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Abstract

In the rapidly evolving field of speech gener-
ative models, there is a pressing need to en-
sure audio authenticity against the risks of voice
cloning. We present AudioSeal, the first audio
watermarking technique designed specifically for
localized detection of AI-generated speech. Au-
dioSeal employs a generator / detector architec-
ture trained jointly with a localization loss to
enable localized watermark detection up to the
sample level, and a novel perceptual loss in-
spired by auditory masking, that enables Au-
dioSeal to achieve better imperceptibility. Au-
dioSeal achieves state-of-the-art performance in
terms of robustness to real life audio manipu-
lations and imperceptibility based on automatic
and human evaluation metrics. Additionally, Au-
dioSeal is designed with a fast, single-pass detec-
tor, that significantly surpasses existing models
in speed, achieving detection up to two orders of
magnitude faster, making it ideal for large-scale
and real-time applications. Code is available at
github.com/facebookresearch/audioseal.

1. Introduction
Generative speech models are now capable of synthesiz-
ing voices that are indistinguishable from real ones (Arik
et al., 2018; Kim et al., 2021; Casanova et al., 2022; Wang
et al., 2023). Though speech generation and voice cloning
are not novel concepts, their recent advancements in qual-
ity and accessibility have raised new security concerns. A
notable incident occurred where a deepfake audio mislead-
ingly urged US voters to abstain, showcasing the potential
for misusing these technologies to spread false informa-
tion (Murphy et al., 2024). Regulators and governments are
implementing measures for AI content transparency and
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Figure 1. Proactive detection of AI-generated speech. We em-
bed an imperceptible watermark in the audio, which can be used
to detect if a speech is AI-generated and identify the model that
generated it. It can also precisely pinpoint AI-generated segments
in a longer audio with a sample level resolution (1/16k seconds).

traceability, including forensics and watermarking – see
Chi (2023); Eur (2023); USA (2023).

The main forensics approach to detect synthesized audio is
to train binary classifiers to discriminate between natural
and synthesized audios, a technique highlighted in stud-
ies by Borsos et al. (2022); Kharitonov et al. (2023); Le
et al. (2023). We refer to this technique as passive detec-
tion since it does not alter of the audio source. Albeit being
a straightforward mitigation, it is prone to fail as gener-
ative models advance and the difference between synthe-
sized and authentic content diminishes.

Watermarking emerges as a strong alternative. It embeds
a signal in the generated audio, imperceptible to the ear
but robustly detectable by specific algorithms. There are
two watermarking types: multi-bit and zero-bit. Zero-bit
watermarking detects the presence or absence of a water-
marking signal, which is valuable for AI content detection.
Multi-bit watermarking embeds a binary message in the
content, allowing to link content to a specific user or gen-
erative model. Most deep-learning based audio watermark-
ing methods (Pavlović et al., 2022; Liu et al., 2023a; Chen
et al., 2023) are multi-bit. They train a generator to output
the watermarked audio from a sample and a message, and
an extractor retrieving the hidden message.

Current watermarking methods have limitations. First, they
are not adapted for detection. The initial applications as-
sumed any sound sample under scrutiny was watermarked
(e.g. IP protection). As a result, the decoders were never

1

https://github.com/facebookresearch/audioseal


Proactive Detection of Voice Cloning with Localized Watermarking

trained on non-watermarked samples. This discrepancy be-
tween the training of the models and their practical use
leads to poor or overestimated detection rates, depending
on the embedded message (see App. B). Our method aligns
more closely with the concurrent work by Juvela & Wang
(2023), which trains a detector, rather than a decoder.

Second, they are not localized and consider the entire au-
dio, making it difficult to identify small segments of AI-
generated speech within longer audio clips. The concurrent
WavMark’s approach (Chen et al., 2023) addresses this by
repeating at 1-second intervals a synchronization pattern
followed by the actual binary payload. This has several
drawbacks. It cannot be used on spans less than 1 second
and is susceptible to temporal edits. The synchronization
bits also reduce the capacity for the encoded message, ac-
counting for 31% of the total capacity. Most importantly,
the brute force detection algorithm for decoding the syn-
chronization bits is prohibitively slow especially on non-
watermarked content, as we show in Sec. 5.5. This makes it
unsuitable for real-time and large-scale traceability of AI-
generated content on social media platforms, where most
content is not watermarked.

To address these limitations, we introduce AudioSeal, a
method for localized speech watermarking. It jointly trains
two networks: a generator that predicts an additive water-
mark waveform from an audio input, and a detector that
outputs the probability of the presence of a watermark at
each sample of the input audio. The detector is trained to
precisely and robustly detect synthesized speech embedded
in longer audio clips by masking the watermark in random
sections of the signal. The training objective is to maxi-
mize the detector’s accuracy while minimizing the percep-
tual difference between the original and watermarked au-
dio. We also extend AudioSeal to multi-bit watermarking,
so that an audio can be attributed to a specific model or
version without affecting the detection signal.

We evaluate the performance of AudioSeal to detect and
localize AI-generated speech. AudioSeal achieves state-
of-the-art results on robustness of the detection, far sur-
passing passive detection with near perfect detection rates
over a wide range of audio edits. It also performs sample-
level detection (at resolution of 1/16k second), outperform-
ing WavMark in both speed and performance. In terms
of efficiency, our detector is run once and yields detection
logits at every time-step, allowing for real-time detection
of watermarks in audio streams. This represents a major
improvement compared to earlier watermarking methods,
which require synchronizing the watermark within the de-
tector, thereby substantially increasing computation time.
Finally, in conjunction with binary messages, AudioSeal
almost perfectly attributes an audio to one model among
1, 000, even in the presence of audio edits.

Our overall contributions are:

• We introduce AudioSeal, the first audio watermark-
ing technique designed for localized detection of AI-
generated speech up to the sample-level;

• A novel perceptual loss inspired by auditory masking,
that enables AudioSeal to achieve better imperceptibility
of the watermark signal;

• AudioSeal achieves the state-of-the-art robustness to a
wide range of real life audio manipulations (section 5);

• AudioSeal significantly outperforms the state-of-the-art
models in computation speed, achieving up to two orders
of magnitude faster detection (section 5.5);

• Insights on the security and integrity of audio watermark-
ing techniques when open-sourcing (section 6).

2. Related Work
In this section we give an overview of the detection and
watermarking methods for audio data. A complementary
descrition of prior works can be found in the Appendix A.

