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ABSTRACT

We look for signatures of the Hu-Sawicki f (R) modified gravity theory proposed to explain the observed accelerated expansion of the
Universe in observations of the galaxy distribution, the cosmic microwave background (CMB), and gravitational lensing of the CMB.
We study constraints obtained using observations of only the CMB primary anisotropies before adding the galaxy power spectrum
and its cross-correlation with CMB lensing. We show that cross-correlation of the galaxy distribution with lensing measurements is
crucial in order to break parameter degeneracies, placing tighter constraints on the model. In particular, we set a strong upper limit
on log| fR0 |< −4.61 at 95% confidence level. This means that while the model may explain the accelerated expansion, its impact on
large-scale structure closely resembles general relativity (GR). This analysis is the first to make use of the galaxy clustering, CMB
lensing, and their cross-correlation power spectra to constrain Hu-Sawicki f (R) gravity. Restricting the analysis to the linear regime,
we place a robust constraint that is competitive with other cosmological studies whilst using fewer probes. This study can be seen as
a precursor to cross-correlation analyses of f (R) gravity and can be repeated with next-stage surveys, which will benefit from lower
noise and hence probe smaller potential deviations from GR.
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1. Introduction

The cause of the late-time accelerated expansion of the Universe
is one of the most profound problems facing modern cosmology
(Riess et al. 1998; Perlmutter et al. 1999). Many theories have
been proposed to explain this phenomenon. The most popular
– due to its apparent simplicity – is Λ, the cosmological con-
stant. However, interpretation of the cosmological constant as
the energy of the vacuum results in theoretical predictions that
are at least 55 orders of magnitude too large (e.g., Carroll et al.
2004; Solà 2013), motivating searches for alternative explana-
tions. One possibility is new gravitational physics (Carroll et al.
2004). In addition to causing the accelerated expansion, modifi-
cations to gravity may alter structure formation in the Universe.
We constrain a particular model of f (R) gravity (Buchdahl 1970;
Starobinsky 1980), which can explain the accelerated expan-
sion of the Universe. To this end, we use observations of galaxy
clustering, weak gravitational lensing of the cosmic microwave
background (CMB), and temperature and polarization informa-
tion from the CMB.

Deviations from general relativity (GR) are tightly con-
strained on the scales of our Solar System (Everitt et al. 2011;
Will 2014). Therefore, models of modified gravity must satisfy
these constraints on small scales whilst simultaneously modify-
ing gravity on large scales to explain the cosmic acceleration.
Carroll et al. (2004) presented a general class of models that can
drive cosmic acceleration by replacing the linear dependence of
the Einstein-Hilbert action on the Ricci scalar R with a nonlinear
function of R (R → R + f (R)). Hu & Sawicki (2007, hereafter
HS) presented a class of f (R) models capable of explaining the
cosmic acceleration, while evading the strong Solar System con-
straints through a chameleon mechanism (Khoury & Weltman
2004; Navarro & Van Acoleyen 2007; Faulkner et al. 2007).

Constraints have been placed on HS f (R) gravity using
many different complementary observations. Such observations
constrain fR0 , the value of the cosmological field today; we
introduce this parameter in more detail in Sect. 2. In par-
ticular, on cosmological scales, HS f (R) was constrained by
Cataneo et al. (2015), who obtained the constraint log| fR0 |<
−4.79 at the 95% confidence level using cluster number counts
in addition to CMB, supernovae, and baryon acoustic oscillation
(BAO) data. Hu et al. (2016) also found log| fR0 |< −4.5 using
the CMB (temperature, polarization, and lensing), supernovae,
BAO, and galaxy weak lensing measurements. Hojjati et al.
(2016) obtained the upper bound log| fR0 |< −4.15 at the 95%
confidence level using similar observations.

The strongest constraints come from galactic scales.
Naik et al. (2019) were able to exclude log| fR0 |> −6.1
using galaxy rotation curves, and Desmond & Ferreira (2020)
excluded log| fR0 |> −7.85 based on the analysis of galaxy mor-
phology. Astrophysical and cosmological constraints on HS f (R)
gravity can also be found in the review by Lombriser (2014).
Finally, Casas et al. (2023) forecast the constraints that will be
achievable using observations from Euclid. Despite the strong
constraints on HS f (R) gravity from galactic studies, it is still
useful to explore deviations from GR on cosmological scales.

Many different tools have been developed to predict
the matter power spectrum in HS f (R) gravity. Boltz-
mann codes that calculate the linear matter power spec-
trum are mgcamb (Zhao et al. 2009; Hojjati et al. 2011;
Zucca et al. 2019; Wang et al. 2023), EFTCAMB (Hu et al.
2014; Raveri et al. 2014), and MGCLASS (Sakr & Martinelli
2022). There are several simulation-based emulators of the
matter power spectrum into the mildly nonlinear regime
(Winther et al. 2019; Ramachandra et al. 2021; Arnold et al.
2022; Sáez-Casares et al. 2024), and ReACT (Bose et al. 2020,
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2023), which uses a halo model reaction framework validated on
N-body simulations.

Throughout the present article, we use a model of the Uni-
verse that at large scales is homogeneous, isotropic, and flat,
as described by the Friedmann-Lemaître-Robertson-Walker met-
ric. Further, we assume three massive degenerate neutrinos with
fixed minimal mass

∑
mν = 0.06 eV.

In the following section, we review HS f (R) gravity. In
Sect. 3, we introduce the observations used in our analysis, and
then in Sect. 4 we overview our methodology, including our esti-
mation of the angular power spectrum, our covariance matrix
estimation, and how we calculate our likelihood. Our results are
presented in Sect. 5, and we outline our conclusions in Sect. 6.

