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Minimal Cut Sets (MCSs) identify sets of reactions which, when removed from a metabolic network,
disable certain cellular functions. The traditional search for MCSs within genome-scale metabolic
models (GSMMs) targets cellular growth, identifies reaction sets resulting in a lethal phenotype if
disrupted, and retrieves a list of corresponding gene, mRNA, or enzyme targets. Using the dual link
between MCSs and Elementary Flux Modes (EFMs), our logic programming-based tool aspefm was
able to computeMCSsof any size fromGSMMs in acceptable run times. The tool demonstrated better
performance when computing large-sized MCSs than the mixed-integer linear programming
methods. We applied the new MCSs methodology to a medically-relevant consortium model of two
cross-feeding bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. aspefm constraints
were used to bias the computation of MCSs toward exchanged metabolites that could complement
lethal phenotypes in individual species. We found that interspecies metabolite exchanges could play
an essential role in rescuing single-species growth, for instance inosine could complement lethal
reaction knock-outs in the purine synthesis, glycolysis, and pentose phosphate pathways of both
bacteria. Finally, MCSs were used to derive a list of promising enzyme targets for consortium-level
therapeutic applications that cannot be circumvented via interspecies metabolite exchange.

Staphylococcus aureus and Pseudomonas aeruginosa are opportunistic
pathogens commonly associated with the skin microbiome and water
sources, respectively. The two problematic bacteria are responsible for an
estimated 1+million deaths yearly due in part to widespread antimicrobial
resistance1. S. aureus and P. aeruginosa are frequently co-isolated from
chronic wounds and cystic fibrosis lungs2,3. Their interactions such as
metabolite cross-feeding4,5 have been associated with higher resiliency to
antibiotics and worse patient outcomes6,7. The complex nature of their
interactions with other bacteria and the environment has motivated a
growing number of studies involving consortia of these pathogenic bacteria,
whether it is through in vivo and in vitro models8,9, or in silico models10,11.
Better informed and therefore more effective intervention strategies for
treating S. aureus and P. aeruginosa infections could save millions of lives
and billions of dollars in healthcare expenses.

Constraint-based metabolic modelling (CBM) is a well-
established systems biology field involving the computational

reconstruction and analysis of biological mechanisms at multiple
levels12. At its core are metabolic networks, hypergraphs described by a
set of metabolites and reactions linked to each other by stoichiometric
coefficients stored in a stoichiometric matrix. The constraint-based
modelling approach calculates metabolite fluxes based on the
assumption that the system is at steady-state; therefore, intracellular
metabolite production and consumption are balanced over relevant
time intervals.

Flux balance analysis (FBA) is one type of CBM that uses linear opti-
mization to identify solutions of metabolic models, based on an objective
function which often involves maximizing the flux through a biomass
synthesis reaction13. The FBA solution is a flux distribution that predicts
cellular phenotype including which enzymes are active and what the
magnitude of the flux is for each enzyme. The biomass synthesis reaction
accounts for cell growth as observed experimentally14. FBA and derived
methods are used tomake in silico phenotype predictions based on changes
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in the growthmedium or based on altering of enzyme activity through gene
knockouts or recombinant interventions15.

Elementary Flux Mode (EFM) analysis is another CBM method that
performs an exhaustive enumeration of the edges of the metabolic solution
space defined by the stoichiometric matrix; FBA solutions are nonnegative
linear combinations of EFMs16. The number of EFMs grows exponentially
in relation to the number of reactions; counting all EFMshas beenproven to
be #P-hard17. Consequently, enumeration of EFMs from large metabolic
models with over 100 reactions is challenging, requiring special computa-
tional methods18, biological constraints such as transcriptional regulation19

and thermodynamic data20, and careful model network compression21,22.
Building from the set of metabolic reactions encoded in the genome,

and progressing to the intricate mechanisms at the protein and enzyme
level, CBM contributes to the description of a wide variety of cellular pro-
cesses. Genome-scale metabolic models (GSMMs), large-scale constraint-
based metabolic models computationally generated from genomes of
interest are now the norm23,24, due to increased availability of data and
computational power. GSMMs are well suited for identifying putative drug
targets through predicting gene and metabolite essentiality25,26.

GSMMshavebeen applied to analyse drug targets in cancerous cells27,28

and to treat P. aeruginosa infections29. The methods identified essential
reactions and synthetic lethals (SLs)30. Synthetic lethals refers to combina-
tions of gene-deletions or enzyme interference targets which prevent
growth. While the term initially referred to pairs of genes, it is now used to
describe n-tuples of reaction targets. The synthetic lethals may explicitly
consider both the metabolic potential of the organism and the role of the
nutritional environment provided by the extracellular medium.

Improved algorithms for computing synthetic lethal strategies have
been proposed to shorten the calculation process, such as Fast-SL31 and
Rapid-SL32. The computation of synthetic lethals deals with a combinatorial
exploration of every possible n-tuple of reactions. Thus on large networks of
over a thousand reactions, computation times increase as the size of n-tuples
increase, and become impracticable for n-tuples of over 4 reactions31.

Another method proposed for identifying synthetic lethals, whether
n-tuple size is under or over 4, is the computation of Minimal Cut Sets
(MCSs), with the biomass synthesis reaction as a target reaction. MCSs are
traditionally definedas the ’MinimalHitting Sets’ofElementaryFluxModes
(EFMs)17,33, and are an exhaustive way of exploring robustness of a network.
Setting a certain reaction as target for inactivation, MCSs define all sets of
reactions capable of preventing flux through the target reaction34. MCSs
analysis has demonstrated remarkable performance in identifying synthetic
lethals in cancer cells28. Additionally, Minimal Cut Sets have been for-
malized for metabolic engineering and recombinant strain optimization33.

MCSs suffer the same computational time challenges as EFMs. The
number of possible MCSs grows exponentially with the number of
reactions35. Interestingly, it has been proven that MCSs can be enumerated
as the EFMs of a so-called dualmetabolic network36. As a result, similarly to
howMixed-Integer Linear Programming (MILP) methods were developed
for computing the shortest EFMs of a metabolic network37, MILP methods
for computing the shortest MCSs have been developed38.

Furthermore, itmight be useful to convert the obtainedMCSs into sets
of target genes or proteins for biological interpretation. Gene-Protein-
Reaction association rules (GPRs) have been developed for GSMMs and
integrated into the stoichiometric matrix39. This data has been repurposed
for the MCSs computation28,40, as a way to get intervention targets.

Here, we present a new approach for calculating and analysing MCSs
using our aspefm tool41. The aspefm program is a logic programming
methoddesigned to compute subsets of EFMswhile respecting user-defined
constraints. It differs from theDoubleDescriptionmethod, implemented in
efmtool42, which needs to enumerate all solutions before generating results,
and from MILP-based methods, implemented in CNApy40,43 and
CoBAMP44, which minimize the size of the reaction set. We have extended
the functionality of aspefm to the computation of MCSs.