Synthetic speech detection. Detection of synthetic
speech is traditionally done in the forensics community
by building features and exploiting statistical differences
between fake and real. These features can be hand-
crafted (Sahidullah et al., 2015; Janicki, 2015; AlBadawy
et al., 2019; Borrelli et al., 2021) and/or learned (Müller
et al., 2022; Barrington et al., 2023). The approach of most
audio generation papers (Borsos et al., 2022; Kharitonov
et al., 2023; Borsos et al., 2023; Le et al., 2023) is to train
end-to-end deep-learning classifiers on what their models
generate, similarly as Zhang et al. (2017). Accuracy when
comparing synthetic to real is usually good, although not
performing well on out of distribution audios (compressed,
noised, slowed, etc.).

Imperceptible watermarking. Unlike forensics, water-
marking actively marks the content to identify it once in the
wild. It is enjoying renewed interest in the context of gener-
ative models, as it provides a means to track AI-generated
content, be it for text (Kirchenbauer et al., 2023; Aaronson
& Kirchner, 2023; Fernandez et al., 2023a), images (Yu
et al., 2021b; Fernandez et al., 2023b; Wen et al., 2023), or
audio/speech (Chen et al., 2023; Juvela & Wang, 2023).

Traditional methods for audio watermarking relied on em-
bedding watermarks either in the time or frequency do-
mains (Lie & Chang, 2006; Kalantari et al., 2009; Natgu-
nanathan et al., 2012; Xiang et al., 2018; Su et al., 2018;
Liu et al., 2019), usually including domain specific features
to design the watermark and its corresponding decoding
function. Deep-learning audio watermarking methods fo-
cus on multi-bit watermarking and follow a generator/de-
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coder framework (Tai & Mansour, 2019; Qu et al., 2023;
Pavlović et al., 2022; Liu et al., 2023a; Ren et al., 2023).
Few works have explored zero-bit watermarking (Wu et al.,
2023; Juvela & Wang, 2023), which is better adapted for
detection of AI-generated content. Our rationale is that ro-
bustness increases as the message payload is reduced to the
bare minimum (Furon, 2007).

In this study, we compare our work with the state-of-the-
art watermarking method, WavMark (Chen et al., 2023),
which outperforms previous ones. It uses invertible net-
works to hide 32 bits in 1-second audio segments. Detec-
tion is done by sliding along the audio in 0.05s steps and
decoding the message for each window. If the 10 first de-
coded bits match a synchronization pattern the rest of the
payload is saved (22 bits), and the window can directly
slide 1s (instead of the 0.05). This brute force detection
algorithm is prohibitively slow especially when the water-
mark is absent, since the algorithm will have to attempt and
fail to decode a watermark for each sliding window in the
input audio (due to the absence of watermark).

3. Method
The method jointly trains two models. The generator cre-
ates a watermark signal that is added to the input audio.
The detector outputs local detection logits. The training
optimizes two concurrent classes of objectives: minimiz-
ing the perceptual distortion between original and water-
marked audios and maximizing the watermark detection.
To improve robustness to modifications of the signal and
localization, we include a collection of train time augmen-
tations. At inference time, the logits precisely localize wa-
termarked segments allowing for detection of AI-generated
content. Optionally, short binary identifiers may be added
on top of the detection to attribute a watermarked audio to
a version of the model while keeping a single detector.

3.1. Training pipeline

Figure 2 illustrates the joint training of the generator and
the detector with four critical stages:

(i) The watermark generator takes as input a waveform
s ∈ RT and outputs a watermark waveform δ ∈ RT

of the same dimensionality, where T is the number of

        Watermark 
Generator

WatermarkedOriginal Augmented 
& Masked 

    Perceptual 
    Losses

   Localization 
   Loss

WM Labels  ↔  Predictions 

Watermark 
Detector

Figure 2. Generator-detector training pipeline.

samples in the signal. The watermarked audio is then
sw = s+ δ.

(ii) To enable sample-level localization, we adopt an
augmentation strategy focused on watermark mask-
ing with silences and other original audios. This is
achieved by randomly selecting k starting points and
altering the next T/2k samples from sw in one of
4 ways: revert to the original audio (i.e. sw(t) =
s(t)) with probability 0.4; replacing with zeros (i.e.
sw(t) = 0) with probability 0.2; or substituting with
a different audio signal from the same batch (i.e.
sw(t) = s′(t)) with probability 0.2, or not modifying
the sample at all with probability 0.2.

(iii) The second class of augmentation ensures the robust-
ness against audio editing. One of the following sig-
nal alterations is applied: bandpass filter, boost audio,
duck audio, echo, highpass filter, lowpass filter, pink
noise, gaussian noise, slower, smooth, resample (full
details in App. D.2). The parameters of those aug-
mentations are fixed to aggressive values to enforce
maximal robustness and the probability of sampling a
given augmentation is proportional to the inverse of
its evaluation detection accuracy. We implemented
these augmentations in a differentiable way when pos-
sible, and otherwise (e.g. MP3 compression) with the
straight-through estimator (Yin et al., 2019) that al-
lows the gradients to back-propagate to the generator.

(iv) Detector D processes the original and the water-
marked signals, outputting for each a soft decision at
every time step, meaning D(s) ∈ [0, 1]T . Figure 3
illustrates that the detector’s outputs are at one only
when the watermark is present.

The architectures of the models are based on En-
Codec (Défossez et al., 2022). They are presented in Fig-
ure 4 and detailed in the appendix D.3.
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Figure 3. (Top) A speech signal (gray) where the watermark is
present between 5 and 7.5 seconds (orange, magnified by 5). (Bot-
tom) The output of the detector for every time step. An orange
background color indicates the presence of the watermark.
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Figure 4. Architectures. The generator is made of an encoder and a decoder both derived from EnCodec’s design, with optional
message embeddings. The encoder includes convolutional blocks and an LSTM, while the decoder mirrors this structure with transposed
convolutions. The detector is made of an encoder and a transpose convolution, followed by a linear layer that calculates sample-wise
logits. Optionally, multiple linear layers can be used for calculating k-bit messages. More details in App. D.3.

3.2. Losses

Our setup includes multiple perceptual losses and a local-
ization loss. We balance them during training by scaling
their gradients as done by Défossez et al. (2022). The com-
plete list of used losses is detailed bellow.

Perceptual losses enforce the watermark imperceptibil-
ity to the human ear. These include an ℓ1 loss on the wa-
termark signal to decrease its intensity, the multi-scale Mel
spectrogram loss of (Gritsenko et al., 2020), and discrim-
inative losses based on adversarial networks that operate
on multi-scale short-term-Fourier-transform spectrograms.
Défossez et al. (2022) use this combination of losses for
training the EnCodec model for audio compression.

