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ABSTRACT

Context. Computing the matter power spectrum, P(k), as a function of cosmological parameters can be prohibitively slow in cosmo-
logical analyses, hence emulating this calculation is desirable. Previous analytic approximations are insufficiently accurate for modern
applications, so black-box, uninterpretable emulators are often used.
Aims. We aim to construct an efficient, differentiable, interpretable, symbolic emulator for the redshift zero linear matter power spec-
trum which achieves sub-percent level accuracy. We also wish to obtain a simple analytic expression to convert As to σ8 given the
other cosmological parameters.
Methods. We utilise an efficient genetic programming based symbolic regression framework to explore the space of potential mathe-
matical expressions which can approximate the power spectrum and σ8. We learn the ratio between an existing low-accuracy fitting
function for P(k) and that obtained by solving the Boltzmann equations and thus still incorporate the physics which motivated this
earlier approximation.
Results. We obtain an analytic approximation to the linear power spectrum with a root mean squared fractional error of 0.2% between
k = 9 × 10−3−9 h Mpc−1 and across a wide range of cosmological parameters, and we provide physical interpretations for various
terms in the expression. Our analytic approximation is 950 times faster to evaluate than camb and 36 times faster than the neural net-
work based matter power spectrum emulator bacco. We also provide a simple analytic approximation for σ8 with a similar accuracy,
with a root mean squared fractional error of just 0.1% when evaluated across the same range of cosmologies. This function is easily
invertible to obtain As as a function of σ8 and the other cosmological parameters, if preferred.
Conclusions. It is possible to obtain symbolic approximations to a seemingly complex function at a precision required for current and
future cosmological analyses without resorting to deep-learning techniques, thus avoiding their black-box nature and large number of
parameters. Our emulator will be usable long after the codes on which numerical approximations are built become outdated.

Key words. methods: numerical – cosmological parameters – cosmology: theory – large-scale structure of Universe

1. Introduction

Machine learning (ML) methods have great potential for sim-
plifying and accelerating the analysis of astrophysical data sets.
The primary focus has been on what one might dub “advanced
numerical methods” using, for example, Gaussian processes or
neural networks. In these cases, one tries to construct efficient
algorithms which can be used to either infer specific physical
properties from complex data sets or emulate complex processes
which can then be extrapolated to new situations. Typically
these methods involve constructing a set of pre-established basis
functions and then inferring their weights, or building complex,
expressible functions, with parameters that can be optimised
via efficient gradient descent methods. These methods can be
easily incorporated in Bayesian inference frameworks that have
achieved significant success, becoming the standard practice in
astrostatistics.

The drawback of the more traditional, numerical ML tech-
niques is their opaqueness; it is not always clear what infor-
mation is being used and how methods trained on (necessarily
imperfect) simulations will perform when applied to real-world

data. A somewhat overlooked branch of machine learning which
has tremendous promise for the types of problems being con-
sidered in astrophysics is symbolic regression (SR). With SR
one tries to infer the mathematical expressions that best cap-
ture the properties of the physical system one is trying to study.
The process is an attempt to mimic and systematise the practice
that physicists have always used: to infer simple physical laws
(i.e., formulae) from data. The field of SR has developed over
the years into a vibrant and active field of research in ML, typi-
cally associated with evolutionary methods such as Genetic Pro-
gramming. It has been shown that it can be used to infer some
well-established laws of physics from data and infer new ones
(e.g., Lemos et al. 2023; Bartlett et al. 2023a,b; Desmond et al.
2023; Kamerkar et al. 2023; Sousa et al. 2024; Delgado et al.
2022; Miniati & Gregori 2022; Wadekar et al. 2023; Koksbang
2023a,b,c; Alestas et al. 2022; Lodha et al. 2024).

Within the field of cosmology, one often compresses obser-
vations from galaxy surveys into two-point correlation func-
tions (or their Fourier transforms, power spectra), which are
compared to theory through Markov chain Monte Carlo meth-
ods to constrain cosmological parameters. As cosmological
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surveys become increasingly vast and precise, a fundamen-
tal limitation to the feasibility of such inferences has been
the speed at which one can make this theoretical predic-
tion, since it involves solving a complex set of coupled,
highly non-linear differential equations. Recently, instead of
directly solving these equations (Lewis et al. 2000; Blas et al.
2011; Hahn et al. 2023) and adding non-linear corrections
(Smith et al. 2003), emulation techniques such as Neural Net-
works, Gaussian Processes or polynomial interpolation schemes
have been used to accelerate these calculations to directly
output the matter power spectrum as a function of cosmo-
logical parameters (Fendt & Wandelt 2007a,b; Heitmann et al.
2014; Winther et al. 2019; Angulo et al. 2021; Aricò et al.
2022; Euclid Collaboration 2021; Spurio Mancini et al. 2022;
Mootoovaloo et al. 2022; Zennaro et al. 2023). These methods
act as black boxes and require up to several hundreds of param-
eters to be optimised.