2. Hu-Sawicki f(R) gravity

In f (R) theories of gravity, the Einstein-Hilbert action is modi-
fied such that R → R + f (R); therefore in the Jordan frame, the
action becomes,

S =

∫
d4x
√
−g

[
R + f (R)

2κ2 +Lm

]
, (1)

where R is the Ricci scalar; κ = 8πG, with G being the gravita-
tional constant (and the speed of light set to 1); g is the determi-
nant of the spacetime metric; Lm is the matter Lagrangian; and
f is a function of the Ricci scalar. In HS (Hu & Sawicki 2007),
f (R) follows a broken power law,

f (R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
, (2)

where m is a mass scale given by m2 = κ2ρ̄m/3 with ρ̄m the
mean matter density of the Universe, and c1, c2, and n are three
dimensionless constants. The derivative of f with respect to the
Ricci scalar R is denoted

fR =
d f (R)

dR
= −

nc1

(
R

m2

)n−1

(
c2

(
R

m2

)n
+ 1

)2 , (3)

and can be interpreted as a new scalar field. Hu & Sawicki
(2007) showed that a background close to ΛCDM can be recov-
ered by imposing

c1

c2
= 6

ΩΛ

Ωm
, (4)

where ΩΛ and Ωm are the present-day dark energy and matter
densities (divided by the critical density) in the ΛCDM cosmol-
ogy. Imposing this relation, there remain only two free param-
eters in Eq. (2): n and either c1 or c2. In the high-curvature
regime (R � m2), which was shown by Hu & Sawicki (2007)
and Oyaizu (2008) to be the relevant regime to describe the back-
ground evolution of our Universe given the observed values of
ΩΛ and Ωm, Eq. (3) can be written as

fR = −n
c1

c2
2

(
m2

R

)n+1

, (5)

which, evaluated at the present-day background, leads to

c1

c2
2

= −
1
n

fR0

( R0

m2

)n+1

. (6)
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Fig. 1. CMASS (blue) and LOWZ (orange) redshift distributions.

The fR0 parameter denotes the background value of fR at the
present time, which we choose as our free parameter to constrain
the model of HS f (R). Additionally, we fix n = 1 as is often
assumed in the literature and because ReACT does not allow us
to vary this parameter.

For the small values of fR0 probed in this work, the back-
ground expansion of the Universe in f (R) is indistinguishable
from that in ΛCDM. Instead, we constrain f (R) through its
impact on the growth of structure. This can be seen by looking
at the modified Poisson equation in f (R):

∇2Φ =
κ

2
a2δρm −

1
2
∇2 fR, (7)

where a is the cosmological scale factor and δρm ≡ ρm − ρ̄m for
a metric of the form ds2 = −(1 + 2Φ)dt2 + a2(t)(1 + 2Ψ)dx2 (see
e.g., Oyaizu 2008). We see directly that fR/2 can be seen as the
potential of the modified gravity force. As mentioned in Sect. 1,
this modified Poisson equation approaches the GR expression
within the Solar System through the chameleon mechanism
(Khoury & Weltman 2004; Hu & Sawicki 2007).

It is worth noting that, unlike other theories of modified grav-
ity, HS f (R), has little effect on the propagation of light in the
weak-field limit (e.g., Hojjati et al. 2016).

3. Data

3.1. BOSS galaxies

We used the DR12 data release of the BOSS survey from the
SDSS Collaboration (Alam et al. 2015). This large-scale spec-
troscopic survey was divided into two subsamples, LOWZ and
CMASS. LOWZ contains galaxies at low redshift, up to approxi-
mately z ' 0.45, while CMASS contains higher redshift galaxies
(roughly up to z ' 0.8) and was constructed to create a sam-
ple of galaxies with approximately constant stellar mass. As in
Loureiro et al. (2019), we restrict these samples to 0.15 < z <
0.45 and 0.45 < z < 0.8 for LOWZ and CMASS, respectively,
such that the two samples do not overlap in redshift. This choice
allows us to neglect the covariance between galaxies of LOWZ
and CMASS. Using these redshift ranges, and after masking
regions of low completeness, the two samples contain 366 576
and 751 067 galaxies, respectively. The redshift distribution of
the two samples is shown in Fig. 1.

The mask and map making is identical to that used
by Kou & Bartlett (2023), who follow Reid et al. (2016)
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and Loureiro et al. (2019). We transform the MANGLE1

(Swanson et al. 2008) acceptance and veto masks – which are
provided with the galaxy catalogs – into high-resolution binary
masks in HEALPix2 (Górski et al. 2005; Zonca et al. 2019) for-
mat with NSIDE = 8192. The acceptance mask represents the
completeness of the observations, while the veto mask excludes
regions that could not be observed. A first cut is made to
exclude regions with completeness below 0.7, before degrad-
ing the resolution of the mask to NSIDE = 4096. A second cut
is then applied, such that pixels with completeness below 0.8
are rejected. Finally, the galaxy maps are computed by sum-
ming the weighted number of galaxies in each pixel divided by
the completeness of the pixel. The weight wtot that is applied to
each galaxy takes into account a number of observational effects,
including fiber collisions, redshift failures, stellar density, and
seeing conditions (more details can be found in Ross et al. 2012).
The galaxy overdensity map is

δp =

(np

n̄
− 1

)
, (8)

where

np =

 1
Cp

pix

∑
i∈p wi

tot if Cp
pix > 0.8

0 otherwise,
(9)

where Cp
pix is the completeness in pixel p.

3.2. Cosmic microwave background temperature and
polarization observations

We used observations of the CMB temperature and polariza-
tion anisotropies from the Planck satellite, which observed
the CMB for about 29 months and covered the full sky. In
this work, we made use of the likelihood code as provided
by Planck Collaboration V (2020), the cosmological results of
which were analyzed in Planck Collaboration VI (2020).

3.3. Cosmic microwave background lensing convergence
map

The observed CMB fluctuations are distorted because of gravi-
tational lensing as the CMB photons traverse the Universe. An
observational consequence of this is the correlation between
different multipoles in both the temperature and polarization
anisotropies, which would not be present in the unlensed CMB.
The CMB lensing potential can therefore be reconstructed from
such correlations (see Lewis & Challinor 2006 for a comprehen-
sive review).

We used the CMB lensing convergence map released by
Planck Collaboration VIII (2020). This map was obtained using
a minimum variance quadratic estimator based on temperature
and polarization maps; it covers about 67% of the sky and led
to the detection of lensing at 40σ. The map is provided with a
resolution of NSIDE = 4096, together with the associated mask
with NSIDE = 2048.