In addition, we introduce a novel time-frequency loudness
loss TF-Loudness, which operates entirely in the wave-
form domain. This approach is based on “auditory mask-
ing”, a psycho-acoustic property of the human auditory
system already exploited in the early days of watermark-
ing (Kirovski & Attias, 2003): the human auditory sys-
tem fails perceiving sounds occurring at the same time and
at the same frequency range (Schnupp et al., 2011). TF-
Loudness is calculated as follows: first, the input signal
s is divided into B signals based on non-overlapping fre-
quency bands s0, . . . , sB−1. Subsequently, every signal
is segmented using a window of size W , with an overlap
amount denoted by r. This procedure is applied to both
the original audio signal s and the embedded watermark δ.
As a result, we obtain segments of the signal and water-
mark in time-frequency dimensions, denoted as swb and δwb
respectively. For every time-frequency window we com-
pute the loudness difference, where loudness is estimated
using ITU-R BS.1770-4 recommendations (telecommuni-
cation Union, 2011) (see App. D.1 for details):

lwb = Loudness(δwb )− Loudness(swb ). (1)

This measure quantifies the discrepancy in loudness be-
tween the watermark and the original signal within a spe-

cific time window w, and a particular frequency band b.
The final loss is a weighted sum of the loudness differences
using softmax function:

Lloud =
∑
b,w

(softmax(l)wb ∗ lwb ) . (2)

The softmax prevents the model from targeting excessively
low loudness where the watermark is already inaudible.

Masked sample-level detection loss. A localization loss
ensures that the detection of watermarked audio is done at
the level of individual samples. For each time step t, we
compute the binary cross entropy (BCE) between the de-
tector’s output D(s)t and the ground truth label (0 for non-
watermarked, 1 for watermarked). Overall, this reads:

Lloc =
1

T

T∑
t=1

BCE(D(s′)t, yt), (3)

where s′ might be s or sw, and where time step labels yt
are set to 1 if they are watermarked, and 0 otherwise.

3.3. Multi-bit watermarking

We extend the method to support multi-bit watermarking,
which allows for attribution of audio to a specific model
version. At generation, we add a message processing layer
in the middle of the generator. It takes the activation map in
Rh,t′ and a binary message m ∈ {0, 1}b and outputs a new
activation map to be added to the original one. We embed
m into e =

∑
i=0..b−1 E2i+mi

∈ Rh, where E ∈ R2b,h is a
learnable embedding layer. e is then repeated t times along
the temporal axis to match the activation map size (t, h). At
detection, we add b linear layers at the very end of the de-
tector. Each of them outputs a soft value for each bit of the
message at the sample-level. Therefore, the detector out-
puts a tensor of shape Rt,1+b (1 for the detection, b for the
message). At training, we add a decoding loss Ldec to the
localization loss Lloc. This loss Ldec averages the BCE be-
tween the original message and the detector’s outputs over
all parts where the watermark is present.
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3.4. Training details

Our watermark generator and detector are trained on a
4.5K hours subset from the VoxPopuli (Wang et al., 2021)
dataset. It is important to emphasize that the sole purpose
of our generator is to generate imperceptible watermarks
given an input audio; without the capability to produce or
modify speech content. We use a sampling rate of 16 kHz
and one-second samples, so T = 16000 in our training. A
full training requires 600k steps, with Adam, a learning rate
of 10−4, and a batch size of 32. For the drop augmentation,
we use k = 5 windows of 0.1 sec. h is set to 32, and the
number of additional bits b to 16 (note that h needs to be
higher than b, for example h = 8 is enough in the zero-
bit case). The perceptual losses are balanced and weighted
as follows: λℓ1 = 0.1, λmsspec = 2.0, λadv = 4.0,
λloud = 10.0. The localization and watermarking losses
are weighted by λloc = 10.0 and λdec = 1.0 respectively.

3.5. Detection, localization and attribution

At inference, we may use the generator and detector for:

• Detection: To determine if the audio is watermarked or
not. To achieve this, we use the average detector’s output
over the entire audio and flag it if the score exceeds a
threshold (default: 0.5).

• Localization: To precisely identify where the watermark
is present. We utilize the sample-wise detector’s output
and mark a time step as watermarked if the score sur-
passes a threshold (default: 0.5).

• Attribution: To identify the model version that produced
the audio, enabling differentiation between users or APIs
with a single detector. The detector’s first output gives
the detection score and the remaining k outputs are used
for attribution. This is done by computing the average
message over detected samples and returning the identi-
fier with the smallest Hamming distance.

4. Audio/Speech Quality
We first evaluate the quality of the watermarked audio
using: Scale Invariant Signal to Noise Ratio (SI-SNR):
SI-SNR(s, sw) = 10 log10

(
∥αs∥22/∥αs− sw∥22

)
, where

α = ⟨s, sw⟩/∥s∥22; as well as PESQ (Rix et al., 2001),
ViSQOL (Hines et al., 2012) and STOI (Taal et al., 2010)
which are objective perceptual metrics measuring the qual-
ity of speech signals.

Table 1 report these metrics. AudioSeal behaves differently
than watermarking methods like WavMark (Chen et al.,
2023) that try to minimize the SI-SNR. In practice, high
SI-SNR is indeed not necessarily correlated with good per-
ceptual quality. AudioSeal is not optimized for SI-SNR but
rather for perceptual quality of speech. This is better cap-

Table 1. Audio quality metrics. Compared to traditional wa-
termarking methods that minimize the SNR like WavMark, Au-
dioSeal achieves same or better perceptual quality.

Methods SI-SNR PESQ STOI ViSQOL MUSHRA

WavMark 38.25 4.302 0.997 4.730 71.52 ± 7.18
AudioSeal 26.00 4.470 0.997 4.829 77.07 ± 6.35

tured by the other metrics (PESQ, STOI, ViSQOL), where
AudioSeal consistently achieves better performance. Put
differently, our goal is to hide as much watermark power
as possible while keeping it perceptually indistinguishable
from the original. Figure 3 also visualizes how the water-
mark signal follows the shape of the speech waveform.

The metric used for our subjective evaluations is MUSHRA
test (Series, 2014). The complete details about our full pro-
tocol can be found in the Appendix D.4. In this study our
samples got ratings very close to the ground truth samples
that obtained an average score of 80.49.

5. Experiments and Evaluation
This section evaluates the detection performance of passive
classifiers, watermarking methods, and AudioSeal, using
True Positive Rate (TPR) and False Positive Rate (FPR) as
key metrics for watermark detection. TPR measures cor-
rect identification of watermarked samples, while FPR in-
dicates the rate of genuine audio clips falsely flagged. In
practical scenarios, minimizing FPR is crucial. For exam-
ple, on a platform processing 1 billion samples daily, an
FPR of 10−3 and a TPR of 0.5 means that 1 million sam-
ples require manual review each day, yet only half of the
watermarked samples are detected.