However, through perturbation theory, one knows analytic
limits of the power spectrum and, through visual inspection, it
does not appear to be an extremely complex function. As such,
one wonders whether an analytic approximation exists. Indeed,
for many years, the leading method of accelerating this cal-
culation has been an analytic approximation (Eisenstein & Hu
1998, 1999), however it is insufficiently precise for modern
experiments. Analytic approximations to beyond ΛCDM power
spectra have been proposed in the context of modified gravity
(Orjuela-Quintana et al. 2024), although these still only achieve
a precision of between 1 and 2%.

Such an emulator has the advantage that it will not become
deprecated when the codes on which current numerical methods
are built become outdated, whereas other methods require the
transfer of the inferred weights and biases as well as the model
architecture, hindering longevity. Even in the short term, an ana-
lytic expression using standard operators is more portable, since
it can be more easily be incorporated into the user’s favourite
programming language without the need to install or write wrap-
pers for the model. Moreover, having an analytic expression
allows one to interpret such a fit, and potentially identify physi-
cal processes which could lead to certain terms, contrary to the
black-box numerical methods. Additionally, such expressions
often contain fewer free parameters to optimise than numerical
ML methods.

In Sect. 2 we briefly describe the matter power spectrum and
the Eisenstein & Hu approximation, and in Sect. 3 we detail the
SR method we use in this work. We present an analytic emulator
for σ8 as a function of other cosmological parameters in Sect. 4
(which is easily invertible to obtain As as a function of cosmo-
logical parameters), and in Sect. 5 we give our emulator for the
linear matter power spectrum. The main results of this paper
are given in Eqs. (4) and (6). We conclude and discuss future
work in Sect. 6. Throughout this paper ‘log’ denotes the natural
logarithm.

2. The matter power spectrum

2.1. Definition

We would like to construct an efficient, differentiable and (if at
all possible) interpretable emulator for the power spectrum of
the matter distribution in the Universe, P(k; θ), for wavenumber
k and cosmological parameters θ.

The power spectrum is defined as follows: the matter den-
sity of the Universe, ρ(x) can be decomposed into a constant
(in space) background density, ρ̄, and a density contrast, δ(x)

such that ρ(x) = ρ̄[1 + δ(x)]. If δ̃(k) is the Fourier Transform
of δ(x), and the matter distribution is statistically homogeneous
and isotropic, we have that

(2π)3P(k; θ)δD (
k − k′

)
≡ 〈δ̃(k)δ̃∗(k′)〉, (1)

where 〈· · · 〉 denotes an ensemble average and δD is the Dirac
delta function.

From observations of the cosmic microwave background
(CMB; Planck Collaboration VI 2020), it is known that the den-
sity fluctuations at early times were approximately Gaussian and
thus fully described by P(k; θ). At these early times, the power
spectrum of the comoving curvature perturbations is propor-
tional to Askns−4, where ns ≈ 0.9665 (Planck Collaboration VI
2020). Although structure formation through gravity makes the
present-day density field non-Gaussian (e.g., the intricate struc-
ture of the cosmic web is typically associated with higher order
statistics), the power spectrum still holds a central role in modern
cosmological analyses.

The current cosmological model is described by only six
parameters: the baryonic, Ωb, and total matter, Ωm, density
parameters, the Hubble constant, H0 = 100 h km s−1 Mpc−1, the
scalar spectral index, ns, the curvature fluctuation amplitude,
As, and the reionisation optical depth, τ. All other parameters
can be derived from these six, and thus sometimes a different
set of parameters is chosen. For example, instead of As, one
often quotes σ8 which is the root-mean-square density fluctu-
ation when the linearly evolved field is smoothed with a top-hat
filter of radius 8 h−1 Mpc. Specifically, one defines for a top-hat
of radius R

σ2
R =

∫
dk

k2

2π2 P(k; θ) |W(k,R)|2 , (2)

where θ is the set of cosmological parameters and the Fourier
transfer of the top-hat filter is

W(k,R) =
3

(kR)3 (sin(kR) − kR cos(kR)) , (3)

and σ8 is simply σR for R = 8 h−1 Mpc. Throughout this paper
we ignore the small dependence of the power spectrum on the
reionisation optical depth parameter, and focus on the remaining
five parameters. We set the neutrino mass to zero in all calcula-
tions.

