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Abstract. Renewable energy sources present a main factor in the development 

of microgrid systems. The end consumer can produce, consume, and store lo-

cally the electrical power through the installation of sustainable sources and en-

ergy storage systems. However, the random nature of these sources requires the 

use of new technologies (e.g., machine learning, internet of things) for the con-

trol, maintenance, and seamless integration into the actual electrical grid infra-

structure. The development of an accurate power forecaster, particularly for 

photovoltaic (PV) systems, is the main challenge to smooth the integration of 

such sources (e.g., solar panels, wind turbines) into the grid. In this work, long 

short-term memory (LSTM) algorithm is proposed for multistep-ahead photo-

voltaic power forecast. LSTM and convolutional LSTM (Conv-LSTM) models 

are adapted for short and medium-term PV power forecasts. The objective is to 

predict the PV power and extend the forecasting time horizon as much as possi-

ble at the same time keeping acceptable errors and processing time. A set of cri-

teria are analyzed to show the proposed algorithms' usefulness. In fact, the re-

quired processing time and the machine re-sources for the training and testing 

are considered to select suitable neural network parameters. The obtained fore-

casting results show the utility of the proposed LSTM model for short and Me-

dium-term PV power forecasting. 

Keywords: Artificial Neural, LSTM, Machine Learning, Model Accuracy, 

Model Error, Power Forecast, Processing Time,  

1 Introduction 

The variability and the stochastic nature of renewable energy sources (RESs) power 

production are the main challenges to the seamless integration of these in the actual 

grid infrastructure. In order to deal with these issues, researchers are more focused on 

the development of new predictive control and energy management strategies for 

maintenance scheduling, trading in the market, and future energy stability and availa-
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bility [1]. In this way, the development of new machine learning algorithms for power 

forecasting is the main key to reach the objectives [2, 3]. Photovoltaic (PV) panels are 

one of the RESs increasingly integrated into the grid as well as into the microgrid 

systems. Weather conditions, such as temperature, solar irradiance, humidity, and 

wind speed influence directly and indirectly the PV power generation. Therefore, an 

accurate machine learning algorithm for PV power forecasting should be capable to 

predict the solar power output with minimal errors for a given time horizon. On an-

other hand, the required processing performances for the model training is the main 

factor for the model selection [4]. In fact, several parameters influence on the model 

output such as the sampling time of the training dataset, the number of input/output 

neural networks, the time horizon as well as the epochs number, and the batch size in 

the algorithm [5]. A set of criteria is considered for the algorithm parameters selection 

depending on how diverse the training dataset. Statistical metrics are usually imple-

mented specifically mean absolute percentage error (MAPE), root-mean-square error 

(RMSE), R-Squared (R2), mean absolute scaled error (MASE), and symmetric mean 

absolute percentage error (SMAPE) [6, 7]. These metrics are calculated based on 

mathematical expressions between the actual and predicted values. Depending on the 

power forecasting objectives, the power forecasting algorithm parameters are selected 

in order to minimize a specified error to reach the application objectives. Mainly, the 

power forecasting objective is the first step that should be selected before designating 

the machine learning algorithm and its parameters. In this way, three categories are 

considered in the literature depending on the time scale. i) Short-term: the time hori-

zon varies from a few milliseconds to a few minutes and it is used generally for con-

trol action regulation and services management [8]. This application class can be lim-

ited by the processing time. For that other predictive methods are used, instead ma-

chine learning algorithms, such as general predictive and model predictive control 

strategies [9, 10]. ii) Medium-term: the time horizon varies from a few hours to few 

days and it is adapted for applications such as electricity trading in the market, energy 

management, fault detection and diagnostic. iii) long-term: the time horizon varies 

from the medium-term limit to one year or more and it is deployed for the power plan 

dimensioning, predictive maintenance, and future energy statistics and security for a 

country [11]. Different datasets size and variable measurements are required for the 

algorithm training depending on the forecasting time scale. Therefore, increasing the 

time horizon requires the use of a large dataset including the different probable events 