4. Methodology

4.1. Theoretical angular power spectra

We calculated the matter power spectrum in f (R) using
two different codes, MGCLASS and ReACT. MGCLASS
1 https://space.mit.edu/~molly/mangle/
2 http://healpix.sf.net

(Sakr & Martinelli 2022) is a modified version of the Boltzmann
code CLASS (Blas et al. 2011) in which the equations of the lin-
ear perturbation theory are changed to take into account modi-
fications to gravity. MGCLASS can therefore be used to predict
the linear matter power spectrum.

ReACT (Bose et al. 2020, 2023) gives predictions for the
nonlinear matter power spectrum in beyond ΛCDM cosmolo-
gies, including wCDM, f (R), and DGP gravity. ReACT uses a
halo-model-based approach described in Cataneo et al. (2019),
such that,

PNL(k, z) = R(k, z)Ppseudo
NL (k, z), (10)

where PNL is the nonlinear matter power spectrum in mod-
ified gravity, and Ppseudo

NL is the so-called nonlinear “pseudo-
power spectrum”. This pseudo-power spectrum is defined as a
ΛCDM power spectrum with initial conditions chosen such that
the ΛCDM linear matter power spectrum matches the modified
gravity linear matter power spectrum at a given redshift. This
choice was made in order to ensure that the halo mass function
in ΛCDM and in the modified gravity theory are similar (which
is anticipated given that they have been defined to have exactly
the same linear matter power spectrum).

The remaining term in Eq. (10), R, is called the reaction, and
describes how the ΛCDM matter power spectrum changes due to
the modifications to gravity. The reaction is calculated using the
halo model and one-loop perturbation theory. More details can
be found in Cataneo et al. (2019) and Bose et al. (2023). When
using ReACT to predict the nonlinear modified gravity matter
power spectrum, a reliable nonlinear ΛCDM matter power spec-
trum must be provided. We used the halo-model-based HMCode
to obtain such a spectrum (Mead et al. 2015).

For our observations, we computed the galaxy auto power
spectrum Cgg

`
, the CMB lensing convergence auto power spec-

trum Cκκ
`

, and the cross-correlation between the two Cκg
`

. We also
computed the CMB temperature and polarization power spectra,
which are sensitive to f (R) gravity through gravitational lens-
ing and the integrated Sachs-Wolfe (ISW) effect. For instance,
Zhao et al. (2010) and Kable et al. (2022) indeed showed that
the ISW effect is sensitive to gravity, and could be used to
probe modified gravity theories, while Cai et al. (2014) specif-
ically studied the impact of f (R) gravity on the ISW effect. The
CMB temperature, polarization, and convergence power spectra
are predicted by MGCLASS.

As mentioned previously, we assume three massive degen-
erate neutrinos with fixed minimal mass

∑
mν = 0.06 eV to

model the CMB and the matter power spectra. Massive neutri-
nos affect clustering measurements in two different ways. First,
they suppress the growth of structure, which results in a decrease
in the power spectrum (Eisenstein & Hu 1999). This can be
partially compensated by an increase in log| fR0 |, so that vary-
ing neutrino masses can broaden the constraints we place on
log| fR0 |. This effect should be small for the present study, as
neutrino masses have a greater impact on the nonlinear regime,
which we do not use. Second, massive neutrinos are also known
to make the galaxy bias scale dependent (e.g., see Saito et al.
2009; Villaescusa-Navarro et al. 2014) but this effect has been
shown to be negligible for current data (Vagnozzi et al. 2018;
Raccanelli et al. 2019) and is therefore not taken into account in
this analysis.

For the galaxy auto- and cross-power spectra, we used
the matter power spectrum prediction from either ReACT or
MGCLASS. We then modeled the angular power spectra using
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Fig. 2. Effect of changing the value of log| fR0 | on the auto-power
spectrum of CMASS, with all other parameters fixed. The bottom
panel shows the difference relative to the nonlinear power spectrum in
ΛCDM, together with the 1σ uncertainties of CMASS. Plain lines are
obtained using ReACT and the dashed lines with MGCLASS. The gray
dotted line shows the limit between the linear and nonlinear regimes.
We limit our analysis to the linear regime, but show the theoretical pre-
dictions with ReACT. We do not show the predictions with MGCLASS,
which fail in this regime.

the Limber approximation (Limber 1953):

Cgg
`

=

∫
dz
c

H(z)
χ2(z)

W2
g (z)Pm

(
k =

`

χ(z)
, z

)
(11)

Cκg
`

=

∫
dz
c

H(z)
χ2(z)

Wg(z)Wκ(z)Pm

(
k =

`

χ(z)
, z

)
, (12)

where H(z) is the Hubble parameter at redshift z, c is the speed
of light, χ is the comoving distance, Pm is the matter power spec-
trum, and k is the comoving wavenumber. Finally, Wg and Wκ are
the galaxy and CMB lensing kernels,

Wg(z) =
bg

ntot

dn
dz

(13)

Wκ(z) =
3
2

ΩmH2
0

(1 + z)
H(z)

χ(z)
c

(
χ(z∗) − χ(z)

χ(z∗)

)
· (14)

Here, bg is the galaxy bias, (1/ntot)(dn/dz) is the normalized
galaxy redshift distribution, H0 is the present value of H, Ωm is
the matter density parameter, and z∗ is the redshift of the surface
of last scattering.

Figure 2 shows the effect of changing log| fR0 | on the galaxy
angular power spectrum using the galaxy redshift distribution
of CMASS (see Sect. 3 for more details). It can be seen that
HS f (R) gravity increases the formation of structure on small
scales, leading to more power in the angular power spectrum
at larger multipoles. For a given value of log| fR0 |, MGCLASS
predicts slightly more power than ReACT, except at the highest

multipoles, where power might be missing in the prediction of
MGCLASS, as this latter only predicts the linear matter power
spectrum. This is also the reason why we do not show the pre-
dictions using MGCLASS after the dotted gray line marking the
transition into the nonlinear regime (see Sect. 4.4). The nonlin-
ear regime is not used in our analysis as we do not use a theoret-
ical model that can reliably model the galaxy bias in this regime.
Although the entire analysis can be performed using MGCLASS
alone, we still use ReACT in order to use two independent codes
and check the consistency at the level of the cosmological con-
straints.