Throughout this work, we distinguish MCSs of small size (reaction
n-tuples of size 3 or less including essential reactions, synthetic lethal pairs

and synthetic lethal triplets) from MCSs of large size (defined here as
reaction n-tuples of size 4 or more). The MCSs of small size are often the
desired reaction sets, they are readily calculated by MILP methods and SLs
computation algorithms, and easily converted to gene and enzyme targets
using GPRs. On the other hand, theMCSs of large size are less well-studied.
While they are informative of network robustness, they might be harder to
compute and interpret without incorporation of biological constraints. In
this study, we show aspefmwas able to bridge the gap between the two types
of MCSs, using large-size MCSs to reveal possible interspecies metabolite
interactions.

aspefm successfully processed an aggregate model of two GSMMs
totalling over three thousand reactions: a consortium model of bacteria S.
aureus and P. aeruginosa. The tool efficiently identified solutions of interest
in acceptable computation times despite the size of the consortium meta-
bolic network. The aspefm application revealed potential, nonobvious,
interspecies metabolite exchanges that could help the consortium growth.
Promising therapeutic targets for controlling the problematic pathogens
were obtained by restricting the search of enzyme targets to knock-outs that
were not nullified by consortial metabolite exchanges.

Results
Overview of genome-scale metabolic models for analysis of
single species and consortium
Manually curated genome-scale metabolic models (GSMM) of Staphylo-
coccus aureus and Pseudomonas aeruginosa were selected for our analysis.
The S. aureus GSMM, iYS854, was developed based on S. aureus str. JE245.
The GSMM has been used for assessing the validity of experimentally
determined transcriptional regulation modulons of S. aureus46. The model
has been graded as the most accurate S. aureus GSMM currently available,
according to a study by Renz and Dräger47.

The P. aeruginosa GSMM iPae1146 is based on P. aeruginosa strain
PAO148. The GSMMwas used for a high-throughput essentiality analysis29.
In that study, the model was predicted to have around 97% accuracy for at
predicting gene essentiality during growth on Lysogeny Broth (LB)
medium.

Both metabolic models were pre-processed and curated for our ana-
lysis, as detailed in the Methods. The resulting iYS854model includes 1454
reactions, 1338 metabolites, and 866 genes, while the resulting iPae1146
model includes 1495 reactions, 1283 metabolites, and 1148 genes.

The models were analysed in an in silico extracellular environment
defined by CSP chemically defined medium49, on which S. aureus and P.
aeruginosa can growas biofilms in vitro50. TheCSPmediumwasdesigned to
serve as a simplified analogue of chronic wound exudate. The medium was
chosen as the base for all predictions of growth and consortial cross-feeding
in our study.

A consortiummodel consisting ofP. aeruginosa and S. aureuswasbuilt
from iPae1146 and iYS854 by adding metabolite exchange reactions with a
shared control volume containing the growth medium. The newly created
metabolic network contains 3241 reactions and 2752metabolites.When the
consortiummodelwas constrained by an extracellular environment defined
by CSP medium, a total of 57 metabolites were classified as ’external’ sub-
strates. 46 external substrates were available to both S. aureus and P. aeru-
ginosa, onemetabolite was exclusively available to P. aeruginosa: citrate and
ten metabolites were exclusively available to S. aureus including some
vitamins and purines. A summary of medium metabolites is provided in
Supplementary Table 2.

The network compression process, which is required for MCSs com-
putation, excluded 1296 blocked reactions from the CSP-constrained con-
sortium model and returned a compressed consortium network of 1062
reactions and 600 metabolites. Statistics and results from the construction
and compression of the consortium model, and of the individual species
models iYS854 and iPae1146, are reported in Table 1.

As well, the numbers of MCSs of small size for the consortium and
individual species models are reported in Table 1. 583MCSs of size three or
less were found for the single-species iPae1146 model; 938 MCSs for the
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single-species iYS854 model. Two single reactions are essential to the
consortium-level model, the uptake of ferrous ions and the secretion of
glycolate. These two conditions are necessary for the biomass synthesis
reactions of both models.

As per Fig. 1, our study relies on small-size single-species MCSs as
queries to derive larger-size consortium-level MCSs. While small-size
MCSs could be computed using existing MCSs tools or the Synthetic
Lethals algorithms, there are differences in computational performance
between aspefm and the other MCSs computation tools as summarized
in Supplementary Table 1. These differences motivate the continued
study of MCS algorithms to identify best practices for specific scientific
inquiries.

Single-species MCSs are classified based on their ability to rescue
growth in the consortium model. In a prelimlinary step, performance of
aspefm was compared to MCSs tools CNApy43 and CoBAMP44 for com-
putation of large-size solutions on the consortiummodel. In a second step,
single-species MCSs that rescued growth were used to derive the exact
metabolite exchanges that nullified the cut set from the consortium model
through a constrained consortium MCSs analysis. As a final step, single-
speciesMCSs that did not rescue growth were used to develop a ranking of
consortium-level enzyme targets based on protein structure similarity.

For the final step, single-species MCSs that did not rescue growth and
were identical in both microorganisms were collected and gathered into
larger reaction sets. These reaction sets are, by definition, consortium-level
cut sets. This approachwas deemedbetter than a constrainedMCSs analysis
on the consortium model for two reasons. First, MCSs tools could not
perform unconstrained enumeration of small-sizeMCSs of the consortium
model in reasonable time and second,MCSs at the consortium-level mostly
consisted of combinations of single-species MCSs. Enzyme targets were
derived from cut sets that could correspond to single enzyme pairs.

aspefm efficiently calculates MCSs from consortium-level
models regardless of the size of the reaction set
The performance of our aspefm tool was evaluated by computing MCSs
from the compressed consortium model comprised of 1062 reactions. The
target reactions for the simulation were the biomass synthesis reactions for
both single species. The only constraints for the simulation were to identify
MCSs of reaction size 16 or less and a maximum run time of 1.5 days.

The performance of aspefm was compared with CNApy43 and
CoBAMP44, both are MILP-based MCSs enumeration methods. For each
tool, five executions were launched and averaged (Fig. 2). On average,
aspefm identifiedmore than thrice asmany compressedMCSs asCNApy in

Table 1 | Pseudomonas aeruginosa, Staphylococcus aureus and consortium model statistics

Metabolic models P. aeruginosa S. aureus Consortium

Model statistics

Number of reactions 1495 1454 3241

Number of metabolites 1283 1338 2752

Number of genes 1148 866 2014

Number of external metabolites and exchange reactions 171 239 293

Number of reactions useable for cross-feeding / / 410 (239+ 171)

