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 Abstract—Signal processing and fault indicators analysis are 

essential for efficient fault detection, classification, and 

diagnosis of wind turbines. Accordingly, existing works 

proposed the installation of multiple intrusive sensors (e.g., 

current, voltage, frequency) for data collection in order to 

detect and classify the faults in wind turbine drive train 

(WTDT). However, these sensors are scattered on the drive 

train and have a limited local reach on its components making 

it technically difficult to install. Therefore, signals from these 

sensors are not able to detect multi parameter phenomena 

such as coupling of the mechanical and electrical components 

of the drive train which contains essential fault information. 

This work proposes the use of magnetic signatures as fault 

condition indicators of the complete drive train due to the 

ability of contactless measurement of this signal without 

opening the main components of the drive train. This is 

achieved by performing non-destructive magnetic modeling 

and analysis of the entire drive train. The air gap magnetic flux 

density of the wind generator is demonstrated as a good fault 

condition indicator for different common faults occurring on 

the gearbox, bearings, and the generator. The proposed model 

is validated using a supervised machine learning classification 

algorithm in a way to distinguish between electrical and 

mechanical faults. 

Index Terms—Condition Monitoring Systems, Fault 

indicators, Magnetic modeling, Magnetic Signature, Wind 

turbine drivetrains. 

I. INTRODUCTION  

Rapid deployment of wind energy is essential to meet the 
federal and state goals for sustainable energy development. 
However, investments in wind energy hugely depend on the 
competitive electricity prices of various energy sources 
including maintenance cost, fault detection, and restoration 
of damaged components [1]. Therefore, there is an urgent 
need to reduce the cost of wind technologies to make them 
viable for long term investments. Currently, the monitoring 
and maintenance paradigm in wind turbines is shifting from 

a reactive, periodic and usage based maintenance to a 
predictive, regular and condition based maintenance [4]. 
This requires continuous monitoring and fault prognosis of 
various components. Typical data sources considered for 
condition monitoring in wind turbine drive trains are based 
on supervisory control and data acquisition (SCADA) data 
(e.g., current, voltage, frequency), vibration monitoring, 
acoustics monitoring, temperature monitoring, and current 
signature analysis. However, there are certain disadvantages 
to these existing monitoring techniques. Most of these 
techniques except acoustic monitoring requires intrusive 
sensors [5]. The invasiveness of these sensors makes them 
difficult for installation. Further, these installations can 
cause structural abrasions and interfere with the flow of 
current in certain components, increasing their remaining 
useful life. Thus, they add an extra cost during replacement 
and upgrading of components and the monitoring is 
restricted only to certain individual components. Therefore, 
mechanical and electrical faults have the same effects on 
these measurements making the classification of faults a 
complicated task and requiring the use of additional sensing 
such as the magnetic field variable. Therefore, data on 
dynamic and interdependent variables of the wind turbines 
are generally not available from these sensors data.  

    Wind turbine drive trains are most vulnerable to faults 
due to the presence of dynamic components (e.g., electrical, 
mechanical) that are coupled to each other and hence its 
downtime poses a huge impact on the cost-effectiveness of 
the installation [6]. Further, the presence of electromagnetic 
coupling among its components generates dynamic 
parameters (e.g., magnetic signature, electromagnetic 
torque) that can be considered fault signatures. However, 
they are neglected during individual component sensing. 
Therefore, current literatures have acknowledged the need 
for efficient modeling of drive trains to capture these 
dynamic parameters [7]. This paper proposes to employ 
magnetic modeling of drive trains to obtain dynamic 



parameters that are a result of electromagnetic coupling 
among its components and evaluate them as condition 
indicators for fault detections. The magnetic signature is 
proposed as a fault condition indicator for condition 
monitoring of the WTDT. Various mechanical and electrical 
faults are simulated on the permanent magnet synchronous 
generator (PMSG) gearbox and the bearing of WTDT, while 
K-nearest neighbors (KNN) supervised machine learning 
model is used for faults classification. This method of using 
magnetic signatures as fault condition indicators is unique in 
literature and provides a novel non-destructive condition 
monitoring system (CMS) approach for the entire WTDT. 

The remainder of this paper is organized as follows: 
Section 2 investigates the main common fault indicators in 
wind turbine drive train. Section 3 explores the modeling of 
the used WTDT with the magnetic equivalent circuit of 
PMSG coupled with gearbox. The faults tested and 
introduced on wind turbine drive train are presented in 
Section 4 with the main parameters used for the simulation 
in JMAG and Solidworks. Results and discussion are 
presented in Section 5 to show the usefulness of the proposed 
method to classify mechanical and electrical faults. 
Conclusions and perspectives are discussed in Section 6. 