4.2. Angular power spectra estimation

The angular cross-correlation power spectrum of two fields A
and B is defined as

〈a`mb∗`′m′〉 = δ``′δmm′CAB
` , (15)

where a`m and b`′m′ are the spherical harmonic coefficients of
fields A and B, respectively, b∗ denotes the complex conjugate
of b, δ is the Kronecker symbol, and 〈 〉 is the ensemble average.
Given full sky coverage, this power spectrum can be estimated
using

ĈAB
` =

1
2` + 1

∑̀
m=−`

a`mb∗`m. (16)

However, in practice, fields A and B are not observed on the full
sky, but on a limited sky fraction defined by their masksWA and
WB, such that what we really observe is Ã(n̂) =WA(n̂)A(n̂) and
B̃(n̂) = WB(n̂)B(n̂). It can then be shown (Hivon et al. 2002;
Brown et al. 2005) that taking the ensemble average of Eq. (16)
with the observed fields Ã and B̃ gives

〈Ĉ ÃB̃
` 〉 =

∑
`′

M``′CAB
` , (17)

where M``′ is a coupling matrix that depends on the masksWA

and WB. It is then possible to recover an unbiased estimate of
CAB
` by inverting the coupling matrix.

In our analysis, we used the public code NaMaster3

(Alonso et al. 2019) to estimate the power spectra of CMASS
and LOWZ, as well as their cross-correlation with the CMB lens-
ing convergence map from Planck. For the CMB lensing auto-
correlation, we take the Planck lensing likelihood directly. We
also apodized the CMB lensing mask with a scale of 10 arcmin,
and we verified that the estimated power spectra do not depend
on the apodization scale.

4.3. Noise removal

The measured galaxy angular power spectrum is biased by the
shot-noise contribution, and therefore this contribution is sub-
tracted from the estimated power spectrum. The galaxy shot
noise is given by

Ngg
`

=
4π fsky

N
, (18)

where N is the weighted number of galaxies in each sample.

3 https://github.com/LSSTDESC/NaMaster
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Table 1. Scale cuts for each power spectrum such that the relative dif-
ference between the linear and nonlinear power spectra is inferior to
5%.

Angular power spectrum `max

Cgg,CMASS
`

202
Cκg,CMASS
`

208
Cgg,LOWZ
`

106
Cκg,LOWZ
`

108
Cκκ
`

418

4.4. Scale cuts

As mentioned in Sect. 4.1, for our cosmological constraints we
only use power spectra in the linear regime. This limitation
mainly comes from the fact that we use a linear galaxy bias
and that this simple modeling is not reliable in the nonlinear
regime. To determine the maximum multipole that can be used,
we followed the approach of Loureiro et al. (2019). Namely, we
used the fiducial cosmology of Planck Collaboration VI (2020)
and predicted the theoretical linear and nonlinear power spectra
in the ΛCDM model. The nonlinear angular power spectra are
obtained using halofit (Smith et al. 2003; Takahashi et al. 2012)
to model the nonlinear matter power spectrum and we keep using
a linear galaxy bias. We then determined the transition between
the linear and nonlinear regimes to correspond to the largest mul-
tipole `max such that the relative difference between the linear
and nonlinear power spectra is inferior to 5%. The determined
scales are presented in Table 1. In practice, we used `max = 200
for CMASS, `max = 100 for LOWZ, and `max = 400 for CMB
lensing.

Finally, as we used the Limber approximation, which is not
valid on large scales, we limited our study to multipoles above
`min = 20.

4.5. Covariance matrix

We used a Gaussian covariance matrix following Saraf et al.
(2022), allowing us to incorporate nonoverlapping regions of the
sky within our cross-correlation analysis:

CovAB,CD
LL′ =

δLL′

(2`L + 1)∆` f AB
sky f CD

sky

[
f AC,BD
sky

(
CAC

L + NAC
L

)
×

(
CBD

L + NBD
L

)
+ f AD,BC

sky

(
CAD

L + NAD
L

) (
CBC

L + NBC
L

)]
, (19)

where A, B, C, and D label one of the two galaxy density fields
g or the CMB lensing convergence field κ, and f AB

sky is the sky
fraction common to fields A and B.

We estimated an initial covariance matrix using Eq. (19) with
the observed power spectra. We then used this covariance matrix
to fit our theoretical model to the observations, and then deter-
mined a second covariance matrix using the best-fit theoretical
power spectra from the first analysis. This procedure reduces the
sensitivity of the covariance matrix to the noise in the estimated
power spectra.

4.6. Likelihood

Our log-likelihood is the sum of the log-likelihood of
the galaxy power spectra and the galaxy – CMB lens-
ing cross-correlations, which we denote lnL2×2 pt here,
the Planck log-likelihood for temperature and polarization

(Planck Collaboration V 2020), lnLPlanck, and the Planck
CMB lensing (Planck Collaboration VIII 2020) likelihood,
lnLPlanck lensing:

lnL = lnL2×2 pt + lnLPlanck + lnLPlanck lensing. (20)

The name 2× 2 pt comes from the fact that it is the combina-
tion of two different types of two-point statistics (Cgg

`
and Cκg

`
).

The third two-point statistic is the Planck lensing power spec-
trum, Cκκ

`
, making our analysis a 3×2 pt analysis in combination

with the Planck temperature and polarisation likelihood.
We adopt a Gaussian for the 2 × 2 pt likelihood,

lnL2×2 pt = −
1
2

[(
X(θ) − Xobs

)T
C−1

(
X(θ) − Xobs

)]
, (21)

where XT denotes the transpose of vector X, θ is the parameter
vector, C is the covariance matrix, and X is a concatenation of
power spectra such that

X =
(
Cgg,CMASS
`

,Cκg,CMASS
`

,Cgg,LOWZ
`

,Cκg,LOWZ
`

)
. (22)

The likelihoodLPlanck contains the likelihood for the TT, TE,
and EE power spectra. We neglected the covariance between Cκκ

`

and Cκg
`

(as is done, for instance, in Abbott et al. 2023), which
is motivated by the fact that the Cκκ

`
is estimated on a much

larger sky fraction than Cκg
`

, and that CMB lensing power comes
mainly from redshifts greater than 0.8, where we do not have any
galaxies in either of the two samples.