MEMOTE and consistency analysis results

Universally blocked reactions 637 293 1031

Orphan metabolites (consumed but not produced) 54 39 93

Dead-end metabolites (produced but not consumed) 84 61 145

Reactions in stoichiometrically balanced cycles 253 46 697

Extracellular metabolites without exchange reactions 29 38 /

Compression results on CSP medium

CSP medium metabolites 47 56 57

Blocked reactions on CSP medium 673 485 1296

Number of compressed reactions 470 505 1062

Number of metabolites of the compressed network 252 440 600

Consortium partner metabolites on CSP medium

Number of metabolites secreted within the consortium model 65 73 /

Number of metabolites taken up within the consortium model 48 68 /

Number of metabolites taken up secreted by the other bacterium 36 47 /

Minimal cut sets of size three or fewer

Essential reactions on CSP medium 183 309 2

Synthetic lethal pairs of reactions 184 282 over 50 ⋅ 103

Synthetic lethal triplets of reactions 216 347 over 50 ⋅ 103

Total number of MCSs of size three or fewer 583 938 unknown

After tests for consortium growth recovery

Single-species MCSs nullified by consortium metabolite exchanges 68 199 /

Single-species MCSs remaining lethal on the consortium 515 739 /

Consortium-level MCSs with enzyme target potential 65

Models were individually curated and compressed, then essential reactions, synthetic lethal pairs, and synthetic lethals triplets were computed on the single-species models and on the dual species
consortium model. MCSs computations of synthetic lethal pairs and triplets on the consortium model were too expansive and thus stopped after one week. MCSs are given at the reaction-level on the
uncompressed network.
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Fig. 1 | Overview of themain study.MCSs of size three or less are denoted as small-
size MCSs. a Performance of MCSs computation tools on the S. aureus and P.
aeruginosa consortium model is tested with consortium-lethal MCSs. b Small-size
MCSs are computed on single-speciesmodels, then tested for growth recovery on the
consortium-level model. c For MCSs which are no longer lethal on the consortium

model, larger size consortiumMCSs are computed, revealing metabolite exchanges.
d For MCSs that are still lethal on the consortium retrieved in both bacteria,
interspecies protein structure alignments of AlphaFold structures are performed,
and the best drug targets for therapeutic intervention in human are retrieved.

Fig. 2 | Number of compressed network MCSs computed from the consortium
model by each tool with a time limit of 1.5 days, and limited toMCSs of below 16
reactions. a Size ofMCSs computed by aspefm, b Size ofMCSs computed byCNApy,

cNumber of MCSs computed by each tool. Heights correspond to average numbers
for five program executions, error bars represent standard deviation around the
mean for figure (c), and half of standard deviation for (a) and (b).
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the 1.5 day run time. aspefm averaged 3663.8 MCSs while CNApy averaged
1213.0 MCSs. Both aspefm and CNApy were able to enumerate MCSs
regardless of the reaction set size,whileCoBAMPwasheavily hinderedby its
forced iterative enumeration approach which started with the smallest cut
sets; the method only identified around 203.6 MCSs on average. Upon
decompression, theMCSs foundby aspefm andCNApy reached the order of
105 MCSs, illustrating the necessity of network compression.

TheMCSs identified using aspefm sampled solutions ranging from1 to
16 reactions with the highest frequency at a reaction size of 5 (Fig. 2). As
illustratedby thehighvariability over 5 executions, no substantial preference
was observed towards any particular reaction size: aspefm is a logic pro-
gramming tool that benefits fromthe combinatorial explorationnature of its
SAT-based capabilities.Meanwhile, theMCSs identified usingCNApywere
biased toward smaller reaction sizes andmainly enumerated solutions with
2–7 reactions, with the highest frequency occurring at 3 reactions (Fig. 2).
These results from the consortiummodel suggest that in contrast toCNApy
and especially CoBAMP, aspefm enumerated solutions independently of
their size. For computing MCSs of large size from the consortium model,
aspefm is thus the tool of choice.

Consortium-level MCSs reveal role of interspecies metabolite
exchanges in single-species growth
Medical infections comprised of both S. aureus and P. aeruginosa can result
in worse patient outcomes and can be more difficult to treat than mono-
cultures. Thus therapeutic treatments ideally should not only target a single
species, but the whole consortium. Metabolic modelling can identify
metabolite exchanges between species that would bypass therapeutic stra-
tegies targeting only a single species. MCSs of small size from the single-
speciesmodels were tested for lethality at the consortium level to determine
if directed cross-feeding interactions or passive metabolite exchange
through metabolite leaking could circumvent single-species lethalities. Of
the 583 MCSs of size three or less for P. aeruginosa, 68 were no longer cut
sets at the consortium level based on metabolites secreted by S. aureus.
Meanwhile, of the 938MCSs of small size for S. aureus, 199 cut sets were no
longer effective due to metabolite exchanges from P. aeruginosa.

The lethal MCSs that were nullified due to metabolite exchanges were
further analysed with the consortium-level model. aspefm was chosen for
determining the identity of the exchanged metabolites, since the necessary
computation involved consortium-level MCSs of large size: over three
reactions for themost part. Constraints for the computation were separated
into two categories. We defined within aspefm: ‘wanted reactions’ (positive
Boolean inputs) for reactions that should appear in the MCSs, and
‘unwanted reactions’ (negativeBoolean inputs) for reactions that should not
appear in the MCSs; the latter should not be confused with the target
reaction. aspefm was run on the consortium model for each nullified MCS
and for each bacterium, the reactions from the invalidatedMCS were set as
the ‘wanted reactions` and all reactions unnecessary for metabolite
exchange as the ‘unwanted reactions’; the target reaction was set to the
single-species biomass reaction (see Methods). As a result, generated
consortium-level MCSs were composed only of the previously computed
single-species MCSs and of exchange reactions, revealing the metabolites
essential for recovering growth.

The obtainedMCSs were limited to eight or fewer reactions and a time
limit was set to 1.5 days for each computation. In total, 531 compressed
consortium model MCSs were computed, ranging in size from 2 to 8
reactions, with the mean and median being 6 reactions and the highest
frequency being 7 reactions. The details of each consortium-level MCS
identified through this analysis are provided in Supplementary Dataset 1.

The identity of the exchanged metabolites in the consortium model
and the number of single-species MCSs they suppress are reported for each
bacterium in Fig. 3. The same single-species MCSs could be invalidated by
the exchange of any one of several metabolites. Indeed, for a given single-
species MCS, several consortium MCSs could be found, indicative of
intervention strategies at the consortium level, and corresponding each to
one or several metabolites.

For instance, a MCS of size three that exists for a single-species model
might be nullified by any of five different metabolite exchange reactions,
together in a consortiummodelMCSof size eight.Consequently, at leastfive
interventions on exchanges with the other bacteriumwould be required for
the original MCS to regain lethality. Alternatively, if among all consortium
MCSs, there was only one metabolite exchanged to counter the single-
speciesMCS, then only a single theoretical intervention would be required.

Themajority of cut sets nullified due tometabolite exchanges involved
purinemetabolism, pentose phosphate pathway, and glycolysis. Inosinewas
a pivotal metabolite in many of those functions, it was able to complement
almost half of the identifiedcut sets for eachbacterium. Inosinenucleosidase
can transform the metabolite into hypoxanthine—a purine – and ribose,
which can support many central metabolism transformations.

Purines xanthine and hypoxanthine seemed to play a central role in
metabolite exchanges allowing the recovery of growth, likely due to their
relationship with nucleotide metabolism. Other notable metabolite
exchanges shared by the two bacteria include acetylglucosamine, ribose,
fructose and glycerol, complementing glycolysis functions; and urea-related
metabolites, complementing urea cycle metabolism functions.