2.2. Eisenstein & Hu approximation

Since each evaluation of a Boltzmann solver to compute P(k; θ)
can be expensive, the ability to emulate this procedure and replace
this solver with a surrogate model has long been desirable. The
most notable attempt to do this in an analytic manner is given
in a series of papers by Eisenstein & Hu (1998, 1999). In these
works, an approximation is constructed based on physical argu-
ments including baryonic acoustic oscillations (BAO), Compton
drag, velocity overshoot, baryon infall, adiabatic damping, Silk
damping,andcolddarkmatter (CDM)growthsuppression.Rather
than repeat their findings, we refer the reader to these papers to
inspect the structure of the equations. Such a model is accurate
to a few percent which, although invaluable at the time of writ-
ing, is insufficiently accurate for modern cosmological analyses.
It is thus the goal of this work to build upon this analytic emula-
tor to provide sub-percent level predictions. We note that alterna-
tive symbolic approximations also exist to P(k), such as the ear-
lier, less accurate approximation by Bardeen et al. (1986; BBKS).
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More recently, Orjuela-Quintana et al. (2023) found simple
expressions using genetic programming which can achieve sim-
ilar accuracy to the Eisenstein & Hu (1998) expression, but we
choose to use Eisenstein & Hu (1998)’s approximation due to its
physical motivation and widespread use.

3. Symbolic regression

To extract analytic approximations from sampled data, we use
the symbolic regression package operon1 (Burlacu et al. 2020).
This package leverages the most popular (e.g., Lemos et al.
2023; Cranmer et al. 2020; Cranmer 2020, 2023; Schmidt
& Lipson 2009; Schmidt et al. 2011; Virgolin et al. 2021;
de Franca & Aldeia 2021; La Cava et al. 2019; Kommenda et al.
2020; Arnaldo et al. 2014) approach to SR, namely genetic
programming (Turing 1950; David 1989; Haupt & Haupt 2004).
Genetic programming describes the evolution of “computer
programs”, in our case mathematical expressions encoded as
expression trees. Following the principle of natural selection,
over several iterations the worst performing equations (given
some fitness metric) are discarded and new equations are pro-
duced by combining sub-expressions of the current population
(crossover) or by randomly inserting, replacing or deleting a
subtree in an expression (mutation). Over the course of several
generations, the expectation is that the population of equations
evolve to become fitter and thus we obtain increasingly accurate
analytic expressions.

We note that many other techniques exist for SR, such as
supervised or reinforcement learning with neural networks
(Petersen et al. 2021; Landajuela et al. 2022; Tenachi et al. 2023;
Biggio et al. 2021), deterministic approaches (Worm & Chiu
2013; Kammerer et al. 2021; Rivero et al. 2022; McConaghy
2011), Markov chain Monte Carlo (Jin et al. 2019), physics-
inspired searches (Udrescu & Tegmark 2020; Udrescu et al.
2020; René Broløs et al. 2021), and exhaustive searches
(Bartlett et al. 2023a). However, we choose operon and thus
genetic programming due to its speed, high memory efficiency
and its strong performance in benchmark studies (Cava et al.
2021; Burlacu 2023).

To improve the search, every time a terminal node appears
in an expression tree (i.e., k or one of the cosmological param-
eters), a scaling parameter is introduced, which is then opti-
mised (Kommenda et al. 2020) using the Levenberg–Marquardt
algorithm (Levenberg 1944; Marquardt 1963). We denote the
total number of nodes in the expression excluding the scaling
as the “length” of the model, and the “complexity” refers to the
total number of nodes, including these.

When comparing objective values during non-dominated
sorting (NSGA2), operon implements the concept of ε-
dominance (Laumanns et al. 2002), where the parameter ε is
defined such that two objective values which are within ε of
each other are considered equal. This parameter therefore affects
the number of duplicate equations in the population and is
designed to promote convergence to a representative well dis-
tributed approximation of the global Pareto front: the set of solu-
tions which cannot be made more accurate without being made
more complex. We choose different values for this parameter
when searching for our two emulators, and these were found
after some experimentation with different values to find settings
which produced accurate yet compact models.

1 https://github.com/heal-research/operon

Model selection is an essential part of any SR search. Since
one optimises both accuracy and simplicity during the search,
SR is often a Pareto-optimisation problem. In the presence of
statistical errors, one can combine simplicity and accuracy in a
principled, information theory motivated way into a single objec-
tive to optimise under the minimum description length principle
(Bartlett et al. 2023a). In this case, the task of picking the opti-
mum function is unambiguous, and one can incorporate prior
information into the functional form using language models
(Bartlett et al. 2023b) to obtain more physically motivated func-
tions. In our problem, however, we do not have noise in our data
and thus have to rely on heuristic methods.

To choose a model, we first generate the Pareto front of
candidate expressions. We then consider only those models for
which the loss is below some predefined level (to ensure suf-
ficiently accurate solutions for our applications) and those for
which the loss on the training and validation sets do not dif-
fer significantly (and indicator of over-fitting). At this point one
could automate model selection; for example, in the code pysr
(Cranmer et al. 2020; Cranmer 2020) the best model is the one
with the best “score”, which is the one with largest negative of
the derivative of the loss with respect to complexity. However,
given we wish to have interpretable and physically-reasonable
functions, we instead visually inspect the most accurate solution
found for each model length and make a qualitative judgement as
to the function which is sufficiently compact to be interpretable
yet is accurate enough for our applications.