4.7. Priors

We used flat priors for all of the cosmological parameters,
namely ωc, ωb, h, τreio, log 1010As, and ns, as well as for the two
galaxy bias parameters, for LOWZ and CMASS, and log| fR0 |, for
which we impose −7 < log| fR0 |< 0. We use the recommended
priors for the calibration and nuisance parameters required by
Planck’s likelihood. In total, we end up with 30 free parame-
ters (the 6 parameters of ΛCDM, log| fR0 |, 2 galaxy bias param-
eters, and 21 calibration and nuisance parameters). We then
used the Monte Carlo Markov chain (MCMC) sampler emcee4

(Foreman-Mackey et al. 2013) to sample the resulting posterior
distributions.

4.8. Computing prior-independent constraints

As shown in Sect. 5, in many cases we are only able to put upper
bounds on log| fR0 |. It is therefore nontrivial to estimate the 95%
constraint on log| fR0 |, because the percentile depends strongly
on the lower value of the prior. This arises because the posterior
on log| fR0 | at low values is nonzero (and almost flat). Therefore,
without a lower bound on the prior, very low values of log| fR0 |

would be explored rather than more interesting regions of the
posterior, which would in turn be poorly sampled. This choice
of lower limit for log| fR0 | changes the estimated 95th percentile.

In order to resolve this issue, we followed the approach of
Piga et al. (2023), who rely on Gordon & Trotta (2007). We con-
sidered the ratio of the marginalized posterior and our prior,

b(x; d, p) =
P(x|d, p)

p(x)
, (23)

where x is the parameter we wish to constrain (in our case
log| fR0 |), d is the data, p the prior, and P the posterior. Then,
for two different values of x, for example x1 and x2, we applied

4 https://emcee.readthedocs.io/
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Table 2. Constraints on log| fR0 | obtained in the different cases.

Case Upper limit at 95% confidence level

CMB + Cκκ
`

−2.31
CMB + Cκκ

`
+ Alens −2.35

CMB + Cκκ
`

+ Alens in CMB only −2.46
Fiducial: CMB + Cκκ

`
+ Cgg

`
+ Cκg

`
(with MGCLASS and ∆` = 20) −4.12

CMB + Cκκ
`

+ Cgg
`

+ Cκg
`

with ReACT −4.61
CMB + Cκκ

`
+ Cgg

`
+ Cκg

`
, ∆` = 10 −4.18

CMB + Cκκ
`

+ Cgg
`

+ Cκg
`

, ∆` = 35 −3.84
CMB + Cκκ

`
+ Cgg

`
−2.95

CMB + Cκκ
`

+ Cgg
`

+ Cκg
`

+ Alens in CMB only −4.24

Notes. CMB here refers to the temperature and polarization power spectra. The CMB alone, which is not included within this table, gives an
incongruous constraint, reflecting the Alens tension, and is discussed in the text in Sect. 5.1.
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Fig. 3. Constraints and degeneracies on
all parameters when using observations of
the CMB and 3 × 2 pt observables modeled
with MGCLASS (blue) or ReACT (red).
The contours correspond to the 68th and
95th percentiles of the posterior samples.

Bayes theorem to obtain

b(x1; d, p)
b(x2; d, p)

=
L(d|x1)
L(d|x2)

= B(x1, x2), (24)

where B is the Bayes factor and L(d|x) is the marginalized like-
lihood of the data for x. The Bayes factor, which quantifies the
support for the model with x = x1 over the model with x = x2, is
therefore prior independent.

Gordon & Trotta (2007) showed that B(x1, x2) = 2.5 means
that the model with x = x1 is favored over the model with x = x2
at 95%. We then fixed x1 to its lower bound of log| fR0 |= −7 and
searched for the value of x2 such that B(x1, x2) = 2.5. Using this
method, we are able to compute 95% confidence intervals that

do not depend on the prior. We show that this is indeed the case
in Sect. 5.2.4, where we vary the prior used in the analysis.

5. Results

In this section, we present our results for different combinations
of observations, with different choices of binnings, theoretical
power spectra, and nuisance parameters. The upper limits we
place on log| fR0 | are shown in Table 2. The corner plot for the
fiducial 3 × 2 pt + CMB analysis, obtained thanks to the use of
GetDist5 (Lewis 2019), is shown in Fig. 3.

5 https://getdist.readthedocs.io/
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Fig. 4. Marginalized posterior of log| fR0 | using observations of Planck
modeled with MGCLASS. TTTEEE refers to the temperature and polar-
ization power spectra of Planck, “lensing” to the addition of the CMB
lensing power spectrum, and Alens to the inclusion of the lensing ampli-
tude. “Alens in TTTEEE only” means that the effect of Alens on the
observed CMB lensing convergence power spectrum is not taken into
account; only the CMB temperature and polarization power spectra are
affected by Alens (see the text for details).

For clarity, we always modeled the CMB temperature, polar-
ization, and lensing using MGCLASS, while we modeled the
galaxy power spectra and the galaxy – CMB lensing power spec-
tra using either MGCLASS or ReACT. We did not model the
CMB power spectra (including lensing) with ReACT as this code
can only make predictions for the matter power spectrum at red-
shifts z < 2.5.

5.1. Results from CMB only

We first look at the constraints obtained on log| fR0 | when using
only observations of the CMB. First, we used the CMB temper-
ature and polarization power spectra. These are sensitive to f (R)
gravity through the imprint of the ISW effect and gravitational
lensing. Lensing is the dominant effect and causes a smooth-
ing of the acoustic peaks (for more detail, see Lewis & Challinor
2006). This is distinct from the CMB lensing convergence recon-
struction described in Sect. 3.3. As f (R) increases the power in
the lensing potential, f (R) models will have a larger smoothing
effect on the CMB.