5.1. Comparison with passive classifier

We first compare detection results on samples generated
with Voicebox (Le et al., 2023). We compare to the pas-
sive setup where a classifier is trained to discriminate be-
tween Voicebox-generated and real audios. Following the
approach in the Voicebox study, we evaluate 2,000 approx-
imately 5-second samples from LibriSpeech, These sam-
ples have masked frames (90%, 50%, and 30% of the
phonemes) pre-Voicebox generation. We evaluate on the
same tasks, i.e. distinguishing between original and gener-
ated, or between original and re-synthesized (created by ex-
tracting the Mel spectrogram from original audio and then
vocoding it with the HiFi-GAN vocoder).

Both active and passive setups achieve perfect classifi-
cation in the case when trained to distinguish between
natural and Voicebox. Conversely, the second part of
Tab. 2 highlights a significant drop in performance when
the classifier is trained to differentiate between Voicebox
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Table 2. Comparison with Voicebox binary classifier. Percent-
age refers to the fraction of masked input frames.

AudioSeal (Ours) Voicebox Classif.

% Mask Acc. TPR FPR Acc. TPR FPR

Original audio vs AI-generated audio
30% 1.0 1.0 0.0 1.0 1.0 0.0
50% 1.0 1.0 0.0 1.0 1.0 0.0
90% 1.0 1.0 0.0 1.0 1.0 0.0

Re-synthesized audio vs AI-generated audio
30% 1.0 1.0 0.0 0.704 0.680 0.194
50% 1.0 1.0 0.0 0.809 0.831 0.170
90% 1.0 1.0 0.0 0.907 0.942 0.112

Table 3. Detection results for different edits applied before de-
tection. Acc. (TPR/FPR) is the accuracy (and TPR/FPR) obtained
for the threshold that gives best accuracy on a balanced set of aug-
mented samples. AUC is the area under the ROC curve.

AudioSeal (Ours) WavMark

Edit Acc. TPR/FPR AUC Acc. TPR/FPR AUC

None 1.00 1.00/0.00 1.00 1.00 1.00/0.00 1.00
Bandpass 1.00 1.00/0.00 1.00 1.00 1.00/0.00 1.00
Highpass 0.61 0.82/0.60 0.61 1.00 1.00/0.00 1.00
Lowpass 0.99 0.99/0.00 0.99 0.50 1.00/1.00 0.50
Boost 1.00 1.00/0.00 1.00 1.00 1.00/0.00 1.00
Duck 1.00 1.00/0.00 1.00 1.00 1.00/0.00 1.00
Echo 1.00 1.00/0.00 1.00 0.93 0.89/0.03 0.98
Pink 1.00 1.00/0.00 1.00 0.88 0.81/0.05 0.93
White 0.91 0.86/0.04 0.95 0.50 0.54/0.54 0.50
Fast (1.25x) 0.99 0.99/0.00 1.00 0.50 0.01/0.00 0.15
Smooth 0.99 0.99/0.00 1.00 0.94 0.93/0.04 0.98
Resample 1.00 1.00/0.00 1.00 1.00 1.00/0.00 1.00
AAC 1.00 1.00/0.00 1.00 1.00 1.00/0.00 1.00
MP3 1.00 1.00/0.00 1.00 1.00 0.99/0.00 0.99
EnCodec 0.98 0.98/0.01 1.00 0.51 0.52/0.50 0.50

Average 0.96 0.98/0.04 0.97 0.85 0.85/0.14 0.84

and re-synthesized. It suggests that the classifier is de-
tecting vocoder artifacts, since the re-synthesized samples
are sometimes wrongly flagged. The classification perfor-
mance quickly decreases as the quality of the AI-generated
sample increases (when the input is less masked). On the
other hand, our proactive detection does not rely on model-
specific artifacts but on the watermark presence. This al-
lows for perfect detection over all the audio clips.

5.2. Comparison with watermarking

We evaluate the robustness of the detection on a wide range
of audio editing operations: time modification (faster, re-
sample), filtering (bandpass, highpass, lowpass), audio ef-
fects (echo, boost audio, duck audio), noise (pink noise,
random noise), and compression (MP3, AAC, EnCodec).

These attacks cover a wide range of transformations that
are commonly used in audio editing software. For all edits
except EnCodec compression, evaluation with parameters
in the training range would be perfect. In order to show
generalization, we chose stronger parameter to the attacks
than those used during training (details in App. D.2).

Detection is done on 10k ten-seconds audios from our
VoxPopuli validation set. For each edit, we first build a
balanced dataset made of the 10k watermarked/ 10k non-
watermarked edited audio clips. We quantify the perfor-
mance by adjusting the threshold of the detection score, se-
lecting the value that maximizes accuracy (we provide cor-
responding TPR and FPR at this threshold). The ROC AUC
(Area Under the Curve of the Receiver Operating Charac-
teristics) gives a global measure of performance over all
threshold levels, and captures the TPR/FPR trade-off. To
adapt data-hiding methods (e.g. WavMark) for proactive
detection, we embed a binary message (chosen randomly
beforehand) in the generated speech before release. The
detection score is then computed as the Hamming distance
between the original message and the one extracted from
the scrutinized audio.

We observe in Tab. 3 that AudioSeal is overall more robust,
with an average AUC of 0.97 vs. 0.84 for WavMark. The
performance for lowpass and highpass filters indicates that
AudioSeal embeds watermarks neither in the low nor in the
high frequencies (WavMark focuses on high frequencies).
We give results on more augmentations in App. C.5.

Generalization. We evaluate how AudioSeal general-
izes on various domains and languages. Specifically,
we use the datasets ASVspoof (Liu et al., 2023b) and
FakeAVCeleb (Khalid et al., 2021). Additionally, we
translate speech samples from a subset of the Expresso
dataset (Nguyen et al., 2023) (studio-quality recordings)
using the SeamlessExpressive translation model (Seamless
Communication et al., 2023). We select four target lan-
guages: Mandarin Chinese (CMN), French (FR), Italian
(IT), and Spanish (SP). We also evaluate on non-speech
AI-generated audios: music from MusicGen (Copet et al.,
2023) and environmental sounds from AudioGen (Kreuk
et al., 2023). Results are very similar to our in-domain test
set and can be found in App. C.4.

5.3. Localization

We evaluate localization with the sample-level detection
accuracy, i.e. the proportion of correctly labeled samples,
and the Intersection over Union (IoU). The latter is defined
as the intersection between the predicted and the ground
truth detection masks (1 when watermarked, 0 otherwise),
divided by their union. IoU is a more relevant evaluation of
the localization of short watermarks in a longer audio.
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This evaluation is carried out on the same audio clips as for
detection. For each one of them, we watermark a randomly
placed segment of varying length. Localization with Wav-
Mark is a brute-force detection: a window of 1s slides over
the 10s of speech with the default shift value of 0.05s. The
Hammning distance between the 16 pattern bits is used as
the detection score. Whenever a window triggers a positive,
we label its 16k samples as watermarked in the detection
mask in {0, 1}t.

