses a 5-fold symmetry (see
Fig. 10.a), an autocorrelation function with a 5-branch star
shape (see Fig. 10.c). Finally, the maximum NMS-distance
for the C5-sequence is lower than 2 and equals to α =

2(1 − cos(2π/5)) = 1.382. The NMS-Distance equals α for
truncation lengths of l = q/5, 2q/5, 3q/5, 4q/5, and q (see Fig.
10.b). In the general case, the NMS-distance of a Cn sequence
takes its maximum value α = min(2, 2(1 − cos(2π/n)) on
truncation lengths l = kq/n, with k = 1, 2, . . . , n.

VII. CONCLUSION

This paper defines the notion of C4-sequences. C4-
sequences share similar optimal autocorrelation properties
with ZC or CSS sequences. However, C4-sequences offer the
additional advantage of having optimal properties (in terms of
minimum Euclidean distance between sequences) for several
truncation lengths. Moreover, unlike ZC sequences, they are
not restricted to having their points on the unitary circle.

C4-sequences can have several applications in a communi-
cation system. First, they can be used alone as an alternative to
classical sequences (ZC sequences, CSS sequences). Second,
the constellation associated with a C4-sequence can be shaped
to maximize the MI through the AWGN channel, thus provid-
ing a geometric shaping gain. Third, the concatenation of a
non-binary outer code with a T-C4-sequence as an inner code
represents a very efficient and flexible communication scheme.
While the outer code is fixed, the choice of the truncation
length provides a versatile tool to closely adapt the overall
coding rate to the channel conditions. It’s worth mentioning
that this flexibility can be effectively exploited in a hybrid au-
tomatic request (H-ARQ) communication system. Fourth, they
offer a high degree of freedom in their construction, which can
be exploited for multi-user applications. Finally, C4-sequences
can be extended to C3-sequences or C5-sequences.
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APPENDIX I: PROOF OF LEMMA 2.4

Let us consider a C4-sequence x of length q. From x, we
can define the vector x̄ defined as:

x̄ = kron([1, j−c, j−2c, j−3c], xp−1
0 ). (25)

From the definition of x̄, we get, for all n = 0, 1, . . . , p − 1
and k = 0, 1, 2 and 3, x̄(n+ kp) = j−kcx(n), thus, showing
x̄ = x will achieve the proof.

Let us study X̄ = F(x̄), the DFT of vector x̄. The uth

element X̄(u) is (remind that e2πj
p
q = j)

X̄(u) =

q−1∑
n=0

x̄(n)e−2πj un
q (26)

=

p−1∑
n=0

3∑
k=0

x̄(n+ pk)e−2πj
u(n+kp)

q (27)

=

p−1∑
n=0

x(n)e−2πj un
q

3∑
k=0

j−(c+u)k (28)

The terms w(u) =
∑3

k=0 j
−(c+u)k is only a function of u,

with w(u) = 4 if (u+ c) mod 4 = 0, 0 otherwise. Thus,

X̄(u) = 0 when (u+ c) mod 4 ̸= 0. (29)

According to theorem 2.2, the DFT X of x verifies also the
same condition as (29). Thus, the linearity of the DFT operator
applied to δ = x− x̄, gives ∆ = F(δ) verifying

∆(u) = 0 when (u+ c) mod 4 ̸= 0. (30)

Moreover, by construction, the first q/4 first coordinates of
δ are equal to 0, thus the set of 3p equations ∆(u) = 0, for
u verifying (u+ c) mod 4 ̸= 0 gives

q−1∑
n=p

δ(n)e−2πj un
q = 0. (31)

The set of 3p equations (31) can be expressed in a matrix
form as Vδq−1

p = 0 with V the 3p×3p matrix obtained from
the DFT matrix U = (e

−2πjnu
q )0≤n,u<q by pruning the first

p lines and the p columns of indices u verifying u + c = 0
mod 4 of U. Let Ip be the diagonal matrix of size p× p, one
can verify that V ×V′ gives the matrix

V ×V′ = p(H⊗ Ip), (32)
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with ⊗ the Kronecker product and H the 3× 3

H =

3 −j 1
j 3 −j
1 j 3

 (33)

Since H is invertible (its determinant is equal to 16), V×V′

is an invertible matrix, and thus, V is also invertible. The
equation Vδq−1

q/4 = 0 has thus a unique null solution δq−1
q/4 = 0.