With just the CMB temperature and polarization observa-
tions, we find a strong preference for a nonzero value of fR0

at more than 3σ: we obtain a best-fit value of log| fR0 |= −2.35,
with the bounds −3.09 < log| fR0 |< −1.88 at 95% and −5.76 <
log| fR0 |< −1.64 at 99.7% confidence levels. The marginalized
posterior for log| fR0 | is shown in Fig. 4, where we see a clear
peak at log| fR0 |= −2.35. This is not a new result and has been
shown by other authors; for example Dossett et al. (2014) and
Hojjati et al. (2016).

However, when we add the CMB lensing power spectrum,
which is estimated from the mode mixing in the primary CMB
(as described in Sect. 3.3), the large values of log| fR0 | are
excluded, and instead we set an upper limit on log| fR0 |: log| fR0 |<
−2.31 at 95% confidence (computed following the approach
described in Sect. 4.8).

We clearly see that the CMB lensing convergence power
spectrum is consistent with GR and low log| fR0 | values, while

6 4 2 0
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|
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A
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TTTEEE + Alens
TTTEEE + lensing + Alens
TTTEEE + lensing + Alens in TTTEEE only

Fig. 5. Degeneracy between Alens and log| fR0 | for different observation
combinations. Those include CMB temperature and polarization only
(blue); CMB temperature, polarization, and lensing (green). The case
when Alens is considered as a systematic effect and is applied only to
the primary CMB anisotropies is also shown in magenta. The contours
correspond to the 68th and 95th percentiles of the posterior samples.

the smoothing of the acoustic peaks in the CMB temperature and
polarization anisotropies induces a higher value of log| fR0 |. This
issue (or tension) is closely related to the Planck Alens tension
(Planck Collaboration VI 2020).

The Alens parameter was introduced by Calabrese et al.
(2008) as a phenomenological parameter scaling the CMB lens-
ing potential amplitude as

Cφφ
`
→ AlensC

φφ
`
, (25)

and it therefore changes the amplitude of the CMB lensing
convergence power spectrum, and also the smoothing in the
temperature and polarization power spectra. As a result, vary-
ing Alens has an effect on Cκκ

`
but also on CTT

` , CTE
` , and

CEE
` . It was shown in Planck Collaboration VI (2020) that the

CMB lensing convergence power spectrum is perfectly com-
patible with Alens = 1, which is not the case for the tem-
perature and polarization power spectra. For instance, the 1σ
constraint that Planck Collaboration VI (2020) find using the TT,
TE, EE+low E likelihood is Alens = 1.180 ± 0.065, which is in
tension with Alens = 1 at 2.8σ. Interestingly, the log| fR0 | tension
is larger than the Alens tension. This suggests that the modifi-
cation of the lensing potential by HS f (R) better describes the
smoothing of the CMB than the simple rescaling of the potential
with Alens.

We further elucidated the relation between Alens and log| fR0 |

by running the Planck CMB TTTEEE likelihood with both
parameters. Figure 4 shows the result as the blue curve. The con-
straints on log| fR0 | are broadened, with low values of log| fR0 | that
are compatible with GR. However, the posterior remains consis-
tent with higher values of log| fR0 |. Figure 5 illustrates the degen-
eracy between Alens and log| fR0 |.

The green and magenta curves in Fig. 4 show the posteri-
ors obtained when adding the CMB lensing convergence power
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Fig. 6. Marginalized posterior of log| fR0 | using observations of CMB
temperature and polarization, and the 3 × 2 pt observables (CMB lens-
ing, galaxy distribution, and their cross-correlation). The CMB obser-
vations including the CMB lensing auto power spectrum are always
modeled using MGCLASS, while the galaxy power spectra and the
galaxy–CMB lensing cross-correlations are modeled with ReACT (red)
or MGCLASS (black).

spectrum likelihood. The difference between the two curves is
that for the magenta curve, the effect of Alens is only applied to
the temperature and polarization power spectra. In this case, we
do not take into account the effect of Alens on the amplitude of
the observed CMB lensing convergence power spectrum Cκκ

`
but

only the effects of the excess smoothing observed on the temper-
ature and polarization spectra. Our assumption is that we observe
Alens > 1 in TTTEEE, not because of a lensing excess but as
the effect of an unknown observational systematic uncertainty.
In both cases, the posteriors agree with GR, and we can put an
upper limit on the value of log| fR0 |.

We show the degeneracy between log| fR0 | and Alens in these
two cases in Fig. 5. When Alens is treated as a systematic uncer-
tainty (magenta contours), we recover high Alens values because
the convergence power spectrum constrains log| fR0 | to low val-
ues where it cannot reproduce the smoothing observed in the
acoustic peaks. These results clearly show that HS f (R) gravity
cannot explain the Alens tension, which is in agreement with the
findings of Hojjati et al. (2016).

5.2. Results from combined CMB and 3 × 2 pt observations

We now present our fiducial analysis, that is, the combination
of the CMB (temperature and polarization power spectra) and
the 3× 2 pt analysis (CMB convergence power spectrum, galaxy
power spectrum, and the cross-correlation between the two). In
this section, the value of Alens is fixed to 1 unless stating other-
wise.

Figure 6 gives the marginalized posterior of log| fR0 | obtained
when using either MGCLASS (black curve) or ReACT (red
curve) when modeling the 2 × 2 pt observables (Cgg

`
and Cκg

`
)

and we reiterate that the CMB lensing convergence auto power
spectrum is always modeled using MGCLASS. The 95% confi-
dence level constraints are log| fR0 |< −4.12 and log| fR0 |< −4.61
with MGCLASS and ReACT, respectively. These constraints
are consistent with GR and are much tighter than when using
only the CMB observations. This also excludes HS f (R) as an
explanation of the Alens tension as solving the tension would
require high values of log| fR0 |, which are now excluded.