Previously, the enzyme N5,N10-methylenetetrahydrofolate dehy-
drogenase-cyclohydrolase, catalysing methylenetetrahydrofolate dehy-
drogenase and methenyltetrahydrofolate cyclohydrolase, has been studied
as potential drug target for P. aeruginosa51. However, these reactions,
identified as essential on the single-species model, are complemented by
purines and histidine exchanged by S. aureus on the consortium-
level model.

Although the majority of the single-species level MCSs corresponded
to large-size consortium-levelMCSs:most recovering growth by at least two
distinct possible metabolite exchanges and making for very impractical
treatments, we found a few small-sized MCSs, such as glucosamine-6-
phosphate synthase with acetylglucosamine exchange.

Interestingly, while glucosamine-6-phosphate synthase was identified
as an essential reaction in both single-species models, the lethal phenotype
conferred by deleting this reactionwould be recovered by a simple exchange
of acetylglucosamine between the bacteria. Therefore, efforts using ther-
apeutic agents which inhibit this enzyme52 would need to consider the
potential role of acetylglucosamine found in the environment or leaked by
resistant bacteria in the consortia.

Consortium-levelMCSs identifymulti-species,structurallyclose,
intervention targets
The effects of therapeutic agents that target a single species can, in some
cases, be bypassed through metabolite exchange from other consortia spe-
cies. From single-species MCSs, our analysis illustrated how specific
consortium-level metabolite leakage or cross-feeding events could enable
growth recovery. This identifiedMCSs that should be excluded from further
analysis, while the remaining MCSs could be more promising targets for
therapeutic intervention.

In order to retrieve consortium-level intervention targets, we selected
MCSs that were mutually shared by the two bacteria. As well, the corre-
sponding enzyme targets were retrieved from MCSs for protein structure
studies. It is hypothesized that proteins with similar structure could be
targeted simultaneously by the same therapeutic agent and thus target the
consortium by conjointly blocking both S. aureus and P. aeruginosa. Out of
515 iPae1146 MCSs and 739 iYS854 MCSs of small size that were not
nullified by metabolite exchanges, 65 MCSs were shared by both bacteria
(Table 1).

The structures of the proteins associatedwith the shared 65MCSswere
analysed for similarity. The protein structure analyses ruled out several
MCSs since the target enzymes for S. aureus and P. aeruginosa were not
deemed similar enough for concurrent therapeutic intervention. Enzymes
were represented by their GSMMs gene assignments, ie. GPRs (Gene-
Protein-Reaction gene products), and were retrieved from MCSs with a
logic programming extension of our aspefm procedure. Interspecies relative
enzyme structure similarity was measured by Root Mean Square Deviation
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(RMSD) of atom positions inÅngström, protein structure alignments were
computed on AlphaFold structure predictions53. The remaining shared
MCSs were filtered using an additional criterion: the S. aureus and P. aer-
uginosa protein structures were compared to any potential human homo-
logues. MCSs with enzymes that were deemed too similar to human
homologues were removed. As a result, a ranking of the most promising
MCSs for antibiotics discovery in human is presented in Fig. 4.

From the 65 MCSs common to both bacteria and their corresponding
enzymes, 23 of them were considered good potential drug targets for
elimination of the bacterial consortium in human (Fig. 4c). Details and
ranking of each MCS are provided in the Supplementary Dataset 2. The
most promising enzymes to simultaneously target both S. aureus and P.
aeruginosa included twelve enzymes from nucleotide metabolism, lipid
synthesis, aromatic amino acid biosynthesis, bacterial cell wall construction,
amino sugar metabolism and folate biosynthesis (Fig. 4a, b).

At the top of the ranking, beta-ketoacyl-ACP synthase III had high
protein structure similarity between the two bacteria (interspecies RMSD:
1.21 Å) and fortuitously, there did not seem to be human homologues.
However, there exist functionally related isozymes beta-ketoacyl-ACP
synthase I and II, presentinghigh similaritywithhumanhomologues,which
were thus excluded by our procedure.

Some example cell wall synthesis enzymes include undecaprenyl-
disphosphatase (interspecies RMSD: 1.37) andUDP-N-acetylmuramoyl-L-
alanine synthetase (RMSD: 1.81). Both enzymes are found only in the
bacteria andnot in human.Amino sugarmetabolism included two enzymes
for which there are human homologues: GlmU and phosphoglucomutase,

however the protein structures were considered dissimilar enough by our
filtering procedure for these enzymes to be considered targetable.

Other enzymeswith high therapeutic potential to treat S. aureus andP.
aeruginosa consortia are four enzymes from the aromatic amino acid bio-
synthesis pathway: chorismate synthase (RMSD: 1.22),
3-phosphoshikimate 1-carboxyvinyltransferase (RMSD: 1.35), shikimate
kinase (RMSD: 1.91) and 3-dehydroquinate synthase (RMSD: 2.03). This
biosynthesis pathway is famously not present in mammals. In fact, an
inhibitor of 3-phosphoshikimate 1-carboxyvinyltransferase, glyphosate, is
commonly used as an herbicide54.

Additionally, eleven environment-dependent, bacterial-only
enzyme targets were identified (Fig. 4c). These enzymes are derived
from 2–3 reaction MCSs containing a transporter for an amino acid
found in the growth medium and an amino acid biosynthesis reaction,
which becomes essential in absence of that amino acid. Were the
bacteria to be grown in an environment lacking the amino acids
associated with these MCSs, an inhibitor of the enzyme targets would
be effective.

These MCSs provide detailed, systemic insight into which amino
acid biosynthesis reactions are the most important for S. aureus and P.
aeruginosa growth, and therefore which amino acids biosynthesis
pathways are themost promising targets. Our elevenMCSs correspond
to six important amino acids, among two classes, aromatic amino acids
(tryptophan, histidine, phenylalanine) and branched-chain amino
acids (isoleucine, leucine, valine). These essential pathways are in
accordance with previous studies and might be druggable55. More

Fig. 3 | Metabolite exchanges with consortium partners allowing single-species
MCSs to recover growth on the consortium model, according to consortium
MCSs of size up to 8, found in a 1.5 days time span. a Number of MCSs of P.

aeruginosa nullified by extracellular metabolite import from S. aureus, bNumber of
MCSs of S. aureus nullified by extracellular metabolite import from P. aeruginosa.
Acgam acetylglucosamine, d deoxy.
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insight into the growth medium dependent MCSs, as well as structure
alignments and human homologues, is given in Supplementary
Material, Supplementary Figs. 2 and 3.

Discussion
aspefm is a powerful and promising tool formetabolic systems analysis, able
to computeEFMswhile respecting any applied constraints,whether they are
logical or linear, and it can be extended at will by the clingo Python
interface56. Here, we extend the tool to the computation of MCSs from
metabolic models of single and multispecies systems. MCSs are mathe-
matical objects with great engineering, ecological, and therapeutic potential
as they identify combinations of reactions within large, highly connected
networks that have outsized abilities to influence phenotype. As illustrated
in Fig. 2, exploration of MCS solutions in genome-scale models is now
possible. Compared to other methods, aspefm showed substantially better
performance for enumeration of MCSs of large size on the consortium
model within a time frame of 1.5 days. Note that the enumeration of these
subsets of solutions with aspefm is non-ordered and non-deterministic, as
demonstrated by the variability in MCSs sizes. In contrast, CoBAMP’s
enumeration algorithm is ordered, consisting of computing the next
smallest MCSs at each iteration. CNApy proposes both ordered and non-
ordered enumeration, aspefm was compared to its non-ordered enumera-
tion. With its innovative SAT-based solving, our tool aspefm was able to
enumerate solutions on a consortium-level with ease, despite the network
comprising about three thousand reactions.