Figure 5 plots the sample-level accuracy and IoU for dif-
ferent proportions of watermarked speech in the audio clip.
AudioSeal achieves an IoU of 0.99 when just one second of
speech is AI-manipulated, compared to WavMark’s 0.35.
Moreover, AudioSeal allows for precise detection of minor
audio alterations: it can pinpoint AI-generated segments in
audio down to the sample level (usually 1/16k sec), while
the concurrent WavMark only provides one-second resolu-
tion and therefore lags behind in terms of IoU. This is es-
pecially relevant for speech samples, where a simple word
modification may greatly change meaning.

5.4. Attribution

Given an audio clip, the objective is now to find if any of
N versions of our model generated it (detection), and if
so, which one (identification). For evaluation, we create
N ′ = 100 random 16-bits messages and use them to water-
mark 1k audio clips, each consisting of 5 seconds of speech
(not 10s to reduce compute needs). This results in a total
of 100k audios. For WavMark, the first 16 bits (/32) are
fixed and the detection score is the number of well decoded
pattern bits, while the second half of the payload hides the
model version. An audio clip is flagged if the average out-
put of the detector exceeds a threshold, corresponding to
FPR=10−3. Next, we calculate the Hamming distance be-
tween the decoded watermark and all N original messages.
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Figure 5. Localization results across different durations of wa-
termarked audio signals in terms of Sample-Level Accuracy and
Intersection Over Union (IoU) metrics (↑ is better).

Table 4. Attribution results. We report the accuracy of the attri-
bution (Acc.) and false attribution rate (FAR). Detection is done
at FPR=10−3 and attribution matches the decoded message to one
of N versions. We report averaged results over the edits of Tab. 3.

N 1 10 102 103 104

FAR (%) ↓ WavMark 0.0 0.20 0.98 1.87 4.02
AudioSeal 0.0 2.52 6.83 8.96 11.84

Acc. (%) ↑ WavMark 58.4 58.2 57.4 56.6 54.4
AudioSeal 68.2 65.4 61.4 59.3 56.4

The message with the smallest Hamming distance is se-
lected. It’s worth noting that we can simulate N > N ′

models by adding extra messages. This may represent ver-
sions that have not generated any sample.

False Attribution Rate (FAR) is the fraction of wrong attri-
bution among the detected audios while the attribution ac-
curacy is the proportion of detections followed by a correct
attributions over all audios. AudioSeal has a higher FAR
but overall gives a better accuracy, which is what ultimately
matters. In summary, decoupling detection and attribution
achieves better detection rate and makes the global accu-
racy better, at the cost of occasional false attributions.

5.5. Efficiency Analysis

To highlight the efficiency of AudioSeal, we conduct a
performance analysis and compare it with WavMark. We
apply the watermark generator and detector of both mod-
els on a dataset of 500 audio segments ranging in length
from 1 to 10 seconds, using a single Nvidia Quadro GP100
GPU. The results are displayed in Fig. 6 and Tab. 5. In
terms of generation, AudioSeal is 14x faster than Wav-
Mark. For detection, AudioSeal outperforms WavMark
with two orders of magnitude faster performance on av-
erage, notably 485x faster in scenarios where there is no
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Figure 6. Mean runtime (↓ is better). AudioSeal is one order
of magnitude faster for watermark generation and two orders of
magnitude faster for watermark detection for the same audio in-
put. See Appendix C.1 for full comparison.
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watermark (Tab. 5). This remarkable speed increase is due
to our model’s unique localized watermark design, which
bypasses the need for watermark synchronization (recall
that WavMark relies on 20 pass forwards for a one-second
snippet). AudioSeal’s detector provides detection logits for
each input sample directly with only one pass to the detec-
tor, significantly enhancing the detection’s computational
efficiency. This makes our system highly suitable for real-
time and large-scale applications.

6. Adversarial Watermark Removal
We now examine more damaging deliberate attacks, where
attackers might either “forge” the watermark by adding
it to authentic samples (to overwhelm detection systems)
or “remove” it to avoid detection. Our findings suggest
that in order to maintain the effectiveness of watermark-
ing against such adversaries, the code for training water-
marking models and the awareness that published audios
are watermarked can be made public. However, the detec-
tor’s weights should be kept confidential.

We focus on watermark-removal attacks and consider three
types of attacks depending on the adversary’s knowledge:

• White-box: the adversary has access to the detector (e.g.
because of a leak), and performs a gradient-based adver-
sarial attack against it. The optimization objective is to
minimize the detector’s output.

• Semi black-box: the adversary does not have access to
any weights, but is able to re-train generator/detector
pairs with the same architectures on the same dataset.
They perform the same gradient-based attack as before,
but using the new detector as proxy for the original one.

• Black-box: the adversary does not have any knowledge
on the watermarking algorithm being used, but has ac-
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Figure 7. Watermark-removal attacks. PESQ is measured be-
tween attacked audios and genuine ones (PESQ < 4 strongly de-
grades the audio quality). The more knowledge the attacker has
over the watermarking algorithm, the better the attack is.

cess to an API that produces watermarked samples, and
to negative speech samples from any public dataset. They
first collect samples and train a classifier to discriminate
between watermarked and not-watermarked. They attack
this classifier as if it were the true detector.

For every scenario, we watermark 1k samples of 5 sec-
onds, then attack them. The gradient-based attack opti-
mizes an adversarial noise added to the audio, with 100
steps of Adam. During the optimization, we control the
norm of the noise to trade off attack strength and audio
quality. When training the classifier for the black-box at-
tack, we use 80k/80k watermarked/genuine samples of 8
seconds and make sure the classifier has 100% detection
accuracy on the validation set. More details in App. D.5.

Figure 7 contrasts various attacks at different intensities,
using Gaussian noise as a reference. The white-box attack
is by far the most effective one, increasing the detection er-
ror by around 80%, while maintaining high audio quality
(PESQ > 4). Other attacks are less effective, requiring sig-
nificant audio quality degradation to achieve 50% increase
the detection error, though they are still more effective than
random noise addition. In summary, the more is disclosed
about the watermarking algorithm, the more vulnerable it
is. The effectiveness of these attacks is limited as long as
the detector remains confidential.