The difference between MGCLASS and ReACT is also evi-
dent in Fig. 2. MGCLASS only predicts the linear matter power
spectrum, whereas ReACT predicts the nonlinear power spec-
trum. Although our scale cuts were chosen to minimise the
effects of nonlinear structure formation, it seems likely that the
origin of this difference here arises from the mildly nonlinear
regime where the MGCLASS predictions have less power than
those of ReACT. Therefore, our MGCLASS constraint is likely
too conservative and hence not as strong as it should be.

Figure 3 shows the marginalized two-dimensional posteriors
on all parameters when using MGCLASS (blue) or ReACT (red).
We see that the posteriors agree well for most parameters. We also
see that log| fR0 | exhibits a degeneracy with the galaxy bias param-
eters. This arises because both parameters change the amplitude
of the galaxy power spectra. However, the parameters are not com-
pletely degenerate, as log| fR0 | also changes the shape of the power
spectra, and the cross-correlation separates the two effects to a cer-
tain extent, as explored in the following subsection.

Figure 7 shows the measured angular power spectra (orange)
and the theoretical best fit (blue) using MGCLASS. The model
fits the data well, except at the largest scales for the cross-
correlation between the CMB lensing of Planck and the galax-
ies of CMASS, where the amplitude of the theoretical power
spectrum is larger than the amplitude of the observation. This
result has been observed in previous studies (Pullen et al. 2016;
Singh et al. 2017; Kou & Bartlett 2023). We see that HS f (R) is
unable to resolve this problem.

The constraints on log| fR0 | are consistent and competitive
with previous studies using galaxy clustering observations, such
as Hu et al. (2016). The tightest constraint obtained by these
latter authors is log| fR0 |< −4.5 when combining observations
of the CMB (temperature, polarization, lensing), supernovae,
BAO measurements (including but not limited to BAO mea-
surements of LOWZ and CMASS), and galaxy weak lensing
shear correlation functions estimated from the Canada-France-
Hawaii Telescope Lensing Survey (Heymans et al. 2013). The
cross-correlation of galaxy–CMB lensing spectra enables us to
obtain competitive constraints with a reduced data set.

5.2.1. Benefit of the cross-correlation

In order to isolate the advantage of the cross-correlation, we per-
formed the analysis without the cross-correlation power spec-
tra. The cross-correlation is primarily useful in reducing the
degeneracy between log| fR0 | and the galaxy bias parameters.
The degeneracy is reduced as Cgg

`
is proportional to b2

g, while
Cκg
`

is proportional to bg (see Eqs. (13) and (14)). This effect is
seen in Fig. 8 where the red contours do not contain the cross-
correlation and the blue contours do. As a result, the 95% con-
straint obtained without the cross-correlation is log| fR0 |< −2.95,
compared to log| fR0 |< −4.12 with the cross-correlation, which is
an improvement of more than an order of magnitude.

5.2.2. Result including Alens as a systematic uncertainty

As was shown in Sect. 5.1, HS f (R) cannot explain the Alens
tension. When the 2 × 2 pt observations are added, log| fR0 | is
constrained to even smaller values, which further rules out this
kind of modified gravity as a resolution to the Alens tension. As it
has been suggested that Alens could be due to a systematic error
(Planck Collaboration VI 2020) rather than a physical effect, we
also performed our analysis with Alens on the CMB tempera-
ture and polarization power spectra only. Our expectation is that
this will give tighter constraints, because Alens can explain the
excess of smoothing in the CMB temperature and polarization
power spectra without the need for a large value of log| fR0 |. The
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Fig. 7. Measured angular power spectra
(orange) and best fit (blue) obtained using
MGCLASS, as a function of multipole.
The gray dashed line represents the limit
between the linear and nonlinear regimes.
We only used multipoles below this limit in
this analysis. We note the different multi-
pole ranges for CMASS and LOWZ.
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Fig. 8. Marginalized constraints on log| fR0 | and the galaxy bias of
CMASS when using CMB observations and the full 3×2 pt observables
(blue) or only the galaxy and CMB lensing auto power spectra (red).
It can be seen that adding the galaxy–CMB lensing cross-correlation
reduces the degeneracy between the two parameters. Those contours
correspond to the 68th and 95th percentiles of the posterior samples.

resulting marginalized contours on Alens and log| fR0 | are shown
in Fig. 9. As expected, Alens > 1 is more likely in this configu-
ration. Unsurprisingly, the 95% constraint of log| fR0 |< −4.24 is
tighter than the fiducial constraint (log| fR0 |< −4.12).

5.2.3. Effect of the binning scheme

We examined how changing the binning scheme impacts our
constraints. In particular, we defined three binning schemes,
namely ∆` = 10, ∆` = 20 (the fiducial case), and an unequal
binning scheme with an average ∆` = 35. The marginalized
posteriors on log| fR0 | obtained with the three different binning
schemes are presented in Fig. 10. We see that the constraints
become tighter as ∆` decreases. The use of narrow multipole
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Fig. 9. Marginalized constraints on log| fR0 | and Alens, where Alens is con-
sidered as a systematic effect and is only applied to the CMB temper-
ature and polarization anisotropies. Here, the 3 × 2 pt observables are
included, but are not affected by Alens. A value of Alens > 1 is still pre-
ferred. The contours correspond to the 68th and 95th percentiles of the
posterior samples.

bin widths makes it possible to better use the shape of the
power spectra to constrain f (R) gravity. The 95% confidence
constraints are log| fR0 |< −4.18, log| fR0 |< −4.12, and log| fR0 |<

−3.84 for ∆` = 10, ∆` = 20, and ∆` = 35, respectively. All of
our constraints are summarized in Table 2.

5.2.4. Effect of the priors

Our 95% confidence intervals rely on the approach described
in Sect. 4.8, the aim of which is to build prior-independent
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Fig. 10. Marginalized posterior of log| fR0 | using MGCLASS depend-
ing on the binning scheme used. The constraints become tighter as ∆`
decreases.
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Fig. 11. Posteriors of log| fR0 | normalized by the average value of the
plateau using flat priors between −7 and 0 (orange) or between −9
and 0 (blue). The red dashed lines correspond to the 95% confidence
level.

confidence intervals. In order to check that our constraints are
indeed prior independent, we ran a second MCMC analysis in
the fiducial setup, with a flat prior, −9 < log| fR0 |< 0 (instead
of the previous −7 < log| fR0 |< 0). The posteriors (normalized
by the average value of the plateau) are shown in Fig. 11. It
can be seen that the 95% constraint is largely insensitive to the
lower bound on the prior. More precisely, the constraint using
the new prior is log| fR0 |< −4.17, which is close to the limit
log| fR0 |< −4.12 that we found with the previous prior.