Further details are given in Sects. 4 and 5.

4. Analytic emulator for σ8

We begin by considering the simplest emulator one may want
for power spectrum related quantities: an emulator for σ8 as a
function of other cosmological parameters (As,Ωb,Ωm, h, ns) or,
equivalently, an emulator for As given σ8 and the other cosmo-
logical parameters. Although the set of neural network emula-
tors bacco contains a function to do this (Aricò et al. 2022), to
the best of the authors’ knowledge an analytic approximation is
not currently in common use. The standard approach is to com-
pute the linear matter power spectrum with a Boltzmann code
assuming some initial guess of As, then compute the integral in
Eq. (2) to obtain σ8. For a target σ8 of σ′8, one should then use
A′s = (σ′8/σ8)2As.

We wish to accelerate this process with a symbolic emula-
tor. To compute this, we constructed a Latin hypercube (LH)
of 100 sets of cosmological parameters, using uniform priors in
the ranges given in Table 1, which are the same as those used
in Euclid Collaboration (2021). We constructed a second LH of
100 points to be used for validation. For these parameters, we
computed σ8 using camb (Lewis et al. 2000) and attempted to
learn this mapping using a mean squared error loss function with
operon.

For the equation search, we used a population size of 1000
with a brood size of 10 and tournament size of 5, optimising both
the mean squared error and the length of the expression simul-
taneously, with ε = 10−6 (see Sect. 3). From Eq. (2), one would
expect that As only appears in the expression for σ8 as σ8 ∝

√
As

since As linearly scales the power spectrum. As such, we chose to
fit for σ8/

√
109As, where we use 109As instead of As so that all

cosmological parameters and the target variable areO(1). Param-
eters were optimised during the search using a nonlinear least
squared optimiser with up to 1000 iterations per optimisation
attempt. We set the maximum allowed model length to 40 and
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Table 1. Cosmological parameters used for analytic emulators.

Parameter Minimum Maximum

109 As 1.7 2.5
Ωm 0.24 0.40
Ωb 0.04 0.06
h 0.61 0.73
ns 0.92 1.00

Notes. We sample all parameters independently and uniformly in the
range between the minimum and maximum values given.
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Fig. 1. Pareto front of solutions obtained using operon when fitting
σ8/

√
109As as a function of Ωb, Ωm, h and ns. We plot the root mean

squared error as a function of model length from the training and vali-
dation sets separately. The model in Eq. (4) has a model length of 27.

maximum number of iterations to 108, although we found that
both of these are much larger than the required values needed to
converge to a desirable solution.

The candidate expressions were comprised of standard arith-
metic operations (addition, subtraction, multiplication), as well
as the natural logarithm, square and square root operators. It is
somewhat difficult to predict the exact effect the function set has
on the quality of the results. The efficiency of the algorithm is
only affected insofar as the transcendental functions (sin, cos,
log, exp,

√
·, etc.) are slower to evaluate than arithmetic oper-

ators. The effect is minor, however. Increasing the number of
basis functions inflates the total search space, making it poten-
tially less likely that well-fitting expressions are found, yet too
small a basis set could remove compact approximations to the
functions of interest. For both this section and Sect. 5 we exper-
imented with alternative basis sets and found that those chosen
gave accurate yet compact expressions within a reasonable run
time.

After 2 min of operation on one node of 56 cores, we found
the Pareto front of expressions given in Fig. 1. We see that
the training and validation losses are comparable at all model
lengths, reaching a root mean squared error of around 10−3 by a
model length of 14. We see that the difference between the train-
ing and validation losses increases after the model of length 27,
so we take this model as our fiducial result. It is given by

σ8√
109As

≈ a0Ωm + a1h + a2 (Ωm − a3Ωb)
(
log(a4Ωm) − a5ns

)
×

(
ns + a6h

(
a7Ωb − a8ns + log(a9h)

))
, (4)

where the optimised parameters are a = [0.51172, 0.04593,
0.73983, 1.56738, 1.16846, 0.59348, 0.19994, 25.09218,
9.36909, 0.00011]. We note that we have removed a final addi-
tive term produced by operon since this has a value of 3× 10−6

and is thus much smaller than the error in the fit so can be safely
neglected.

We note several important features of this equation which
make it desirable. First, we find that it is a highly accurate
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Fig. 2. Linear matter power spectrum (upper), the residuals Eq. (5)
from the Eisenstein & Hu fit without baryons (middle), and the frac-
tional residuals on P(k) compared to the truth for the Planck 2018
(Planck Collaboration VI 2020) cosmology. In all panels we plot the
truth computed with camb with solid red lines, and the analytic fit
Eq. (6) obtained in this paper with dashed blue lines. We see that the
fit is accurate within 0.3% across all k considered.

approximation, with a root mean squared fractional error on the
validation set of only 0.1% which is far smaller than the preci-
sion to which one can measure this number with cosmological
experiments. Second, one sees that As (by design) only appears
once in this equation and as a multiplicative term. Thus, it is triv-
ial to invert this equation to obtain As as a function of the other
cosmological parameters, as is often needed.