and data variability that we can have in the future. Though, the use of a large dataset 

increases the training time and the required machine performances used for the algo-

rithm deployment. For that an optimal dataset size and parameters configuration 

should be selected for the machine learning algorithm deployment [12]. Several 

works are presented in the literature investigating the use of machine learning for 

power prediction, especially for short and long terms PV power prediction focusing 

more on the common errors as metrics [5, 13, 14]. By the analysis of the existing 

works, deep learning family, particularly recurrent neural networks (RNN) algorithms 

present strong performance for both short- and long-term PV power forecasting. In 

this work seq2seq-LSTM and conv-LSTM models are tested and compared for short 

and medium-term PV power forecasting. The SMAPE, MASE, RMSE, and R2 errors 
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are calculated together with the processing time in order to select the suitable deep 

learning algorithm. Univariable models are used and the data is fitted and pre-

processed in way to keep minimal errors and acceptable processing time. Several 

sampling times are used for the algorithms training and testing to show the robustness 

of the proposed algorithm for medium-term PV power forecasting. 

The remainder of this paper is summarized as follows: A brief state of the art is pre-

sented in the introduction in order to compare the existing work with the paper results. 

Section 2 investigates the proposed deep learning method and its adaptation for power 

forecasting implementation. Section 3 reviews a brief survey of the forecasting errors. 

Results and discussions are presented in section 4 while conclusions and perspectives 

are summarized in section 5.  

2 LSTM model for PV power forecasting 

PV power generation depends essentially on the weather conditions (e.g., tempera-

ture, solar irradiance). For that, the PV power data is a stochastic time series signal 

that varies during the hours of the day and the seasons of the year. Mainly, neural 

networks model work with any type of sequential data and they can be used for each 

specific type of time series forecasting problems, especially the models which kept a 

context of memory within their pipeline. The traditional neural network models have 

the ability to analyze input sequences which correlate on each other on the context 

and information to predict the next output sequence. This simple model does not have 

concept of memory and it takes a standalone data vector for each timestep making it 

inappropriate for tasks that need memory. In this way, RNN models are developed 

using feedback approach in which the output is relied to the input in order to deliver 

context on the last delivered output. However, RNN models suffer from two immense 

problems which are the vanishing and exploding gradient problems [15]. In fact, the 

RNN model finds the optimal setup for the network by the calculation of the mini-

mum of the cost function. The information travels in the RNN from the input to the 

output through time and the information generated from the previous points is used as 

input for the next point. During this process, the cost function and the errors are calcu-

lated at each time point and the outputs are compared to the desired outputs that are 

used for the training. The cost function and the error are calculated and propagated 

back to the neural network in order to update the weights. At the start of the neural 

network, weights are generated randomly with values close to zero. During the train-

ing, the output functions of the neurons are multiplied by the weight recurring. This 

weight recurring is the source of the two problems (vanishing and exploding gradient 

problems) depending on the starting value multiplied the different neurons. When the 

weight recurring is close to zero, the gradient becomes less with each multiplication 

and it will be hard for the network to update the neurons weights and to reach the final 

output values. Accordingly, less weight recurring values generate the vanishing gradi-

ent problem and the RNN takes more time to train the weights and the large weight 

recurring values generate the exploding gradient problem. For these raisons, other 

models are developed to deal with these problems. One of the proposed solutions is 
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the LSTM neural networks which aim to recall long-term information from sequential 

data due to its capability of automatically learning features and long-term dependen-

cies [16, 17]. LSTM neurons contain input, output, and forget layers combined by 

pointwise operations acting as gates (see Figure 1). 

 

Fig. 1. Recurrent neural networks and long short-term memory information flow. 