The approach described in Sect. 4.8 indeed produces con-
straints independent of the adopted prior. In contrast, if we were
to directly use the 95th percentile of the samples, the values
associated to each prior (lower bound at −7 or −9) would be
−3.93 and −4.27, respectively. This dependence on the choice
of prior demonstrates the danger in determining the constraints
directly from the sample percentiles; for instance, we extract a
tighter constraint when the lower bound of the prior is lower.
This finding is intuitive, because by decreasing the lower bound
on the prior, we allow the MCMC walkers to explore lower val-
ues in parameter space; the posterior distribution therefore shifts

Table 3. Median and 68% confidence intervals of each parameter in HS
f (R) and ΛCDM models.

Parameter HS f (R) ΛCDM

ωb 0.02241 ± 0.00015 0.02238 ± 0.00014
ωc 0.1192 ± 0.0014 0.1194 ± 0.0013
h 0.6777 ± 0.0062 0.6762 ± 0.0057
τreio 0.0502 ± 0.0080 0.0504 ± 0.0077
log 1010As 3.060 ± 0.025 3.065 ± 0.023
ns 0.9656 ± 0.0045 0.9648 ± 0.0043
bCMASS 2.089 ± 0.047 2.105 ± 0.030
bLOWZ 1.900 ± 0.056 1.924 ± 0.040

Notes. These constraints correspond to the fiducial analysis including
CMB temperature and polarization power spectra and 3 × 2 pt observ-
ables. The column corresponding to HS f (R) shows the constraints
obtained when using MGCLASS.

towards lower parameter values and consequently the 95th per-
centile becomes lower as well.

5.2.5. Comparison of other cosmological parameters with
ΛCDM

We also look at how the other parameters change when mov-
ing from the ΛCDM model to HS f (R) gravity. This can firstly
be seen in Fig. 3, which shows the degeneracies between the
parameters included in the analysis, as low values of log| fR0 | are
very close to the ΛCDM model. Apart from the strong degen-
eracy between log| fR0 | and galaxy biases (mentioned previously
in Sect. 5.2), there is no important degeneracy between log| fR0 |

and any of the other cosmological parameters. This is because
the majority of the parameters are strongly constrained by the
CMB (temperature and polarization) observations, while log| fR0 |

is constrained by the galaxy power spectra and cross-correlations
with CMB lensing.

Table 3 shows the marginalized medians and 68% confi-
dence intervals of each parameter apart from log| fR0 | where the
results are presented in Table 2. The constraints presented in
Table 3 were obtained in the fiducial (CMB + 3 × 2 pt) setup
using MGCLASS in the case of HS f (R) gravity as well as in
the ΛCDM model. We note that the constraints stated in this
table are directly computed from the 68th percentiles of the pos-
teriors without using the approach described in Sect. 4.8. As a
result, the constraints stated for the parameters could depend
on the prior used for log| fR0 | if the parameter is correlated with
log| fR0 |. This is the case for the galaxy biases, but we observe no
significant correlation between log| fR0 | and the other parameters,
and therefore this should not be an issue. It can be seen that the
marginalized medians of each parameter do not change signifi-
cantly when moving from ΛCDM to f (R) gravity. Table 3 also
shows that the constraints are slightly degraded when log| fR0 | is
added to the analysis compared to the ΛCDM case; however, as
already mentioned, this effect is small, as most parameters are
constrained by CMB observations, which are not as sensitive to
f (R) gravity as galaxy power spectra.

6. Conclusion

Modified gravity is a possible explanation for the observed
accelerated expansion of the Universe (Carroll et al. 2004).
Hu-Sawicki (HS) f (R) gravity (Hu & Sawicki 2007) is an
attractive example, motivating searches for other possible
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observational signatures of the model. We looked for such
signatures in terms of deviations from the predictions of gen-
eral relativity in large-scale structure observations in a combined
analysis of CMB, galaxy, and CMB lensing measurements.

If the HS f (R) model is to explain the accelerated expansion,
the key parameter is log| fR0 |. Primary CMB observations alone
constrain this parameter through the ISW effect and smooth-
ing of the temperature and polarization anisotropies by gravi-
tational lensing. In agreement with previous analyses, we find
that measurements by Planck lead to high values of log| fR0 |,
which would imply a remarkable deviation from general relativ-
ity (see Sect. 5.1). However, this is not the case when the CMB
lensing convergence power spectrum is added, reflecting ten-
sion between the effects of lensing on the primary anisotropies
and the reconstructed lensing power spectrum. This tension is
closely related to the problem known as Alens. We illustrate this
by exhibiting the degeneracy between log| fR0 | and Alens. This
analysis also demonstrates that HS f (R) alone cannot resolve
this tension.

Setting Alens = 1 and adding galaxy power spectra from
BOSS and their cross-correlation with CMB lensing, we then
constrain log| fR0 |< −4.61 at 95% confidence (Sect. 5.2). This is
our central result. It means that while HS f (R) may still explain
the accelerated expansion, there is no signature of the model in
current observations of large-scale structure; the model predic-
tions do not substantially deviate from those of general relativity.

We also show that the cross-correlation of galaxy and lensing
measurements is essential in breaking the degeneracy between
galaxy bias and log| fR0 |. Incorporating this cross-correlation
improves the constraint on | fR0 | by more than an order of magni-
tude (Sect. 5.2.1).

This study is the first to make use of the cross-correlation
between CMB lensing and galaxy measurements to constrain HS
f (R) gravity. It paves the way for future large-scale galaxy sur-
veys to place more stringent constraints, as they will benefit from
lower noise and use galaxy lensing in addition to CMB lensing.
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