II. COMMON FAULT INDICATORS IN WIND TURBINES 

DRIVE TRAIN USED FOR CONDITION MONITORING SYSTEM 

SCADA data offers a good selection of system 
parameters for condition monitoring of wind turbines [8]. In 
general, data is recorded at 10-minute averages of 1Hz 
sampled values along with its maximum, minimum and 
standard deviations. The range of data collected includes 
environmental variables such as wind speed, wind direction 
and electrical variables such as generator voltages, phase 
currents, frequencies, along with temperature variables and 
other control variables (e.g., pitch angle, yaw angle). 
However, in order to model continuous fault monitoring 
systems, SCADA datasets should be available for a long 
period of time, typically over years. Availability of such data 
is scarce. Further, the collected SCADA data is only valid 
for the same wind turbine manufacture due to the non-
existence of unique standards of data collection in the wind 
turbines. Vibration based condition monitoring [5] is another 
type of commercially available CMS [5]. It involves 
evaluating fault development in machines operating in 10–
200 Hz frequency range. Hence, accelerometers are 
restricted to the low frequency range. Vibration signals, 
especially from the gearbox, suffer from complications due 
to nonlinearity and nonstationary nature of signals. Finally, 
vibration signals are disposed to contamination by 
environmental noise. Recently, acoustic emissions [9] have 
been a topic of interest [9]. However, deployment of infrared 
camera makes the CMS expensive and adds to the 
investment cost. Temperature based CMS [10] have been 
used to monitor multiple components of the wind turbine 
such as generator windings, bearings and oil [10]. Mainly, 
the temperature sensors provide local rise in temperature due 
to their embedded nature. This local information limits the 
measurement data and hot spots developed over a larger area 
and measurement of temperature gradient, especially in 
fluids becomes difficult. Although thermal imaging could be 

applied to benefit the issue, infrared cameras would again 
add to the investment cost. Finally, electrical signals such as 
voltage or current signals [5] measured from the wind 
generator have been employed in CMS [5]. Nonetheless, 
these signals have a low signal-to-noise ratio due to 
modulation of fundamental frequency of signal with other 
harmonic components. Further, the fault signals here have 
nonstationary signatures due to the intermittent nature of 
wind and nonstationary operation of wind turbines. Finally, 
magnetic flux monitoring has been employed to detect inter-
turn short circuit faults in doubly fed induction generators. 
Consequently, magnetic signatures have not been employed 
for CMS. Magnetic signatures of wind generators are 
privileged for fault indicators since magnetic sensors are 
non-intrusive in nature. This paper employs magnetic 
signatures as fault condition indicators and investigates their 
ability to aid with the CM of the entire wind turbine drive 
train.  

III. MAGNETIC MODELING OF WIND TURBINE DRIVE 

TRAINS 

Typical wind turbine drive trains consist mechanical 
components such as gearbox, bearings, rotating shafts, and 
electrical components such as the wind generator. It has been 
established that these components are electromagnetically 
coupled with each other through a common magnetic flux 
which emanates from the wind generator [11]. Magnetic 
equivalent circuit of a PMSG is shown in fig. 1 as it is 
investigated in [12]. 

 

Fig 1. Magnetic Equivalent Circuit of PMSG coupled with a gearbox 

 From fig. 1, the air gap flux of a PMSG can be calculated 
in form of air gap region parameters such as the air gap 
length l and surface area 𝐴𝑔 as follows (equation 1). 

𝛷𝑔 =

4𝛷𝑟𝑅𝑚𝑅1

  [

[2𝑅1𝑅𝑀𝑆
𝜇0𝐴𝑔

⁄  +

(𝑅𝑟 + 2𝑅𝑚) (
2𝑙

𝜇0𝐴𝑔
+ 𝑅𝑠 + 𝑅1)

]         
⁄

           (1) 



Further, due to the nature of electromagnetic coupling, 
the fluctuations in the characteristic parameters of these 
components will alter the common magnetic flux 
distribution on the wind generator. This change is reflected 
in the input torque and output current produced by the wind 
generator as described in the following equations (2, 3, 4). 
The Mechanical torque T links the electromagnetic and 
mechanical characteristics of the gearbox with the PMSG 
and can be expressed as follows [11]. 

𝑇 =  𝑇𝑎𝑣𝑔 +  𝑇0 cos(2𝜋𝑓0𝑡 + 𝜙0)                                        (2) 

where 𝑇𝑎𝑣𝑔 is the average value of torque while 𝑇0, 𝑓0, 𝜙0 are 

the characteristic amplitude, frequency and phase of the 
oscillatory components induced by the vibrations in the 
gearbox. This torque T of a PMSG can also be expressed in 
terms of stator phase current 𝑖𝑠𝑎 as follows.  