In summary, all the components of the vector δ are equal to
zero. Thus, x̄ = x, which achieve the proof □

APPENDIX II: PROOF OF THEOREM 2.6

Let us first give the proof in the case of l = q. Due to the
q-periodicity of the x C4-sequence

∥xa − xb∥2 = ∥x− xb−a∥2

= ∥x∥2 + ∥xb−a∥2 − 2R(Rxx(b− a))
= 2q − 2R(Rxx(b− a)) (34)

By definition, when a ̸= b, τ = b − a ̸= 0. By
definition of the C4-sequence, (4) gives Rxx(τ) = 0 when
τ ∈ J1, qK − {2p}, and Rxx(τ) = −q when τ = 2p,
which proves the theorem for the value of l = q. The
demonstration for the cases l = p is obtained by considering
the computation of ∥xa − xb∥2 using the 4-fold symmetry
property of x. According to Lemma 2.4, for any integer k,
|x(n+kp+a)−x(n+kp+b)|2 = |j−kcx(n+a)−j−kcx(n+
kp+b)|2 = |x(n+a)−x(n+b)|2, thus, for any couple (a, b),

∥xa − xb∥2 =

q−1∑
n=0

|x(n+ a)− x(n+ b)|2

=

p−1∑
n=0

3∑
k=0

|x(n+ kp+ a)− x(n+ kp+ b)|2

=4

p−1∑
n=0

|x(n+ a)− x(n+ b)|2

=4
∥∥∥xa+p−1

a − xb+p−1
b

∥∥∥2 (35)

Thus, (35) shows that
∥∥∥xa+p−1

a − xb+p−1
b

∥∥∥2 equals 2q/4 =

2p when a− b ̸= q/2, and is greater than 2p otherwise, which
proves the theorem for l = p. Finally, the proof for l = 2p
and l = 3p can be obtained similarly than the case l = p □

APPENDIX III: PROOF OF THEOREM 3.1

Since the sequence su is real, xu = G(su) is a C4-sequence
by construction. Let us compute explicitly the nth terms
xu(n), of xu using the function G(su) given in algorithm 1.
By definition of the IDFT, we get

xu(n) =
1

q

q−1∑
k=0

Xu(k)e
2πjkn

q (36)

.
By construction of x, all the terms not congruent to 1

modulo 4 are equal to 0. Moreover, by construction, Xu(4k+

1) =
√
4qe

2πjsu(k)
q (see equation (3)), thus (36) is equivalent

to

xu(n) =
1

q

22t−2−1∑
k=0

√
4qe

2πjsu(k)
q e

2πj(4k+1)n
q . (37)

The factors independent of index k in (37) can be factorized
(note that,

√
4q
q = 2t+1

22t = 1
2t−1 ), giving

xu(n) =
e

2πjn
q

2t−1

22t−2−1∑
k=0

e
2πj(su(k)+4kn)

q . (38)

.
It is possible to decompose the k indices as k = 2t−1qk +

rk, with 0 ≤ qk < 2t−1, 0 ≤ rk < 2t−1, then, to replace
su(2

t−1qk + rk) by its expression in (11), giving

xu(n) =
e

2πjn
q

2t−1

2t−1−1∑
rk=0

2t−1−1∑
qk=0

e
2πj(d(rk)+qkγ(rk)2t+1+4(2t−1qk+rk)n)

q

=
e

2πjn
q

2t−1

2t−1∑
rk=0

e
2πj(d(rk)+4rkn)

q At(rk, n) (39)

.
with

At(rk, n) =

2t−1−1∑
qk=0

e
2πjqk(γ(rk)2t+1+2t+1n)

q (40)

=

2t−1−1∑
qk=0

e
2πjqk(γ(rk)+n)

2t−1 (41)

=

2t−1−1∑
qk=0

ρqk , (42)

with ρ = e
2πj(γ(rk)+n)

2t−1 . Let us define γ−1(−n) the unique
solution to the equation γ(rk) = −n mod 2t−1, r ∈
{0, 1, . . . , 2t−1 − 1}. If rk = γ−1(−n), then γ(rk) + n = 0
mod 2t−1), which gives ρ = 1, and thus, At(rk, n) = 2t−1.
Otherwise, if r ̸= γ−1(−n), then ρ ̸= 1, and thus,

At(rk, n) =
1− ρ2t−1

1− ρ
, (43)

which gives Ar(rk, n) = 0 since ρ2
t−1

= e2πj(γ(rk)+n) = 1.
Going back to (39), we obtain

xu(n) = e
2πj(n+d(γ−1(−n))+4γ−1(−n)n)

q ; (44)

Thus, for any n, x(n) belongs to the unitary circle □