In order to make full use of the enumeration capacities of our aspefm
tool, we devised a MCSs analysis to study potential cross-feeding interac-
tions within the consortium. Our analysis proposed the usage of MCSs of
small size on single-species models as constraints for the computation of
MCSs of large size on a consortium-level (Fig. 1). Single-speciesMCSs were
tested for the recovery of growthon the consortiummodel, and ifmetabolite
exchanges permitted growth recovery, then MCSs of large size were com-
puted, providing insight into the metabolite exchanges in question (Fig. 3).
To do so, all reactions that were not metabolite exchange reactions were set
as negative Boolean inputs, and MCSs of small size were used as positive
Boolean inputs, and aspefm was run with a time limit of 1.5 days. We
implemented an additional FBA check for all MCSs identified by the solver
to verify the minimality of the solutions. Therefore we present the utility of
an exhaustive yet constrained metabolic pathways analysis, through appli-
cation of biological relevant constraints, as we have presented previously for
EFM analysis41. Rather than a complete enumeration of all cut sets, which
like EFM enumeration is only achievable on modestly sized reaction net-
works, we enumerate a subset ofMCSs while answering a specific biological
question, under a finite time limit.

This new application of MCSs highlights the potential role of meta-
bolite exchanges and metabolite cross-feeding on consortium functioning
and resilience to therapeutic efforts (Fig. 3). We strengthened the study by
combining the analysis with drug target predictions for the single-species
MCSs that did not regain growthwith consortialmetabolite exchanges (Fig.
4). Meylan and coauthors have showed strong evidence that antibiotic
tolerance might be affected by the impact of metabolite exchanges, in par-
ticular they showed that uptake of fumarate/glyoxylate by P. aeruginosa
increases/decreases respectively its tolerance to aminoglycosides57,58.
Usually, MCSs of size three or fewer are considered the most biological
relevant. This logic follows the argument that disrupting more than three
different genes, or interfering with more than three mRNA targets or the
drugging ofmore than three enzymes at the same time is challenging.MCSs
of small size are readily enumerated from single-species metabolic models,
and can be performed with existing SLs enumeration tools or with MCS
enumeration tools. However, we argue that MCSs of large size can provide
valuable informationonnetwork robustness and fragility.MCSsof large size
cannot be reliably enumerated by SLs tools as these are iterativemethodsnot
adapted for combinatorial enumeration. Here, MCSs of large size revealed
the explicit metabolite exchanges between the two bacteria that enabled
recovery of growth after three or fewer reactions were cut. We believe this
methodology can be extended to larger aggregate models including
microbiome-level systems and be used to systematically identify metabolite
exchanges that can and can not circumvent medical treatments.

We validated the our predicted metabolite exchanges uncovered with
MCSsusingCOBRAPyandFBA to test all possiblemetabolite cross-feeding
interactions; the results are reported in Supplementary Table 3. Of note,
metabolite exchanges can also be retrieved on bacterial consortia models
through using EFMs analysis59,60. Interestingly, we compared our tool to
SMETANA, a tool for estimating growth-dependent species exchanges in
bacterial consortia61. 25% of our highlightedmetabolite exchanges were not
predicted by SMETANA. The analysis performed by SMETANA on our
consortiummodel is given in Supplementary Fig. 4.We believe interspecies
metabolite exchanges are representative of at least three possible mechan-
isms: cross-feeding (bacterial co-operation), metabolite leakage (non spe-
cific loss of metabolites necessary for biomass production), and metabolite
acquisition from the growth medium which may include necromass62.

Our study positions itself in recent efforts from the metabolic model-
ling community in bringing metabolic models to the cellular consortium
level63. There is a growing interest in multi-speciesmodels such as AGORA
for modelling of gut microbiota64, and multicellular models such as whole-
bodyhumanmodels65.However,we found that even thewell-curated single-
speciesmodels presented inour studywerenot exempt fromcuration issues.
For example, iPae1146 lacked reactions for aminoacyltransferase reactions.
Interestingly, the aminoacyltransferases reactions were present on the
smallerP. aeruginosaPAO1model iMO1056 from200866. Another curation

Fig. 4 | ConsortiumMCSs estimated to be targetable with a single ligand.Only P.
aeruginosa and S. aureus targets whose protein structures matched best were kept.
a Ordinates labels show targetable enzymes. Bars heights are Root Mean Square
Deviation (RMSD) of atompositions,measured inÅngström, resulting fromprotein
structural alignment of enzyme pairs. Enzymes indicated with ‘H’ were found to
have human homologues. b Pie distribution for associated metabolism groups for
each targetable enzyme in a. c Pie distribution of categories of MCSs potentially
targetable in human. From the 23 MCSs targetable in human (in c), only 12 are
independent of the growth medium (shown in a and b).
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issue included the lack of a functioning formate transporter for iPae1146
and of a citrate transporter for iYS854, even though thesemetabolitesmight
have substantial interspecies exchange potential.

Data from UniProt and AlphaFold53 was used to predict therapeutic
targets basedonprotein structure similarities. Protein structure datawasnot
available for many of the enzymes of interest which limited the mapping of
the specific protein sequence to a model structure. We therefore used the
application to quantify similarities of the predicted structure of two protein
sequences rather than the overall accuracy of the 3D structure. If the pre-
dicted protein structures were deemed similar enough, it is hypothesized
that an inhibitor would be more likely to be a ligand to both. AlphaFold
derived preemptive ranking for further analysis and provided a uniform
methodof applying the computationalworkflow. Enhanced predictionswill
be possible with improved crystallization-based protein structures, and
through further analysis of the enzyme targets, their active sites, and
medically approved inhibitor ligands67.

Finally, a relevant point of discussion is the conversion of enzymes to
gene and reaction data, ie. Gene-Protein-Reaction rules (GPRs). GPRs are
composed of AND and OR Boolean rules, symbolizing complexes and
isozymes respectively; GPRs are associated to the reactions they catalyse.
Previous studies have incorporatedGPRs into the stoichiometricmatrix39,40.
This has the downside of forcing flux through artificial reaction constructs.
In contrast, our approach for converting reactions to proteins using GPRs
made use of logic programming, – as GPRs are Boolean logic rules – thus
further expanding the aspefm framework. GPRs are of major importance
when analysing the enzymes gene or protein data, and were useful for us
when retrieving AlphaFold entries53.

