
HAL Id: hal-04610144
https://hal.science/hal-04610144v1

Submitted on 13 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Texture modeling by gaussian fields with prescribed
local orientation

Kévin Polisano

To cite this version:
Kévin Polisano. Texture modeling by gaussian fields with prescribed local orientation. ICIP 2014 -
21st IEEE International Conference on Image Processing, Oct 2014, Paris ( France), France. �hal-
04610144�

https://hal.science/hal-04610144v1
https://hal.archives-ouvertes.fr


TEXTURE MODELING  
BY GAUSSIAN FIELDS WITH  
PRESCRIBED LOCAL ORIENTATION 

Kévin Polisano / kevin.polisano@imag.fr

IEEE ICIP 2014 : International Conference on Image Processing. Lecture session CNIT Paris, October 27-30, 2014

joint work with

Marianne Clausel 
Valérie Perrier 
Laurent Condat

mailto:kevin.polisano@imag.fr


Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation 2

Outline
Introduction

Our new stochastic model
Definition: Locally Anisotropic Fractional Brownian Field
Notion of tangent field

Synthesis methods

Numerical experiments

Conclusion and future work

Motivation
General probabilistic framework

Tangent field simulation by a turning bands method
LAFBF simulation via tangent field formulation



Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation 3

How to synthesize natural random textures ?

Mathematical 
model ?

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation



Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation 3

How to synthesize natural random textures ?

Mathematical 
model ?

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation



Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation 3

How to synthesize natural random textures ?

Mathematical 
model ?

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

Randomness  
Self-similarity



Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation 3

How to synthesize natural random textures ?

Mathematical 
model ?

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

Randomness  
Self-similarity



Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation 3

How to synthesize natural random textures ?

Mathematical 
model ?

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

Randomness  
Self-similarity



Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation 3

How to synthesize natural random textures ?

Mathematical 
model ?

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

Roughness  
and regularity

Randomness  
Self-similarity



Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation 3

How to synthesize natural random textures ?

Mathematical 
model ?

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

Roughness  
and regularity

Randomness  
Self-similarity



Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation 3

How to synthesize natural random textures ?

Mathematical 
model ?

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

Roughness  
and regularity

Randomness  
Self-similarity



Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation 3

How to synthesize natural random textures ?

Mathematical 
model ?

Orientation 
and anisotropy

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

Roughness  
and regularity

Randomness  
Self-similarity



Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation 4

The basic component :  
Fractional Brownian Field (FBF)

c

self-similar : BH(�·) L
= �HBH(·)

stationary increments : BH
(·+ z)� BH

(z)
L
= BH

(·)� BH
(0)

BH FBF with Hurst index 0 < H < 1

isotropic : BH � R✓
L
= BH

Cov(BH
(x),BH

(y)) = cH(kxk2H + kyk2H � kx� yk2H)

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

[Mandelbrot,Van Ness,1968]

The covariance is given by
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The basic component :  
Fractional Brownian Field (FBF)

Harmonizable representation [Samorodnitsky,Taqqu,1997]

BH(x) =

Z

R2

e ix·⇠ � 1

k⇠kH+1
dcW (⇠)
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Locally Anisotropic Fractional  
Brownian Field (LAFBF)

Definition: Our new Gaussian model LAFBF is a local version 
of the elementary field
BH
↵0,↵(x) =

Z

R2

(e ix·⇠ � 1)
1[�↵,↵](arg ⇠ � ↵0(x))

k⇠kH+1
dcW (⇠)

[Polisano et al.,2014]
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~V
x0

x

0

↵

Texture

orientation

f 1/2(x
0

, ⇠) =
c↵0,↵(x0

, arg ⇠)

k⇠kH+1

The orientation may 
varies spatially.     is 
now a differentiable 
function on 

↵0

R2

BH
↵0,↵(x) =

Z

R2

(e ix·⇠ � 1)
1[�↵,↵](arg ⇠ � ↵0(x))

k⇠kH+1
dcW (⇠)

[Polisano et al.,2014]
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Tangent field. 

Tangent field 

For a random field X locally asymptotically self-similar of order H,

X (x0 + ⇢h)� X (x0)

⇢H
L���!