7. Conclusion
In this paper, we introduced AudioSeal, a proactive method
for the detection, localization, and attribution of AI-
generated speech. AudioSeal revamps the design of audio
watermarking to be specific to localized detection rather
than data hiding. It is based on a generator/detector ar-
chitecture that can generate and extract watermarks at the
audio sample level. This removes the dependency on slow
brute force algorithms, traditionally used to encode and de-
code audio watermarks. The networks are jointly trained
through a novel loudness loss, differentiable augmentations
and masked sample level detection losses. As a result, Au-
dioSeal achieves state-of-the-art robustness to various au-
dio editing techniques, very high precision in localization,
and orders of magnitude faster runtime than methods re-
lying on synchronization. Through an empirical analysis
of possible adversarial attacks, we conclude that for water-
marking to still be an effective mitigation, the detector’s
weights have to be kept private – otherwise adversarial
attacks might be easily forged. A key advantage of Au-
dioSeal is its practical applicability. It stands as a ready-to-
deploy solution for watermarking in voice synthesis APIs.
This is pivotal for large-scale content provenance on so-
cial media and for detecting and eliminating incidents, en-
abling swift action on instances like the US voters’ deep-
fake case (Murphy et al., 2024) long before they spread.
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Impact Statement
This research aims to improve transparency and traceability
in AI-generated content, but watermarking in general can
have a set of potential misuses such as government surveil-
lance of dissidents or corporate identification of whistle
blowers. Additionally, the watermarking technology might
be misused to enforce copyright on user-generated content,
and its ability to detect AI-generated audio could increase
skepticism about digital communication authenticity, po-
tentially undermining trust in digital media and AI. How-
ever, despite these risks, ensuring the detectability of AI-
generated content is important, along with advocating for
robust security measures and legal frameworks to govern
the technology’s use.
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A. Extended related work
Zero-shot TTS and vocal style preservation. There has
been an emergence of models that imitate or preserve vocal
style using only a small amount of data. One key exam-
ple is zero-shot text-to-speech (TTS) models. These mod-
els create speech in vocal styles they haven’t been specifi-
cally trained on. For instance, models like VALL-E (Wang
et al., 2023), YourTTS (Casanova et al., 2022), Natural-
Speech2 (Shen et al., 2023) synthesize high-quality per-
sonalized speech with only a 3-second recording. On top,
zero-shot TTS models like Voicebox (Le et al., 2023),
A3T (Bai et al., 2022) and Audiobox (Hsu et al., 2023),
with their non-autoregressive inference, perform tasks such
as text-guided speech infilling, where the goal is to generate
masked speech given its surrounding audio and text tran-
script. It makes them a powerful tool for speech manipula-
tion. In the context of speech machine translation, Seam-
lessExpressive (Seamless Communication et al., 2023) is
a model that not only translates speech, but also retains
the speaker’s unique vocal style and emotional inflections,
thereby broadening the capabilities of such systems.

Audio generation and compression. Early models are
autoregressive like WaveNet (van den Oord et al., 2016),
with dilated convolutions and waveform reconstruction as
objective. Subsequent approaches explore different au-
dio losses, such as scale-invariant signal-to-noise ratio (SI-
SNR) (Luo & Mesgarani, 2019) or Mel spectrogram dis-
tance (Defossez et al., 2020). None of these objectives
are deemed ideal for audio quality, leading to the adop-
tion of adversarial models in HiFi-GAN (Kong et al., 2020)
or MelGAN (Kumar et al., 2019). Our training objectives
and architectures are inspired by more recent neural audio
compression models (Défossez et al., 2022; Kumar et al.,
2023; Zeghidour et al., 2022), that focus on high-quality
waveform generation and integrate a combination of these
diverse objectives in their training processes.

Synchronization and Detection speed. To accurately
extract watermarks, synchronization between the encoder
and decoder is crucial. However, this can be disrupted by
desynchronization attacks such as time and pitch scaling.
To address this issue, various techniques have been devel-
oped. One approach is block repetition, which repeats the
watermark signal along both the time and frequency do-
mains (Kirovski & Malvar, 2003; Kirovski & Attias, 2003).
Another method involves implanting synchronization bits
into the watermarked signal (Xiang et al., 2014). During
decoding, these synchronization bits serve to improve syn-
chronization and mitigate the effects of de-synchronization
attacks. Detection of those synchronization bits for wa-
termark detection usually involves exhaustive search using
brute force algorithms, which significantly slows down de-
coding time.

B. False Positive Rates - Theory and Practice
Theoretical FPR. When doing multi-bit watermarking,
previous works (Yu et al., 2021a; Kim et al., 2023; Fer-
nandez et al., 2023b; Chen et al., 2023) usually extract the
message m′ from the content x and compare it to the orig-
inal binary signature m ∈ {0, 1}k embedded in the speech
sample. The detection test relies on the number of match-
ing bits M(m,m′):

if M (m,m′) ≥ τ where τ ∈ {0, . . . , k}, (4)

then the audio is flagged. This provides theoretical guaran-
tees over the false positive rates.

Formally, the statistical hypotheses are H1: “The audio sig-
nal x is watermarked”, and the null hypothesis H0: “The
audio signal x is genuine”. Under H0 (i.e., for unmarked
audio), if the bits m′

1, . . . ,m
′
k are independent and iden-

tically distributed (i.i.d.) Bernoulli random variables with
parameter 0.5, then M(m,m′) follows a binomial distri-
bution with parameters (k, 0.5). The False Positive Rate
(FPR) is defined as the probability that M(m,m′) ex-
ceeds a given threshold τ . A closed-form expression can
be given using the regularized incomplete beta function
Ix(a; b) (linked to the CDF of the binomial distribution):

FPR(τ) = P (M ≥ τ |H0) = I1/2(τ, k − τ + 1). (5)

Empirical study. We empirically study the FPR of
WavMark-based detection on our validation dataset. We
use the same parameters as in the original paper, i.e. k =
32-bits are extracted from 1s speech samples. We first ex-
tract the soft bits (before thresholding) from 10k genuine
samples and plot the histogram of the scores in Fig. 8 (left).
We should observe a Gaussian distribution with mean 0.5,
while empirically the scores are centered around 0.38. This
makes the decision heavily biased towards bit 0 on genuine
samples. It is therefore impossible to theoretically set the
FPR since this would largely underestimate the actual one.
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Figure 8. (Left) Histogram of scores output by WavMark’s ex-
tractor on 10k genuine samples. (Right) Empirical and theoretical
FPR when the chosen hidden message is all 0.
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Table 5. The average runtime (ms) per sample of our proposed AudioSeal model against the state-of-the-art Wavmark(Chen et al., 2023)
method. Our experiments were conducted on a dataset of audio segments spanning 1 sec to 10 secs, using a single Nvidia Quadro GP100
GPU. The results, displayed in the table, demonstrate substantial speed enhancements for both Watermark Generation and Detection with
and without the presence of a watermark. Notably, for watermark detection, AudioSeal is 485× faster than Wavmark during the absence
of a watermark, more details in section 5.5.