To conclude this study, we argue that biomass-associated MCSs of
small size and of large size were equally useful.With ourmethod, a subset of
all large sized MCSs was able to reveal consortium-level metabolite
exchanges that could only be observed after analysis of small sized MCSs.
Additionally, MCSs which could not be complemented based on inter-
speciesmetabolite exchangeswere analysed for their role as drug targets.We
thus propose that there is a strong need forMCSs enumeration tools such as
aspefm, and for metabolic modelling methods as a whole in the context of
microbial ecology, medical intervention, and drug discovery.

Methods
Minimal Cut Sets were computed on Staphylococcus aureus and
Pseudomonas aeruginosa GSMMs iYS854 and iPae1146, as well as on a
consortium model containing the two models and reactions to model
cross-feeding. The tools used are aspefm, our tool, for which we detail
the methods further, CNApy and CoBAMP. For representing CNApy,
the StrainDesign Python module was chosen and configured with the
non-ordered enumeration algorithm68. We provided code for the
analysis at https://github.com/maxm4/paSAmcs/. The repository
includes the models and scripts for running every tool. We used IBM ©
cplex for linear programming solving and an Intel® Xeon® E5-2609v2
2.5GHz processor.

An overview of the complete analyses performed in Table 1,
Figs. 3 and 4 is found in Fig. 1. MCSs of small size of P. aeruginosa and S.
aureuswere tested for growth recovery on the consortiummodel. ForMCSs
which lost their lethal phenotypeon the consortium,MCSsof large sizewere
retrieved explaining which metabolite exchanges allow recovery of growth.
For the remaining MCSs of small size, MCSs in common between the
bacteria were retrieved and analysed for the search of possible new anti-
bacterial agents. This analysis is further illustrated in Supplementary
Material: Supplementary Figs. 1, 5, and 6.

Metabolic models pre-processing and curating
Bothmodels went into a first phase of pre-processing. Erroneous identifiers
were resolved and renamed. A pyocyanin transporter was added to
iPae1146, as P. aeruginosa is known to secrete pyocyanin in presence of S.
aureus10. As well, new transporter reactions were added to iYS854 to match
the Chemically Defined Medium used in ref. 69, and such that the well-

studied WTA-null non-lethal Staphylococcus aureus mutant Δ tarO could
be accounted for, in order to resolve the ambiguities raised by ref. 45.

Accuracy of the models was estimated using the MEMOTE commu-
nity tool for assessingGSMMquality70. iPae1146 scored low at 23%,mainly
due to its lack of annotations, while iYS854 scored at 75%. In addition,
network topology issues were reported in Table 1. The iPae1146 model
contains a smaller number of exchange reactions, about twice as many
blockedreactions, and a substantially higher number of reactions implicated
in stoichiometrically balanced cycles.

Aswell, 29 extracellularmetabolites from iPae1146 and38 from iYS854
were found to lack exchange reactions. Notablemetabolites from these lists,
which are thus excluded from the possible metabolic interactions between
bacteria, include formate for iPae1146 and citrate for iYS854.

The models were constrained to CSP Chemically Defined Medium50.
For all 47 CSPmediummetabolites metabolized by P. aeruginosa and all 56
CSP medium metabolites metabolized by S. aureus, exchanges lower flux
bounds were set to flux values in accordance with their relative quantity in
the medium. The obtained constrained metabolic models are presented in
Supplementary Dataset 3, in the standard SBML format.

Consortiummodel construction and analysis
A consortiummodel of P. aeruginosa and S. aureusmodels was constructed
using exchange reactions of both models as means for cross-feeding. All
reactions, metabolites and compartments of the original models were sub-
titledwith ‘PA’ or ‘SA’ in the consortiummodel depending their origin. The
consortium model’s highest level compartment permited exchange of
metabolites between P. aeruginosa and S. aureus, as illustrated in Fig. 5.

Additional boundary exchange reactions were added to all newly
created extracellular metabolites using COBRAPy71, and the new exchange
reactions fluxes were constrained to correspond to metabolites of the CSP
Chemically DefinedMedium50. All reactions that were previously exchange
reactions of the iPae1146 and iYS854 GSMMs have become reactions that
can be used for cross-feeding.We set arbitrary flux bounds of [−20, 20] for
all cross-feeding reactions, in accordancewith theminimumpossibleuptake
flux in CSP Medium, which is set to −20mmol/gDW/hr for O2, as is
standard for that metabolite in COBRA models. The resulting consortium
metabolic model in SBML is presented in Supplementary Dataset 3.

Supplementary Table 3 presents the possible metabolite exchanges
between the bacteria, as identified with COBRAPy tests. Within the con-
sortium model, P. aeruginosa can metabolize 36 metabolites of the 73
metabolites potentially secreted by S. aureus, while S. aureus canmetabolize
47metabolites of 65metabolites potentially secreted byP. aeruginosa. These
metabolites are reported in Table 1 as well.

Note that for computation of MCSs—and thus essential reactions,
synthetic lethal pairs and triplets—on amodel alone, its biomass is taken as

Fig. 5 | Diagram of the P. aeruginosa and S. aureus consortium model in CSP
Chemically Defined Medium, including a view of metabolite exchange
mechanisms. Extracellular metabolites are symbolized by “Met”. Exchange reac-
tions are symbolized by “EX”.
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the target reaction. As such, when looking for which cross-feeding reactions
complement a cut set ofP. aeruginosa or S. aureus alone (Fig. 3), only one of
the two consortiumbiomass reactions should be taken, the targeted biomass
reaction in question. The procedure for computing MCSs revealing cross-
feeding interactions with aspefm, from the sets of lethal MCSs with growth
recovery of either bacterium, is illustrated in Supplementary Fig. 6.

Separately, for modelling growth on the consortium model, the FBA
objective reaction is defined as the sum of both biomass reactions. Thus, for
computation of MCSs which are lethal to the whole consortium model
(Fig. 2), both biomasses were taken as the target reactions.

Network compression
To help with computation efficiency, models are compressed using the
network compression procedure developed by the von Kamp team, as part
of the pip package efmtool_link from the Klamt lab (https://github.
com/cnapy-org/efmtool_link). The tool relies on excluding blocked reac-
tions and correcting reversibilities through Flux Variability Analysis13, then
applying a nullspace-based compression method from EFMTool42.

The general principle behind nullspace-based compression was
introduced in METATOOL21, and later re-explored in ref. 22. Linearly
dependent lines from the stoichiometric kernel are regrouped into a single
(lumped) reaction. This allows reactions that always operate together, i.e.,
their fluxes are linearly dependent to each other, to be regrouped into the
same reaction subsets. For MCSs analysis, the linear coefficient factor
between reactions in the same subset is of no importance, thus MCSs
decompression is trivial.

Network dualization
As described in Ballerstein et al.36, it is possible to describe the problem of
computing MCSs as the problem of computing particular EFMs on a dual
metabolic network, meaning that the original network has to undergo a
dualization conversion procedure.

We formulated the problem by making use of the MILP version pro-
posed by von Kamp andKlamt in 201438, which excludes some of the linear
variables and constraints introduced by Ballerstein. A notable feature of this
method was defining an inequality constraint instead of an equality con-
straint for metabolites of the dual network that were originally irreversible
reactions.