5. Analytic emulator for the linear power spectrum

We now move on to the more challenging task of produc-
ing an analytic emulator for the linear matter power spectrum.
Given the previous success of Eisenstein & Hu (1998, 1999), we
believe it is sensible to build upon this work, not least due to
the physically-motivated terms included in their fit and so that
we must only have to fit a small residual (of the order of a few
percent). Thus, instead of directly fitting for P(k, θ), we define

P(k; θ) ≡ PEH(k; θ)F(k; θ), (5)

where PEH(k; θ) is the zero-baryon fit of Eisenstein & Hu (1998),
which does not include an attempt to fit the BAO. We plot
both P(k; θ) and log F(k; θ) in Fig. 2 for the best-fit cosmol-
ogy obtained by Planck (Planck Collaboration VI 2020), where
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Fig. 3. Pareto front of solutions obtained using operon when fitting
the linear matter power spectrum as a function of σ8, Ωb, Ωm, h and ns.
We plot the root mean squared error on log F as a function of model
length for the training and validation sets separately. The model given
in Eq. (6) has a model length of 77, as indicated by the dotted line.

we see that dividing out the Eisenstein & Hu term retains the
BAO part of the power spectrum and reduces the dynamic range
required for the fit.

As before, we obtained 100 sets of cosmological parame-
ters on a LH using the priors in Table 1 and computed both
P(k; θ) with camb and PEH(k; θ) with the colossus (Diemer
2018) implementation, using 200 logarithmically spaced values
of k in the range 9 × 10−3−9 h Mpc−1. We note that this is an
extremely small training set compared to many power spectrum
emulators, but we find that it is sufficient to obtain sub-percent
level fits.

We chose to symbolically regress log F(k; θ) using a mean
squared error loss function, and thus wish to minimise the frac-
tional error on this residual. We chose to fit for log F as this
ensures that our final estimate of P(k; θ) is positive, as guar-
anteed by exponentiation, which is physically required. Addi-
tionally, we first multiplied log F by 100 so that the target was
O(1). We used a further 100 sets of cosmological parameters,
also arranged on a LH, for validation. We chose to fit using the
cosmological parametersσ8, Ωb, Ωm, h and ns. We used the same
settings for operon as in Sect. 4, except we chose ε = 10−3,
terminated our search after 108 function evaluations and used
a basis set comprising of addition, subtraction, multiplication,
natural logarithm, cosine, power and analytic quotient operators
(aq(x, y) ≡ x/

√
1 + y2).

The root mean squared error for the best function found at
each model length is given in Fig. 3, where we see that we are
able to achieve values of O(10−3) for log F. Unlike for the σ8
emulator, we obtain slightly worse losses for the validation set
compared to training, however always by less than a factor of
two.

Given this set of candidate solutions, we wish to choose one
which is sufficiently accurate for current applications yet is suf-
ficiently compact to be interpretable. In Fig. 3, one observes a
plateau in accuracy between model lengths ∼65−80 and thus it
seems reasonable to choose a solution in this regime, since dou-
bling the model length only achieves approximately a factor of
two improvement in fit beyond this point. Moreover, beyond this
point the training and validation curves begin to deviate, sug-
gesting a degree of overfitting.

Table 2. Best-fit parameters for the linear matter power spectrum emu-
lator given in Eq. (6).

Parameter Value Parameter Value

b0 0.0545 b19 0.0111
b1 0.0038 b20 5.35
b2 0.0397 b21 6.421
b3 0.1277 b22 134.309
b4 1.35 b23 5.324
b5 4.0535 b24 21.532
b6 0.0008 b25 4.742
b7 1.8852 b26 16.6872
b8 0.1142 b27 3.078
b9 3.798 b28 16.987
b10 14.909 b29 0.0588
b11 5.56 b30 0.0007
b12 15.8274 b31 195.498
b13 0.0231 b32 0.0038
b14 0.8653 b33 0.2767
b15 0.8425 b34 7.385
b16 4.554 b35 12.3961
b17 5.117 b36 0.0134
b18 70.0234

Notes. Although units are excluded in this table, the units for each
parameter are easily obtained by noting that these are defined assum-
ing that k is measured in h Mpc−1 in Eq. (6).