The sigmoid layer named Forget-gate-layer decides which information is going to 

throw away based on the previous hidden state ℎ𝑡−1 and the current input 𝑋𝑡 at time 𝑡. 
The output from this layer is a number between 0 and 1 generated for the different 

cell state numbers 𝐶𝑡−1. When the neural obtains new information, the previous in-

formation is forgotten by the generation of output 0 to indicate that the learned value 

is completely excluded from the memory, while 1 indicates “completely keep the 

memory”. The output is generated by equation (1) where, 𝑓𝑡 is the forget gate, 𝜎 is the 

sigmoid activation, 𝑊𝑓 and 𝑏𝑓 are the initial LSTM unit parameters: 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓) (1) 

The second step concerns the information that will be stored in the cell state. The 

input gate layer decides which values should be update depending on the forget gate 

output and a 𝑡𝑎𝑛ℎ layer generates a new vector of the candidate values 𝐶̃𝑡 to be inte-

grated in the cell state. The input gate and 𝑡𝑎𝑛ℎ layers are combined together to pre-

pare the new value for the state. The input gate is expressed by equation (2) where, 𝑖𝑡 
is the input gate, 𝑏𝑖 and 𝑊𝑖 are LSTM parameters: 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖) (2) 

Now, the current cell state 𝐶𝑡 will be update based on the new 𝐶̃𝑡 and the previous cell 

state 𝐶𝑡−1 multiplied by the forget state 𝑓𝑡 in order to keep or to get rid the actual 

memory. The new cell and the current cell states are presented respectively by equa-

tion (3) and (4): 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐) (3) 
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𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (4) 

This is the simple LSTM process which integrates the memory concept to resolve the 

classical recurrent neural networks problems. The 𝐶𝑡 memory cell acts as an accumu-

lator to learn and store long and short-term sequence of related information to avoid 

the long-term dependency problem. The 𝐶𝑡 propagates to the next LSTM unit at the 

same time a sigmoid layer is used to decide which part of the cell can circulates to the 

output. A hyperbolic tangent function 𝑡𝑎𝑛ℎ is used to put the state values between 0 

and 1 and multiplying the value with the output-gate output to decide which part of 

the memory cell can propagate to the hidden state ℎ𝑡. The output gate 𝑜𝑡 presented by 

equation (5) decides which output can flow into making the hidden state ℎ𝑡 expressed 

by equation (6): 

𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜) (5) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh⁡(𝐶𝑡) (6) 

The memory cell and the hidden cell are transferred repeatedly to the next LSTM unit 

for each timestep. The model calculates the cost function and the error and updates 

the weights and the biases in order to minimize the difference between the actual and 

the predicted samples. Accordingly, several variants are proposed [18, 19] for the 

LSTM structure compared to the first model presented by [17]. Specifying the fore-

casting application is the first step to identify the constrains and the equivalent ma-

chine learning model that can deal with these constraints. Accordingly, predictive 

control and fault detection in microgrid systems require high accuracy and short pro-

cessing time. Especially, for the processing time and the computational resources 

required for the algorithm training, in this work Conv-LSTM model is proposed. This 

model is more suitable for timeseries forecasting with efficient computational re-

sources. Conv-LSTM model has some simple instruction compared to the LSTM 

model; therefore, the combination of both architectures adds more peepholes to cell. 

The new forget gate, input gate, and the output gate are presented respectively by 

equation (7), (8), and (9). In Conv-LSTM model, at each timestep, there is an equiva-

lent hidden calculated by the combination the previous timestep hidden unit and the 

new input information. This concept can improve the decision of the memory reset 

decision generated by the forget layer and consequently reducing the information 

propagation time and avoiding the classical RNN problems. 

𝑓𝑡 = 𝜎(𝑊𝑓 . [𝐶𝑡−1, ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓) (7) 

𝑖𝑡 = 𝜎(𝑊𝑖 . [𝐶𝑡−1, ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖) (8) 

𝑜𝑡 = 𝜎(𝑊𝑜 . [[𝐶𝑡 , ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜) (9) 

The main objective of this work is the deployment of an LSTM model that can fore-

cast the PV power with a high accuracy and for a long-time horizon has much as it is 

possible. Some existing works talk about proposed method for long-term power fore-

casting, however, by the analysis of the deployed dataset, the data is collected by a 

long sampling time (e.g., day, week, month). In fact, the algorithms generate a set of 
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future predicted steps depending on the time horizon without having the concept of 

the time units. For example, if the dataset has a sampling time of one hour, the gen-

eration of ten steps meaning that the model predicts ten hours ahead. Though, if the 

same model is deployed using a new dataset with a sampling time of one minute, the 

prediction of ten values means that we can predict only ten minutes ahead. In this 

case, it is difficult to forecast the output in the scale of hours and days. In this work, a 

dataset with a sampling time of one second is used and the objective is to predict the 

PV power with high accuracy and for a long-time horizon compared to the input data 

sampling time. This forecasting model is more robust for the control and for faults 

detection in the power systems. 

3 Performance evaluation and errors calculation 

The mathematical equations of the different errors are presented in the literature [6, 

7]. This section focuses more on the physical significance of the errors and the equiv-

alent improvement that can be obtained for each metric. A set of errors are calculated 

based on the percentage errors due to their scale-independent propriety and their effi-

ciency. The MAPE measures the accuracy of the forecasting algorithm based on the 

absolute percentage errors of each entry in the dataset. It should be minimal as much 

as possible while the values around 50% maiming that the obtained results are totally 

ignored. It is a comprehensive method to compare the algorithms output and to pre-

sent the results for an end user. The formula for MAPE calculation is as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|𝑛

𝑡=1  (10) 

where 𝑛 is the number of data points in the testing dataset, 𝐴𝑡 is the actual values, and 

𝐹𝑡 is the forecasting values. 

The second error considered in this study is the RMSE which presents tells you how 

concentrated the data is around the line of the best fit. For the power forecasting mod-

els, we don’t care about the data units. For the algorithms, it is an input timeseries 

signal used to train the model and to identify the heuristic to help us decrease the error 

with each iteration. We consider only the relative size of the error from one step to the 

next, not the absolute size of the error. Since the unit is not considered, the obtained 

RMSE values cannot be a metric to analyze the models if it is not compared to anoth-

er algorithm RMSE or to the same algorithm with different parameters. The RMSE is 

presented by the following equation: 

𝑅𝑀𝑆𝐸 = √
∑ (𝐴𝑡−𝐹𝑡)

2⁡𝑛
𝑡=1

𝑛
 (11) 

Another interesting statistical measure of fit is the R2 that calculate the variation of 

dependent variable depending on the independent variable in a linear regressive mod-

el to identify how well the model fits the data. It presents the relationship between the 

model and the dependent variable on a fitting from 0 to 100% scale. However, the R2 

high value is not always an indicator of a robust model. An analyze of the graph with 
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the calculation of the other metrics is necessary to identify the usefulness of the mod-

el. it is calculated by the following equation: 

𝑅2 = 1 −
regression⁡sum⁡of⁡squares

error⁡sum⁡of⁡squares
⁡ (12) 

These errors are used to evaluate the performances of the deployed machine learning 

algorithm for PV power forecasting. Depending on the application requirements, sev-

eral type of errors can be interpreted. In some cases, a model presents a good accuracy 

by the analysis of a specific error while other metrics are not robust. For each study, a 

given metric is the main objective to establish. 

4 Results and discussions 

Depending on the forecasting application requirements, several type of errors can be 

interpreted. In some cases, a model presents a good accuracy by the analysis of a spe-

cific error while other metrics are not robust. For each study, a given metric is the 

main objective to establish. In this way, different scenarios are realized to specify the 

accurate parameters for the LSTM model and for the neural network (Table 1). A 

dataset of five days is used with a sampling time of one minute to train the model, 

while two other days are used for the testing. An optimal number of the input and 

output neutrals is fixed together with the initial dropout of 10%. The selected parame-

ters are used to train the LSTM and Conv-LSTM models. The objective is to select 

the accurate algorithm that can forecast the PV power with long time horizon and 

minimal errors as much as possible. In this case, the sampling time is one second, 

therefore, predicting an hour is a long term. 

Table 1. Scenarios for the optimal LSTM parameters selection. 