All reversible dual reactions are split into two irreversible dual reac-
tions. As in the formalisms defined by Ballerstein and von Kamp, the
reactions corresponding to reversibility constraints are the only ones to
which subset-minimality applies, meaning the other linear variables are free
to be either strictly positive or equal to zero following whether it suits the
linear program. We provide Supplementary Fig. 7 to explain network
dualization with aspefm.

Dual metabolic network formalization
Let us define S the stoichiometrymatrix of sizem × r,mbeing the number of
metabolites in themetabolites setM and r being the number of reactions in
the reactions set Reac. Let us define the set of reversible reactions Rev �
Reac and the set of target reactions t � Reac to be disabled for MCSs
computation.

In the dual metabolic network, original reactions become metabolites,
and original constraints become reactions. If S is the primal stoichiometry
matrix is of sizem × r, with I the identitymatrixof size r × r and−Tvector of
size r × 1 with values 0 for j∉ t and− 1 for j∈ t, thenD is a dual matrix of
size r × d, with d =m+ r+ 1, and defined asD ¼ ðSTI� TÞ.

The computation of the dual network D generates a metabolites set
Mdual and a reactions setReacdual . The setMdual is simply the reactions set
Reac and is thus of size r, while the reactions setReacdual is of size d and
composed of three different types of reactions:Reacdual ¼ S ∪RC ∪ T .

More precisely, all m stoichiometry constraints S become reversible
reactions, r reversibility constraintsRC become reversible if and only if the
original reaction is reversible too,while the reactions t to be disabled become
one irreversible target reaction T . More precisely, all m stoichiometry

constraints S become reversible reactions, r reversibility constraints RC
become reversible if and only if the original reaction is reversible too, while
the reactions t to be disabled become one irreversible target reaction T .

After splitting theddual network reactions into k irreversible reactions,
the setRdual of irreversible reactions is obtained. For clarity, k = 2m+ r+
∣Rev∣+ 1. For MCSs computation, we are concerned with its subset of
interest Cut � Rdual , corresponding to the split of reactions RC. The set
Revdual : Rdual ×Rdual ! Reacdual keeps track of which reactions ofRdual
were originally reversible in the reaction set Reacdual . This is the set of
forwards backwards reaction pairs. Further ahead, we denote byD the dual
matrix of size k × r after splitting reversible reactions.

Minimal Cut Sets formalization
GivenRev � Reac the set of reversible reactions of the primal network,D
the dual matrix of the stoichiometric matrix S, Mdual the set of dual
metabolites, originally reactions of the primal network, Rdual the set of k
irreversible dual reactions, Revdual � Rdual ×Rdual indicating which pairs
of reactions result from a split, Cut � Rdual the subset of reactions corre-
sponding to directionality constraints of the primal network, andT 2 Rdual
a target reaction associated to one or several primal network reactions t that
should be disabled, the Minimal Cut Sets problem can be defined as the
following:

Problem: Find non trivial subset-minimal assignments to {True} of
cr 2 B, 8r 2 Cut such that :

X

r2Rdual

Dmr × vr ¼ 0 8m 2 Mdual \Rev ð1Þ

X

r2Rdual

Dmr × vr ≥ 0 8m 2 Mdual nRev ð2Þ

vr ≥ 0 8r 2 Rdual ð3Þ

zr () vr>0 8r 2 Rdual ð4Þ

cr () zr 8r 2 Cut ð5Þ

:zr _:zrrev8ðr; rrevÞ 2 Revdual ð6Þ

v 2 Rk; z 2 Bk; vT >0 ð7Þ

Dmr denotes the dual matrix D stoichiometry coefficient associated to dual
metabolite m 2 Mdual and dual reaction r 2 Rdual . Equations (1) and (2)
represent the steady-state constraint, and is an equality or an inequality
whether the metabolite the constraint applies on was originally a reversible
or an irreversible reaction. Equation (3) is defining that all reaction fluxes vr
should be positive or null. Equation (4) associates Boolean indicator
variables zr to active reaction fluxes, meaning reaction with non-null fluxes.
Equation (5) defines specific Boolean indicator variables cr for reaction
fluxes corresponding to reactions in Cut. These are the Boolean variables
that are considered for subset-minimal solutions. The Cut reactions are the
only reactions which flux is of interest: representing the actual reactions in
MCSs. Equation (6) forbids theflux of two irreversible reactions issued from
the split of a reversible one to be non-null. Equation (7) defines the domain
of reaction fluxes vr8r 2 Rdual as real linear values, the domain of indicator
variables zr8r 2 Rdual as Boolean logic values, and forces the target reaction
flux to be non-null.

Taking all of these constraints and searching for subset minimal
assignments of cr to {True}, we obtain the MCSs disabling reaction targets
T . Information for dual metabolic network construction and the Minimal
Cut Sets problem is summarized visually with a complete formalization for
genome-scale metabolic models in Supplementary Fig. 7.
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Using aspefm to compute MCSs
Theprocedure is appliedusingaspefm, ourAnswer Set Programming (ASP)
logic programming method41. The aspefm tool is distributed at https://
github.com/maxm4/aspefm.

Given the compressedmetabolic network in dual form, aspefm defines
a logic program inAnswer Set Programming able to enumerate all or only a
subset ofMinimal Cut Sets. ASP is a logic programming language, meaning
it requires a declarative logic program to be defined as input. It is adapted for
finding solutions to combinatorial problems thanks to its SAT-based sol-
ving. SAT refers to the well-studied Boolean satisfiability problem. The
solver utilized in aspefm is state-of-the-art solver clingo extendedwith linear
constraints through a modified clingo[LP] interface, with an IBM © cplex
backend72.

Subset-minimal solutions are obtained with the set minimization
heuristics of clingo, aspefm’s solver. No minimization of the size of the
solutions searched is performed. An algorithmic amelioration was made to
the clingo[LP] code. The algorithm for finding core conflicts from con-
flicting linear constraints was formerly implemented in recursive pure
Python.We replaced it by cplex’s internal conflict refiner function. The code
runs about 10-times faster on small and on larger models.

Another amelioration was made for direct enumeration of solutions
with linear constraints, which are known to modify the solution space and
thus its minimal solutions73. A solution checker was implemented, and it is
called to verify theminimality and validity of solutions, in the case ofMCSs
with biomass as a target, it is a simple FBAcall. This linear programming call
should be very fast in computation time compared to the overall cost of the
combinatorial exploration.

As with EFMs computation, additional constraints can be added to
aspefm, only yielding a subset of all possible solutions. These constraints
need to be expressed on the reactions from the compresseddual network, or
undergo a conversion process if these relate to the original network.

Answer set programming
Answer Set Programming (ASP) is a particular specification of logic pro-
gramming. It is a widely used method for combinatorial problems: it has
been applied to solve various biological problems, including problems
related to reconstruction of constraint-based modelling networks74,75. The
Answer Set Programming logic programmingparadigm is oriented towards
resolving constraint satisfaction problems, combinatorial optimization
applications, and NP-hard problems in general. As with other logic pro-
gramming methods, it defines declarative, automated reasoning programs
in human-readable syntax, for which resolution is left to the computing
machine. In ASP’s case, a set of solutions can be derived, and solutions are
called answer sets. The language defines the so-called stable models
semantics, where a model is a solution if and only if it is stable, and thus,
answer sets are also called stable models. Answer sets are analogous to truth
assignments ofBooleanpropositions, in regards to testing the satisfiability of
a Boolean formula76. We recommend Lierler’s review as both an entry-level
paper for experimented SAT modellers and a comprehensive look at the
Answer Set Programming field76.