𝑇 = −
3

2
𝜌𝑀𝑖𝑠𝑎𝑖𝑓 sin 𝛿𝑖                                                         (3) 

Further, the stator phase current of a synchronous machine 
can be expressed as follows. 

𝑖𝑠𝑎 = 𝑖𝑠0 sin(2𝜋𝑓𝑠𝑡 + 𝜙𝑔) +
1

2
𝐴𝑠 {cos[2𝜋(𝑓𝑠−𝑓0)𝑡 − 𝜙𝑔]}+ 

cos[2𝜋(𝑓𝑠 +  𝑓0)𝑡 + 𝜙𝑔]                                                       (4) 

where 𝑓𝑠 ± 𝑓0are the characteristic fault frequencies. Hence, 
the air-gap flux 𝜙𝑔 of a PMSG is proportional to stator 

current 𝑖𝑠𝑎 and the electromagnetic torque 𝑇. Therefore, the 
characteristic fault frequencies  𝑓0 induced due to vibrations 
in the gearbox can be expected to be reflected in the air gap 
flux 𝜙𝑔 of the wind turbine. Hence through this process of 

magnetic modeling, the air gap flux can be utilized as a fault 
condition indicator to detect fault frequencies on the gearbox 
as well as the PMSG, thus accounting for complete CMS of 
the entire wind turbine drive train. 

IV. MAGNETIC FAULT INDICATORS OF WIND TURBINE 

DRIVE TRAINS 

In order to obtain various magnetic fault indicators for CMS 
of the WTDT, the magnetic modeling of a PMSG coupled to 
a gearbox through a rotating shaft is realized. This is 
conducted by performing finite element analysis (FEA) of 
the wind turbine drive train through the process of co-
simulation. The two co-simulation software used are JMAG 
for the modeling of PMSG and Solidworks for the modeling 
of the gearbox with bearings and the rotating shaft [13]. The 
drive train is designed with a 400V, 60Hz, 24 slots and 4 
pole PMSG coupled to a planetary gearbox consisting of 5 
gears with a pre-defined gear ration of 0.166. Details of the 
model parameters have been tabulated in Table I. Next, 
through mesh generation and FEA of the entire wind turbine 
drive, magnetic signatures of the PMSG such as the air gap 
magnetic flux density data is collected. Finally, various 
faults are introduced in both the electrical component as well 
as the mechanical component as shown in Table II.  

Additionally, through FEA, the air gap magnetic flux density 
data is collected for each fault case. These faulty data is 
compared in order to identify the accurateness of these 
parameters as fault condition indicators.  

TABLE I. WIND TURBINE DRIVE TRAIN MODEL PARAMETERS 

Component Values 

Rated Voltage of PMSG(V) 400 

Frequency of PMSG (Hz) 60 

Number of Slots/Poles of PMSG 24/4 

Type of gearbox Planetary 

Number of gears 5 

Gear Ratio 1.66 

Speed of gearbox rpm 

(Input, Output) 
16,100 

TABLE II. LIST OF FAULTS INTRODUCED ON WIND TURBINE DRIVE TRAIN 

Category Component Type of Fault 

 

Mechanical 

Gearbox Broken tooth 

Bearings Inner race fault 

 

Electrical 

Permanent Magnet Demagnetization 

Rotor Eccentricity 

V. RESULTS AND DISCUSSION 

First through FEA, the magnetic modeling of the wind 
turbine drive train is realized. Fig. 2 presents the magnetic 
flux density distribution that was generated through the 
magnetic transient analysis of the PMSG. 

    

Fig. 2. Magnetic flux density distribution on surface of PMSG through 
magnetic modeling of wind turbine drive train 

This is considered as a normal operating case of the 
driver’s train. Consequently, in order to verify the presence 
of electromagnetic coupling among the PMSG and the 
gearbox, a fault was introduced on the gear as a broken tooth. 
Then magnetic transient analysis of this drive train model 
with the broken gear tooth was analyzed through FEA. The 
air gap magnetic flux density due to the broken gear tooth 
was obtained and compared with the air gap magnetic flux 
density obtained in the first step. A comparison graph is 
presented in Fig. 3. 

Fig. 3 shows a decrease in the amplitude of the air gap 
magnetic flux density when broken gear tooth fault is 
introduced. This is due to the broken tooth would cause 
vibrations on the gear resulting in non-uniform angular 
velocity on the rotating shaft. This would change the speed 



of the shaft which in turn would change the rotor speed and 
distribution of the stator current on the PMSG, in that way 
changing the magnitude and distribution of its magnetic flux 
density. 