 Input Output 
Parameter 

Scenario 
Epochs Batch Time Horizon Training Time Loss 

1 15 10 300 348 63.48 

2 15 30 300 246 62.83 

3 15 100 300 88 62.23 

4 10 100 300 59 63.32 

5 5 100 300 29 66.08 

6 1 100 300 6 273.65 

 

For the control and energy management applications, a dataset of one hour collected 

with a sampling time of one second is long-term and the forecast of few minute can 

be considered as a medium term. Table 2 presents the errors calculated for both 

LSTM and Conv-LSTM together with the processing time in order to select the suita-

ble algorithm for such application. In fact, a time horizon of five minutes is forecasted 

which presents a medium term for the predictive control application. 

Fig. 2 presents the Actual and the forecasting PV power during two days and for a 

time horizon of five minutes. The blue curve is the actual PV power, while the green 

and the red curve are respectively the LSTM and Conv-LSTM power forecasting. The 
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two algorithms present an acceptable accuracy and errors. In this case, the machine 

performances and processing time is an interesting metric to focus on. 

 

Fig. 2. Actual and forecasted PV power using LSTM and Conv-LSTM. 

Table 2. Machine learning algorithms errors calculation 

 R2 RMSE SMAPE MAPE rsq Training Time 

LSTM 0.99 8.47 22.24% 0.36 98.57% 62.12s 

Conv-LSTM 0.99 8.13 17.98% 0.23 98.61% 72.45s 

 

By the analysis of the calculated parameters (Table 2), the Conv-LSTM presents ro-

bust performances compared to the LSTM, however, the LSTM has an acceptable 

processing time and it is more suitable for the application limited by the processing 

performance. Another scenario is tested using the data collected during a cloudy day. 

The power generated from the PV panels is not stable and varies depending on the 

perturbances on the weather conditions (e.g., solar irradiance, temperature). 

 

 

Fig. 3. Actual and forecasted PV power using LSTM and Conv-LSTM for a cloudy day. 
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In order to test the performance of the proposed machine learning algorithm, a dataset 

of a cloudy day is used to test the algorithm (Fig.3). As is mentioned in Table 3, the 

two algorithms keep acceptable errors values with some fluctuation on the LSTM 

output. The variability of the PV power production can be followed up by the de-

ployed machine learning algorithms.  

Table 3. Errors calculation for cloudy day scenario. 

 R2 RMSE SMAPE MAPE rsq Training Time 

LSTM 0.92 9.32 27.45% 0.46 92.57% 65.08s 

Conv-LSTM 0.96 8.65 18.72% 0.31 96.61% 79.12s 

 

The dataset used for the two scenarios has some missing values due to the short sam-

pling time used for the data collection from the sensors. However, the number of 

measurements collected during the testing period presents significant interest to the 

control and energy management in the microgrid system. In order to manage the en-

ergy flows, some actual predictive control approaches are based on the power fore-

casting, while the obtained results can be deployed for such control strategies with 

acceptable errors. 

5 Conclusions and perspectives 

Due to the robust performances of neural networks family of machine learning, two 

algorithms, LSTM and Conv-LSTM, are tested for the PV power forecasting. A set of 

metrics are considered to select the suitable algorithm (e.g., errors, processing time). 

A dataset of five days is used for the training and the testing with a short sampling 

time. The objective is the use of a short sampling time to forecast a long-time horizon 

with acceptable errors. In this case, the predictive control for energy management is 

considered, therefore, five minutes are forecasted with high accuracy which present a 

medium-term for the control applications. The algorithm is tested for power predic-

tion in a cloudy day. In the future works, a set of artificial intelligence algorithms will 

be compared and tested for short, medium and long-term power forecasting in mi-

crogrid systems. The algorithms will be tested for different context and data variety. 

The objective of long-term power forecasting is for the power stability of the grid 

including renewable energy sources as well as the electricity trading in the market. 

Moreover, a medium-term of one day to one week can help for the predictive mainte-

nance and for the electricity operator to make the system diagnostics. 
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