Adding constraints to aspefm
Using aspefm’s input format, it is possible to add constraints to the com-
putation ofMCSs. Let us consider Cut the set of all reactions, and crBoolean
variables representing if a reaction is cut or not. For example,we can express
a size constraint, meaning that cut sets above a certain size P will not be
computed:

Card fcr j cr ¼ 1; r 2 Cutg<P ð8Þ

Supposing we have a non-empty list of “unwanted reactions” of interest
U � Cut. The following negative Boolean constraint can be added:

^
: cr 8r 2 U ð9Þ

This will specify to the solver to only compute MCSs containing none of
those reactions.

Supposing we have a non-empty list of “wanted reactions” of interest
W � Cut. The following positive Boolean constraint can be added:

^
cr 8r 2 W ð10Þ

This will specify to the solver to only compute MCSs containing all of
those reactions. Note that since these positive Boolean inputs translate into
adding linear constraints changing the solution space, our solution checker
implemented in aspefm should be called.

Retrieving information at the gene and protein level
Gene and protein level information was reviewed as part of the model
curationprocess.Geneproducts defined in the SBMLmodelsweremodified
to all match UniProt or TrEMBL entries, in particular for iYS854. iYS854
genes used new locus tags that yielded no UniProt query results, so genes
were renamed to their old locus tags. UniProt entries were sought for using
UniProt BLAST. For the gene products with nomatch in the str. JE2 strain,
an homologue from a close S. aureus strain was used. In the process, new
RDF annotations were added for futuremodellers. For bothmodels, overall
Boolean Gene-Protein-Reaction rules (GPRs) were simplified into cano-
nical Disjunctive Normal Form (DNF), which helps with exhaustive enu-
meration of gene knock-outs from sets of reactions. Minimal sets of genes
corresponding to the MCSs were computed using ASP logic programming
with subset-minimization heuristics, as the problem can be expressed as
minimal Boolean assignments to {True}.

Minimal sets of genes are non-trivial subset-minimal assignments to
{True} respecting the GPRs Boolean formulae. However, as underlined in
Machado et al.39, some gene products are ubiquitous, appearing in multiple
reactions, meaning that the minimal sets of genes obtained from lethal
MCSs of reactionsmight not necessarily beminimal in the number of genes
to be knockout.

In order to better describe information at the gene or protein level, it is
required that each reaction is associated to at least one gene. So, for trans-
porter reactions that are not associated to genes, we added a dummy
association, which in fact corresponds to the either backwards or forwards
direction of that reaction, since reactions are split forMCSs computation. In
practice, almost all reactions lacking genes are transporters, and forwards
transporter reactions should also be assumed to be dependent on the pre-
sence of externalmetabolites in themedium. Some transporter reactions are
also known to be spontaneous and annotated as such in their GPR
association rules.

Retrieving enzyme cuts targeting both bacteria for therapeutic
action in human
To derive the sets of MCSs in common to both bacteria, reactions in MCSs
were summed together, and MCSs from both models which had the same
total mass balance equation were kept. The sets of MCSs in common were
then converted into the correspondingminimal sets of geneswithASP logic
programming, using GPRs derived from each bacterial model.

Protein structure models were retrieved using the AlphaFold entries53

associated to UniProt genes, and structure alignment was performed using
algorithm FATCAT 2.077. All retrieved genes using themodel’s GPRs could
be associated to UniProt entries, but very few of these entries had known
crystallized structures in PDB. As such, only AlphaFold entries were com-
pared together.

Enzyme targets with good interspecies protein structure alignments
were tested for existence of human homologues in the UniProt database
using their E.C. Number. For enzymes with no human homologues,
enzymes were kept as possible targets. For enzymes which had human
homologues, the corresponding AlphaFold structure predictions were
retrieved, and further protein structure alignmentswere performed to check
druggability.
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All MCSs with common enzymatic function between the two bacteria
were reported in Supplementary Dataset 2 as well as their FATCAT
alignment scores. We further detail the procedure for protein structure
alignments in the next two subsections.

Interspecies protein structure alignments of enzyme targets
Protein structures with a FATCAT alignment RMSD above 3 Ångström
were considered dissimilar between species (Supplementary Fig. 5).
Excluded enzymes comprised Glutamyl-tRNA synthetase and reductase,
and in particular, 3-dehydroquinate dehydratase, for which we confirmed
throughUniProt and InterPro that betweenP. aeruginosa and S. aureus, the
enzymes had very different protein domains. Overall, we found that this
threshold for scores of alignment between AlphaFold structure predictions
was a helpful indicator of whether or not the proteins were similar between
species.

Many MCSs would equivalently include exchange reactions or trans-
porter reactions. Thus, we called theseMCSs “growthmedium dependent”.
These are possible drug targets, but only in auxotrophic conditions, when
amino acids are depleted from the medium. Although these cut sets might
be challenging to use as therapeutic targets, we found them to be at least
informative because if only the medium is depleted, then the enzymes
become essential, and a drug targeting themwould have an effect. These are
also indicators of the main enzymes relating to a particular amino acid
metabolism.

Estimating quality of enzyme targets for therapeutic applications
to humans
FATCAT alignments between the S. aureus and P. aeruginosa struc-
tures and all human homologues were performed. For each alignment,
three categories were considered, based on FATCAT scores: “Structu-
rally equivalent”: (RMSD < 3) and (score < 10−6), “Structurally similar”:
(3 ≤ RMSD < 5) and (10−6≤ score < 10−3), “Structurally dissimilar”:
(RMSD≥5) and (score ≥ 10−3). Then, only enzymes with strictly less
than 50% human homologues which had “Structurally equivalent”
alignments with both bacteria were kept as possible targets (Supple-
mentary Fig. 5).

Most of the enzymes with human homologues were eliminated
through this procedure, the analysis excluded thirteen potentially not
targetable enzymes out of sixteen. Almost all excluded enzymes, for
which alignments were classified as “Structurally equivalent”, had
identical InterPro protein domains between human and bacteria,
despite the large phylogenetic distance, thus making for dangerous
therapeutic targets.

Finally, we decided to exclude the target nucleoside diphosphate kinase
(ATP:UDP) (36.73% “Structurally equivalent”, 18 proteins similar out of 49
homologues), even though it scored high in terms of interspecies protein
structure alignment, as we believe targeting this enzymewould not be viable
in human cells. As a result, only two enzymeswith humanhomologueswere
kept at the end of the analysis (Supplementary Fig. 2).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The datasets generated and analysed during the current study are provided
in SupplementaryDatasets and available from the corresponding author on
request.

Code availability
Code for the analysis is provided at https://github.com/maxm4/paSAmcs/.
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