 

Fig. 3. A comparative analysis of air gap magnetic flux density of the 
PMSG for normal operation vs broken gear tooth fault of the drive train 

By comparing the curves in Fig. 3, the presence of 
electromagnetic coupling between the PMSG and the 
gearbox can be verified. Further, due to this electromagnetic 
coupling, the change of the gearbox’s parameters is reflected 
in the magnetic flux density of the PMSG. In addition, the 
faults in various components according to Table II are 
introduced and magnetic modeling for FEA analysis of the 
drive train is conducted. The air gap magnetic flux density 
of all fault cases is plotted and compared with the normal 
operating case (Fig. 4). 

 

Fig. 4. A comparative analysis of air gap magnetic flux density of the 
PMSG for normal operation vs various faults cases on the drive train 

The comparative analysis in Fig. 4 clearly shows different 
values of amplitude of the air gap magnetic flux density for 
various faults introduced on different components of the 
drive train. From this figure, it is clearly observed that the 

faults on mechanical and electrical components have much 
lower amplitude than the normal operation case. Therefore, 
it is shown that the air gap magnetic flux density is a good 
fault indicator for the studied faults. 

    Moreover, in order to show the efficiency of the air gap 
magnetic fault density as a good fault condition indicator for 
fault classification in CMS, a machine learning based model 
was designed for single class classification. Here the broken 
gear tooth fault signal is chosen to be classified from the 
normal operation. The air gap magnetic flux density of the 
signal is first analyzed under frequency domain signal 
processing and time-frequency domain signal processing. 
For the frequency domain signal processing, Fast Fourier 
Transform (FFT) was employed to extract the fault 
frequency components from the broken gear tooth signal. 
This was then compared with the FFT of signal under normal 
operation to extract fault condition indicators as shown in 
Fig. 5. For the time-frequency domain signal processing, 
Hilbert transform (HT) was employed to extract the 
analytical signals. Fault features corresponding to Hilbert 
coefficients are from the broken gear tooth signal. This was 
then compared with the Hilbert coefficients of signal under 
normal operation to extract fault condition indicators as 
shown in Fig. 6.  

    

Fig. 5. A comparative FFT analysis of air gap magnetic flux density of 
the PMSG for normal operation vs broken gear tooth fault 

 

 
Fig. 6. A comparative HT analysis of air gap magnetic flux density of the 

PMSG for normal operation vs broken gear tooth faults 



Following the successful signal processing, the fault 
indicators were fed as input model parameters to a 
supervised machine learning algorithm (KNN). The hyper 
parameters chosen for the KNN machine learning algorithm 
have been tabulated in Table III. Further, the classification 
accuracy of the two signal processing cases has been 
tabulated in Table IV. 

TABLE III. HYPER PARAMETERS FOR ML CLASSIFICATION MODEL 

Model Hyper 

parameters 
Values 

Algorithm 
k-nearest 

neighbor 

Type Supervised 

Number of neighbors 3 

Distance metric Euclidean 

Distance weight Equal 

TABLE IV. CLASSIFICATION ACCURACY TABLE 

Data Processing 

Domain 

Data Processing 

Technique 
Accuracy 

Frequency Domain FFT 0.844 

Time-Frequency 

Domain 
HT 0.781 

From Table IV, it is observed that the accuracy of 
classification for FFT based signal processing yields better 
results than the HT based signal processing. This is due to 
the mono components of the HT coefficients that are not 
presented with good fault condition indicators. This can be 
rectified by using an adaptive filter or empirical mode 
decomposition to obtain intrinsic mode functions prior to 
obtaining the HT coefficients [14]. Further, it is 
acknowledged that the classification accuracy is less 
important than the classification accuracy of CMS 
conducted with other data sources such as SCADA data and 
vibration data [5, 9],[9] . Therefore, the paper identifies the 
need of working on other signal processing techniques such 
as statistical time domain analysis and wavelet analysis to 
further improve the classification accuracy. 

VI. CONCLUSIONS AND PERSPECTIVES 

The work investigated the use of a magnetic signature-based 
model for electrical and mechanical faults classification of 
WTDT. It was conducted by proposing the magnetic 
modeling of the drive train and extracting magnetic 
signatures that have faulty information of both the 
mechanical and the electrical component of the drive train. 
This manner of non-destructive magnetic evaluations for 
fault detections on the entire drive train is unique in literature 
and opens a new avenue of CMS. In order to improve the 
classification accuracy, other signal processing techniques 
such as statistical time domain analysis and wavelet analysis 
will be conducted in the future work. Finally, there is a need 
for a multi-class classification algorithm that can be 
designed to employ all the fault signals presented in Fig. 4 
for fault classification of the entire wind turbine drive train. 
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