Model Watermarked Detection ms (speedup) Generation ms (speedup)

Wavmark No 1710.70 ± 1314.02 –
AudioSeal (ours) No 3.25 ± 1.99 (485×) –

Wavmark Yes 106.21 ± 66.95 104.58 ± 65.66
AudioSeal (ours) Yes 3.30 ± 2.03 (35×) 7.41 ± 4.52 (14 ×)

For instance, Figure 8 (right) shows the theoretical and em-
pirical FPR for different values of τ when the chosen hid-
den message is full 0. Put differently, the argument that
says that hiding bits allows for theoretical guarantees over
the detection rates is not valid in practice.

C. Additional Experimental Results
C.1. Computational efficiency

We show in Figure 9 the mean runtime of the detection and
generation depending on the audio duration. Correspond-
ing numbers are given in Table 5.
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Figure 9. Mean runtime (↓ is better) of AudioSeal versus Wav-
Mark. AudioSeal is one order of magnitude faster for watermark
generation andtwo orders of magnitude faster for watermark de-
tection for the same audio input, signifying a considerable en-
hancement in real-time audio watermarking efficiency.

C.2. Another architecture

Our architecture relies on the SOTA compression method
EnCodec. However, to further validate our approach, we
conduct an ablation study using a different architecture
DPRNN (Luo et al., 2020). The results are presented in
Tab. 6. They show that the performance of AudioSeal is
consistent across different architectures, with similar per-
formances using the much slower and heavier architecture
from Luo et al. (2020). This indicates that model capacity
is not a limiting factor for AudioSeal.

Table 6. Results of AudioSeal with different architectures for the
generator and detector. The IoU is computed for 1s of watermark
in 10s audios (corresponding to the leftmost point in Fig. 5).

Method SISNR STOI PESQ Acc. IoU

EnCodec 26.00 0.997 4.470 1.00 0.802
DPRNN 26.7 0.996 4.421 1.00 0.796

C.3. Audio mixing

We hereby evaluate the scenario where two watermarked
signals (e.g., vocal and instrumental) are mixed together.
To explore this, we conducted experiments using a non-
vocal music dataset. In these experiments, we normalized
and summed the loudness of watermarked speech and mu-
sic segments. The results are detailed Tab. 7.

Table 7. Detection results for watermarked speech and music
mixed signals. ✓ and ✗ indicate the presence of the watermark.

Speech BG Music Acc. FPR / TPR AUC

✓ ✓ 0.9996 0.0003 / 0.9996 0.9999
✓ ✗ 0.9787 0.0310 / 0.9883 0.9961

C.4. Out of domain (OOD) evaluations

As previously outlined in Sec. 5.2, we tested AudioSeal
on the outputs of various voice cloning models and other
audio modalities. We employed the same set of augmen-
tations and observed very similar results, as demonstrated
in Tab. 8. Interestingly, even though we did not train our
model on AI-generated speech, we noticed an improvement
in performance compared to our test data. No sample was
misclassified among the 10k samples that comprised each
of our out-of-distribution (OOD) datasets. We also provide
the other perceptual metrics results on OOD data in Tab. 9.

We also evaluated AudioSeal on three additional datasets
containing real human speech: AudioSet (Gemmeke
et al., 2017), ASVspoof (Liu et al., 2023b), and
FakeAVCeleb (Khalid et al., 2021). Again, we observed
similar performance, as shown in Tab. 10.
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Table 8. Evaluation of AudioSeal Generalization across domains and languages. Namely, translations of speech samples from the
Expresso dataset (Nguyen et al., 2023) to four target languages: Mandarin Chinese (CMN), French (FR), Italian (IT), and Spanish
(SP), using the SeamlessExpressive model (Seamless Communication et al., 2023). Music from MusicGen (Copet et al., 2023) and
environmental sounds from AudioGen (Kreuk et al., 2023).

Aug Seamless (Cmn) Seamless (Spa) Seamless (Fra) Seamless(Ita) Seamless (Deu) Voicebox (Eng) AudioGen MusicGen

None 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Bandpass 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Highpass 0.71 0.68 0.70 0.70 0.70 0.64 0.52 0.52
Lowpass 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Boost 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Duck 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Echo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pink 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00
White 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fast (x1.25) 0.97 0.98 0.99 0.98 0.99 0.98 0.87 0.87
Smooth 0.96 0.99 0.99 0.99 0.99 0.99 0.98 0.98
Resample 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AAC 0.99 0.99 0.99 0.99 0.99 0.97 0.99 0.98
MP3 0.99 0.99 0.99 0.99 0.99 0.97 0.99 1.00
Encodec 0.97 0.98 0.99 0.99 0.98 0.96 0.95 0.95

Average 0.97 0.97 0.98 0.98 0.98 0.97 0.95 0.95

Table 9. Audio quality and intelligibility evaluations on AI gener-
ated speech data from various models and languages.

Model Dataset SISNR PESQ STOI VISQOL

A
ud

io
Se

al Seam. (Deu) 23.35 4.244 0.999 4.688
Seam. (Fr) 24.02 4.199 0.998 4.669
Voicebox 25.23 4.449 0.998 4.800

W
av

M
ar

k Seam. (Deu) 38.93 3.982 0.999 4.515
Seam. (Fr) 39.06 3.959 0.999 4.506
Voicebox 39.63 4.211 0.998 4.695

Table 10. Evaluation of the detection performances on different
datasets. AudioSet is an environmental sounds dataset while
ASVspoof (Liu et al., 2023b) and FakeAVCeleb (Khalid et al.,
2021) are deep-fake detection datasets.

Dataset Acc. TPR/FPR AUC

Audioset 0.9992 0.9996/0.0011 1.0
ASVspoof 1.0 1.0/0.0 1.0
FakeAVCeleb 1.0 1.0/0.0 1.0

C.5. Robustness results

We plot the detection accuracy against the strength of mul-
tiple augmentations in Fig. 10. AudioSeal outperforms
WavMark for most augmentations at the same strength.
However, for highpass filters above our training range
(500Hz) WavMark has a much better detection accuracy.
Our system’s TF-loudness loss embeds the watermark
where human speech carries the most energy, typically
lower frequencies, due to auditory masking. This contrasts
with WavMark, which places the watermark in higher fre-

quency bands. Embedding the watermark in lower frequen-
cies is advantageous. For example, speech remains audible
with a lowpass filter at 1500 Hz, but not with a highpass
filter at the same frequency. This difference is measurable
with PESQ in relation to the original audio, making it more
beneficial to be robust against a lowpass filter at a 1500 Hz
cut-off than a highpass filter at the same cut-off:

Filter Type PESQ AudioSeal WavMark

Highpass 1500Hz 1.85 ✗ 0.7 1.0
Lowpass 1500Hz 2.93 ✓ 1.0 0.7

D. Experimental details
D.1. Loudness

Our loudness function is based on a simplification of the
implementation in the torchaudio (Yang et al., 2021) li-
brary. It is computed through a multi-step process. Initially,
the audio signal undergoes K-weighting, which is a filter-
ing process that emphasizes certain frequencies to mimic
the human ear’s response. This is achieved by applying a
treble filter and a highpass filter. Following this, the energy
of the audio signal is calculated for each block of the signal.
This is done by squaring the signal and averaging over each
block. The energy is then weighted according to the num-
ber of channels in the audio signal, with different weights
applied to different channels to account for their varying
contributions to perceived loudness. Finally, the loudness
is computed by taking the logarithm of the weighted sum
of energies and adding a constant offset.
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Figure 10. Accuracy of the detector on augmented samples with respect to the strength of the augmentation.

D.2. Robustness Augmentations

Here are the details of the audio editing augmentations used
at train time (T), and evaluation time (E):

• Bandpass Filter: Combines highpass and lowpass filter-
ing to allow a specific frequency band to pass through.
(T) fixed between 300Hz and 8000Hz; (E) fixed between
500Hz and 5000Hz.

• Highpass Filter: Uses a highpass filter on the input au-
dio to cut frequencies below a certain threshold. (T) fixed
at 500Hz; (E) fixed at 1500Hz.

• Lowpass Filter: Applies a lowpass filter to the input au-
dio, cutting frequencies above a cutoff frequency. (T)
fixed at 5000Hz; (E) fixed at 500Hz.

• Speed: Changes the speed of the audio by a factor close
to 1. (T) random between 0.9 and 1.1; (E) fixed at 1.25.

• Resample: Upsamples to intermediate sample rate and
then downsamples the audio back to its original rate with-
out changing its shape. (T) and (E) 32kHz.

• Boost Audio: Amplifies the audio by multiplying by a
factor. (T) factor fixed at 1.2; (E) fixed at 10.

• Duck Audio: Reduces the volume of the audio by a mul-
tiplying factor. (T) factor fixed at 0.8; (E) fixed at 0.1.

• Echo: Applies an echo effect to the audio, adding a delay
and less loud copy of the original. (T) random delay be-
tween 0.1 and 0.5 seconds, random volume between 0.1
and 0.5; (E) fixed delay of 0.5 seconds, fixed volume of
0.5.

• Pink Noise: Adds pink noise for a background noise ef-
fect. (T) standard deviation fixed at 0.01; (E) fixed at 0.1.

• White Noise: Adds gaussian noise to the waveform. (T)
standard deviation fixed at 0.001; (E) fixed at 0.05.

• Smooth: Smooths the audio signal using a moving aver-
age filter with a variable window size. (T) window size
random between 2 and 10; (E) fixed at 40.

• AAC: Encodes the audio in AAC format. (T) bitrate of
128kbps; (E) bitrate of 64kbps.

• MP3: Encodes the audio in MP3 format. (T) bitrate of
128kbps; (E) bitrate of 32kbps.

• EnCodec: Resamples at 24kHz, encodes the audio with
EnCodec with nq = 16 (16 streams of tokens), and re-
samples it back to 16kHz.

Implementation is done with the julius python library.

D.3. Networks architectures (Fig. 4)

The watermark generator is composed of an encoder
and a decoder, both incorporating elements from En-
Codec (Défossez et al., 2022). The encoder applies a 1D
convolution with 32 channels and a kernel size of 7, fol-
lowed by four convolutional blocks. Each of these blocks
includes a residual unit and down-sampling layer, which
uses convolution with stride S and kernel size K = 2S.
The residual unit has two kernel-3 convolutions with a skip-
connection, doubling channels during down-sampling. The
encoder concludes with a two-layer LSTM and a final
1D convolution with a kernel size of 7 and 128 channels.
Strides S values are (2, 4, 5, 8) and the nonlinear activation
in residual units is the Exponential Linear Unit (ELU). The
decoder mirrors the encoder but uses transposed convolu-
tions instead, with strides in reverse order.
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The detector comprises an encoder, a transposed convolu-
tion and a linear layer. The encoder shares the generator’s
architecture (but with different weights). The transposed
convolution has h output channels and upsamples the acti-
vation map to the original audio resolution (resulting in an
activation map of shape (t, h)). The linear layer reduces
the h dimensions to two, followed by a softmax function
that gives sample-wise probability scores.

D.4. MUSHRA protocole detail

The MUSHRA protocol is a crowdsourced test in which
participants rate the quality of various samples on a scale
of 0 to 100. The ground truth is provided for reference. We
utilized 100 speech samples, each lasting 10 seconds. Each
sample was evaluated by at least 20 participants. As part of
the study, we included a low anchor, which is a very lossy
compression at 1.5kbps, encoded using EnCodec. Partici-
pants who failed to assign the lowest score to the low an-
chor for at least 80% of their assignments were excluded
from the study. For comparison, the ground truth samples
received an average score of 80.49, while the low anchor’s
average score was 53.21.

D.5. Attacks on the watermark

Adversarial attack against the detector. Given a sam-
ple x and a detector D, we want to find x′ ∼ x such
that D(x′) = 1 − D(x). To that end, we use a gradient-
based attack. It starts by initializing a distortion δadv with
random gaussian noise. The algorithm iteratively updates
the distortion for a number of steps n. For each step,
the distortion is added to the original audio via x = x +
α.tanh(δadv), passed through the model to get predictions.
A cross-entropy loss is computed with label either 0 (for
removal) or 1 (for forging), and back-propagated through
the detector to update the distortion, using the Adam opti-
mizer. At the end of the process, the adversarial audio is
x + +α.tanh(δadv). In our attack, we use a scaling fac-
tor α = 10−3, a number of steps n = 100, and a learning
rate of 10−1. The tanh function is used to ensure that the
distortion remains small, and gives an upper bound on the
SNR of the adversarial audio.

Training of the malicious detector. Here, we are inter-
ested in training a classifier that can distinguish between
watermarked and non-watermarked samples, when access
to many samples of both types is available. To train the
classifier, we use a dataset made of more than 80k samples
of 8 seconds speech from Voicebox (Le et al., 2023) water-
marked using our proposed method and a similar amount
of genuine (un-watermarked) speech samples. The classi-
fier shares the same architecture as AudioSeal’s detector.
The classifier is trained for 200k updates with batches of
64 one-second samples. It achieves perfect classification

of the samples. This is coherent with the findings of Voice-
box (Le et al., 2023).
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