⇢!0
Y
x0

BH
↵0,↵(x) =

Z

R2

(e ix·⇠ � 1)
1[�↵,↵](arg ⇠ � ↵0(x))

k⇠kH+1
dcW (⇠)

[Benassi,1997]Y
x0 : tangent field of X at point x0 2 R2

Taylor’s expansion

Deterministic case

Tangent field

Stochastic case

[Falconer,2002]
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Tangent field 

The LAFBF BH
↵0,↵ admits for tangent field Y

x0 :Theorem. 
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Simulation of tangent fields

Continuous formulation. Variogram of Y
x0 :

vY
x0
(x) =

1

2

Z

R2

|e ix·⇠ � 1|2f (x0, ⇠)d⇠

=
1

2
�(H)

Z ⇡/2

�⇡/2
c↵0,↵(x0, ✓) |x · u(✓)|2Hd✓

=

Z ⇡/2

�⇡/2
ṽ✓(x · u(✓))d✓

[Bierme,Richard,Moisan,2012]
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Simulation of tangent fields

Discrete formulation.

(✓i )16i6n are n bands orientations and �i = ✓i+1 � ✓i

The turning band field is defined as

Y
x0

[n](x) = �(H)
1
2

nX

i=1

p
�ic↵0,↵(x0, ✓i )B

H
i (x · u(✓i ))

BH
i are n independent FBM of order H

Good approximation provided max

i
�i 6 "

[Bierme,Richard,Moisan,2012]
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(✓i )16i6n are n bands orientations and �i = ✓i+1 � ✓i

The turning band field is defined as
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[n](x) = �(H)
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i=1

p
�ic↵0,↵(x0, ✓i )B

H
i (x · u(✓i ))

BH
i are n independent FBM of order H

Good approximation provided max

i
�i 6 "

not equispaced

[Bierme,Richard,Moisan,2012]
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Simulation of tangent fields

Simulation along particular bands.

Discrete grid r�1Z2 \ [0, 1]2 with r = 2k � 1, k 2 N?

Choose (✓i ) such that tan ✓i =
pi
qi

and max

i
�i 6 ✏

Then BH
i (x · u(✓i )) becomes

⇢
BH
i

✓
k1
r
cos ✓i +

k2
r
sin ✓i

◆
; 0 6 k1, k2 6 r

�
L
=

✓
cos ✓i
rqi

◆H

{BH
i (k1qi + k2pi ); 0 6 k1, k2 6 r}

[Bierme,Richard,Moisan,2012]
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Simulation of LAFBF  
using tangent fields

Algorithm. For each pixel x0 = (k1, k2) 2 J0, rK2

BH
↵0,↵((k1, k2))

�(H)

1
2

nX

i=1

p
�ic↵0,↵((k1, k2), ✓i )

✓
cos ✓i
rqi

◆H

BH
i (k1qi + k2pi )

=

[Polisano et al.,2014]
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V⃗x0

c̃α0,α(x0, arg ξ)

x0

α

Texture
orientation

f 1/2(x0, ξ) =
cα0,α(x0, arg ξ)

∥ξ∥H+1

(a) (b) (c)

r = 255 H = 0.2

↵ = 10�1 ✏ = 10�2

Parameters

Numerical experiments
~V 1
(x ,y) = (cos(�⇡/2 + y), sin(�⇡/2))
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Numerical experiments
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Extensions of our model include 
Hurst index may vary spatially.

Future work
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Thank you for your attention.
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Dynamic programming. The choice of the bands orientation (✓i)16i6n

is governed by the computational cost of the BH
i ’s within dynamic programming.

VN =

⇢
(p, q) 2 Z2/�N 6 p 6 N, 1 6 q 6 N, p ^ q = 1,�⇡

2
< arctan

✓
p

q

◆
<

⇡

2

�
Let the error ✏ fixed. Taking N = d 1

tan ✏
e consider the following set:

The aim is to find n pairs in the setVN which minimize the following global cost:

C(⇥) =
sX

k=1

C(r(|pik |+ qik))

C(`) O(n log n)BH
iwhere is the cost of one FBM in , under the constraint max

i
(✓i+1 � ✓i) 6 ✏