We choose to report the model of length 77, as indicated by
the dotted line in Fig. 3, since this provided one of the most
interpretable solutions, and achieved a sub-percent error for 95%
(2σ) of the cosmological parameters considered, for both the
training and validation set. After some simplification, this can
be written as

log F ≈ b0h − b1

+

 b2Ωb√
h2 + b3

b4Ωm
 b5k −Ωb√

b6 + (Ωb − b7k)2
b8(b9k)−b10k cos (b11Ωm

−
b12k√

b13 + Ω2
b

 − b14

 b15k√
1 + b16k2

−Ωm

 cos

 b17h√
1 + b18k2




+ b19(b20Ωm + b21h − log(b22k) + (b23k)−b24k) cos

 b25√
1 + b26k2


+ (b27k)−b28k

b29k −
b30 log(b31k)√

b32 + (Ωm − b33h)2

 cos

b34Ωm −
b35k√

b36 + Ω2
b

 ,
(6)

where the best-fit parameters for this function are given in
Table 2. We find that there are 37 different parameters required
for this fit, far fewer than would be used if one were to emulate
this with a neural network. We note that, if we used a method
based on the “score” approach of pysr (Cranmer et al. 2020;
Cranmer 2023; see Sect. 3) to choose our model – defining the
loss to be the mean squared error on the training set and comput-
ing the derivative with respect to model length – then we would
have chosen the model of length 80. This has an almost identical
functional form to Eq. (6), so our results are not sensitive to the
exact model selection method.

We plot this fit and the residuals compared to camb for the
Planck 2018 cosmology in Fig. 2, which we note is not included
in either our training or validation sets. One can see that the dif-
ference between the true power spectrum and our analytic fit is
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Fig. 4. Distribution of fractional errors as a function of k on the linear matter power spectrum across all cosmologies in the training and validation
sets, as compared to the predictions of camb. The bands give the 1 and 2σ values. The dotted line corresponds to a 1% error, and we see that our
expression achieves this for all cosmologies and values of k considered, with a root mean squared fractional error of 0.2%.

almost imperceptible, and in the residuals plot we see that for all
k considered, the fractional error does not exceed 0.3%. This is
smaller than the error on log F given in Fig. 3, since we compare
at the level of the full P(k; θ), such that a moderate error on log F
becomes very small once substituted into Eq. (5). This is shown
in Fig. 4, where we plot the distribution of fractional residuals
in P(k; θ) for all the cosmologies in the training and validations
sets. We obtain sub-percent level predictions for all cosmologies
and values of k considered, with a root mean squared fractional
error of 0.2%.

Part of the appeal of a symbolic emulator is the possibility
for interpretability and to easily identify what information used
in the input is used to make the prediction. To begin, we note
that, although we obtained our emulator by varying σ8, Ωb, Ωm,
h and ns, we see that Eq. (6) contains neither σ8 nor ns. For the
linear matter power spectrum, one expects that As and ns only
appear as a multiplicative factor of Askns−1, with all other terms
independent of these parameters. Given that the Eisenstein & Hu
(1998) term already contains this expression, it is unsurprising
that log F is independent of ns. Indeed, if it did appear, this would
indicate a degree of overfitting. Since σ8 is not proportional to
As (see Eq. (4)), we cannot use the same argument to explain the
lack of its appearance in our expression, but can conclude that
a combination of the Eisenstein & Hu (1998) term and the first
line of Eq. (6) can sufficiently approximate As, since this line is
k independent and thus contributes to an overall offset for the
emulator.

Turning to the remaining lines of Eq. (6), we observe
that each term contains an oscillation modulated by a k- and
cosmology-dependent damping. Despite there being four such
terms across the remaining three lines, we find that we can
split these into two pairs with the same structure of the oscil-
lations. Firstly, we have cosines with an argument propor-
tional to 1/

√
1 + bk2, for some constant b. This functional form

(x/
√

1 + y2) arises due to the inclusion of the analytic quotient
operator, which also explains why the constant 1 appears mul-
tiple times in Eq. (6). These terms give oscillations which vary
slowly as a function of k. In particular, as plotted in Fig. 5, the
third line of Eq. (6) contains approximately one cycle of oscil-
lation across the range of k considered, with a minimum dur-
ing the BAO part of the power spectrum, and a maximum just
afterwards. Beyond this point, this term fits the non-oscillatory,
decaying part of the residual beyond k ∼ 1 h Mpc−1 (compare
the middle panel of Fig. 2 to the third term plotted in Fig. 5).

The remaining oscillatory terms are of the form cos(ωk + φ).
The phase, φ, of these oscillations is proportional to the total
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Fig. 5. Contributions to log F from our emulator as a function of k for
the Planck 2018 cosmology. The line numbers indicated in the legend
correspond to the line in Eq. (6). One sees that the first term provides
an overall offset, the second and fourth capture the BAO signal, and
the third term contains a broad oscillation and then matches on to the
decaying residual at high k.

matter density, Ωm, such that changing this parameter at fixed Ωb
shifts the BAOs to peak at different values of k. The frequency

of these oscillations is ω ∝ 1/
√

b + Ω2
b for some parameter b,

such that cosmologies with a higher fraction of baryons have
many more cycles of BAO in a given range of k, as one would
physically expect. From Fig. 5, one can see how the second and
fourth lines of Eq. (6) capture the BAO signal with opposite
signs, such that they combine to give the familiar damped oscil-
latory feature. Using Ωbh2 = 0.02242 and h = 0.6766, as appro-
priate for the Planck 2018 cosmology (Planck Collaboration VI

2020), the frequency of the oscillations are b12/
(
h
√

b13 + Ω2
b

)
=

146.5 Mpc and b35/
(
h
√

b36 + Ω2
b

)
= 145.8 Mpc, and are thus

approximately equal to the sound horizon, which is r∗ =
144.6 Mpc for this cosmology. One can therefore view these
frequencies as symbolic approximations to the sound horizon,
although we refer the reader to Aizpuru et al. (2021) for alterna-
tive SR fits.

Thus, although we did not enforce physically motivated
terms in the equation search, we see that simple oscillatory con-
tributions for the BAOs have emerged and thus our symbolic
emulator is not merely a high order series expansion, but con-
tains terms which are both compact and interpretable. We find
that such terms exist in many functions given in Fig. 3, however
we find that using shorter run times for operon of only 2–4 h
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(compared to approximately 24 h on a single node of 128 cores
for our fiducial analysis) do not provide as interpretable expres-
sions as Eq. (6).

As a note of caution, one can identify a few terms in Eq. (6)
which will become problematic if extrapolated to values of k
much smaller than those used to train the emulator, namely those
containing log(k) and k raised to a power proportional to k. For
k . 10−3 h Mpc−1 this can lead to an error on P(k) of more
than one percent. Although one is likely cosmic-variance dom-
inated in this regime so such errors should not be problematic,
we know that the Eisenstein & Hu (1998) provide a very good
approximation, and thus we suggest that Eq. (6) is included
in a piece-wise fit, such that it is only used approximately in
the range of k which were used to obtain it. A similar effect
is seen if one extrapolates to higher k than considered here.
Although this is far beyond the validity of the linear approx-
imation, we caution that applying any parameterisation of the
non-linear power spectrum that depends on the linear one may
suffer from potentially catastrophic extrapolation failures at high
k if used beyond the k range considered here. Again, it is poten-
tially advisable to just use the Eisenstein & Hu (1998) fit in this
regime.

In light of the potential for significant efficiency improve-
ments in cosmological analyses through the use of symbolic
approximations, it is informative to compare the run times of
our approach to the standard computation of the linear matter
power spectrum. To do this, we evaluated the redshift-zero lin-
ear matter power spectrum 1000 times on an Intel Xeon E5-4650
CPU at the Planck 2018 cosmology (Planck Collaboration VI
2020) using camb (Lewis et al. 2000), the bacco (Angulo et al.
2021) neural network emulator and using our formulae, where
we considered both a python3 and fortran90 implementa-
tion, demonstrating the ease at which one can change program-
ming language when using symbolic emulators. We found that
camb takes an average of 0.18 s to evaluate P(k), which is sig-
nificantly slower than the bacco emulator, which requires just
6.9 ms. However, our approach is even faster, requiring just
850 µs when written in python3 and 190 µs in fortran90.
This is approximately 950 times faster than camb and 36 times
faster than bacco.

If the reader wishes to use a more accurate, yet less inter-
pretable, emulator, we provide the most accurate equation found
in Appendix A, which has a model length of 142, with 73 param-
eters and yields a root mean of squared fractional errors on P(k)
of 0.1% for both the training and validation sets.

6. Discussion and conclusion

In this paper we have found analytic approximations to σ8
Eq. (4) and the linear matter power spectrum Eq. (6) as a function
of cosmological parameters which are accurate to sub-percent
levels. In the case of σ8, the simple yet accurate expression we
have identified can be easily inverted to obtain As as a function
ofσ8 and the other cosmological parameters. Our approximation
to P(k) is built by fitting the residuals between the output of a
Boltzmann solved (camb) and the physics-inspired approxima-
tion of Eisenstein & Hu (1998). As such, unlike neural network
or Gaussian process based approaches, our expression explic-
itly captures many physical processes (and is thus interpretable)
whilst still achieving sub-percent accuracy.

This work is the first step in a programme of work dedicated
to obtaining analytic approximations to P(k) which can be used
in current and future cosmological analyses. In this paper we
have focused on the linear P(k), i.e., the power spectrum of the

linearly evolved density fluctuations. Although this approach is
valid on large scales, the real Universe is non-linear, such that
non-linear corrections are required at k & 10−1 h Mpc−1 to accu-
rately model the observed matter power spectrum across a wider
range of scales. In Bartlett et al. (2024) we extend our frame-
work to capture such non-linear physics and to include redshift
dependence in our emulator. Finally, in our emulator we have
considered a ΛCDM Universe with massless neutrinos. In the
future we will add corrections to the expressions found in this
work to incorporate the effects of massive neutrinos and include
beyond ΛCDM effects, such as a w0−wa parametrisation of dark
energy.

We have demonstrated that, despite the temptation to blindly
apply black-box methods such as neural networks to approxi-
mate physically useful functions, even in ostensibly challenging
situations such as the matter power spectrum, one can achieve
the required precision with relatively simple analytic fits. Given
the unknown lifetime of current codes upon which numerical
ML approximations are built and the ease of copying a few math-
ematical functions into your favourite programming language,
finding analytic expressions allows one to more easily future-
proof such emulators and should therefore be encouraged wher-
ever possible.
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Appendix A: Most accurate analytic expression found for linear power spectrum

The expression we report for an analytic approximation for the linear matter power spectrum Eq. (6) is not the most accurate one
found, but the one which we deemed to appropriately balance accuracy, simplicity, and interpretability. It may be desirable to have
a more accurate symbolic expression if interpretability is not a concern. In this case one may wish to use the most accurate equation
found, which is

100 log F ≈ c0k + c1

Ωbc2 −
c3k√

c4 + k2

  c34 (c35k)−c36k√
c39 + (−Ωb + Ωmc37 − c38h)2

− cos (Ωmc32 − c33k)


×

(
c17 (c25k)−c26k ((Ωbc18 + Ωmc19 − c20h) cos (Ωmc21 − c22k) + cos (c23k − c24))√

c31 +

(
c27(−Ωmc28+c29k)
√

c30+k2
− k

)2

−
c5 (Ωmc12 + c13k)−c14k (Ωmc6 − c7k + (Ωbc8 − c9k) cos (Ωmc10 − c11k))√

c16 + (Ωbc15 + k)2

)

− c40

Ωmc41 − c42h + c43k +
c44k√

c45 + k2
√

c47 + (−Ωm − c46h)2
−

c48 (Ωmc49 + c50k)√
c51 + k2

 cos

 c52k√
c53 + k2

√
c55 + (Ωmc54 − k)2

 (A.1)

− c56 −
c57 (Ωmc67 + c68k)−c69k (Ωmc58 − c59k + (−Ωbc60 −Ωmc61 + c62h) cos (Ωmc63 − c64k) + cos (c65k − c66))√√

c70

Ωb+
c71h

(c72+k2)0.5

2

c73+k2 + 1.0

.

This equation has 73 parameters, which is approximately twice as many as Eq. (6), yet one only gains a factor of two in the
fractional root mean squared error. The best-fit parameter values are reported in Table A.1. We note that this function is the direct
output of operon and is thus over-parameterised so that some simplification could be applied. For example, one only needs two of
c1, c2 and c3 as these only appear as c1c2 and c1c3. Since we only provide this expression as a precise emulator and do not attempt
to interpret its terms, we choose not to apply any simplifications (although see de Franca & Kronberger (2023) for an automated
method to do this).

Table A.1. Best-fit parameters for the most accurate linear matter power spectrum emulator found, reported in Appendix A.

Parameter Value Parameter Value Parameter Value Parameter Value

c0 5.1439 c19 19.855 c38 0.0177 c57 0.867
c1 0.867 c20 15.939 c39 0.0146 c58 2.618
c2 8.52 c21 9.547 c40 0.867 c59 2.1
c3 0.2920 c22 97.34 c41 32.371 c60 114.391
c4 0.0310 c23 94.83 c42 7.058 c61 13.968
c5 0.0033 c24 1.881 c43 6.075 c62 11.133
c6 240.234 c25 3.945 c44 16.311 c63 4.205
c7 682.449 c26 11.151 c45 0.0025 c64 100.376
c8 2061.023 c27 0.0004 c46 0.1632 c65 106.993
c9 6769.493 c28 26.822 c47 0.0771 c66 3.359
c10 7.125 c29 230.12 c48 0.0522 c67 1.539
c11 108.136 c30 0.0009 c49 22.722 c68 1.773
c12 6.2 c31 1.0796×10−5 c50 774.688 c69 18.983
c13 2.882 c32 3.162 c51 0.0027 c70 0.3838
c14 59.585 c33 99.918 c52 1.0337 c71 0.0024
c15 0.1384 c34 0.1210 c53 0.0058 c72 1.2865×10−7

c16 1.0825×10−5 c35 0.495 c54 0.2472 c73 2.0482×10−8

c17 0.0033 c36 12.091 c55 0.29
c18 85.791 c37 0.6070 c56 0.241

Notes. Although units are excluded in this table, the units for each parameter are easily obtained by noting that these are defined assuming that k
is measured in h Mpc−1.
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