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Mapping low-resolution edges to high-resolution
paths: the case of traffic measurements in cities

Bastien Legay and Matthieu Latapy

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Abstract. We consider the following problem : we have a high-resolution
street network of a given city, and low-resolution measurements of traffic
within this city. We want to associate to each measurement the set of
streets corresponding to the observed traffic. To do so, we take benefit
of specific properties of these data to match measured links to links in
the street network. We propose several success criteria for the obtained
matching. They show that the matching algorithm generally performs
very well, and they give complementary ways to detect data discrepancies
that makes any matching highly dubious.

Keywords: geographical data, spatial networks, urban networks, street networks,
OpenStreetMap, traffic, measurements

1 Introduction

Matching items based on their approximate coordinates in some space is a
classical but challenging task. It plays a key role in geographical studies, where
items often have similar but different coordinates in various databases. The task
becomes even more challenging when the databases have different resolutions.

We consider here such a situation: a high-resolution map of a city is given,
as well as low-resolution measurements performed on some of its main streets.
Theses measurements are partial: only a minority of the city streets are included.
More importantly, these measurements have a low resolution: each measured
street corresponds to several edges within the map.

Then, the question we address is the following: how to map the low-resolution
measurement data onto the high-resolution edges of the city map? This is a
crucial preliminary step for any work dealing with real-world traffic measurements
in cities. Because measured streets indeed correspond to higher-resolution edges
within the city map, a natural approach consists in modeling the city map as
a high-resolution urban network of streets and crossings; then matching the
extremities of measured streets to nodes of the urban network; and matching each
measured street to a shortest path between these two nodes. Indeed, considering
the low-resolution measured streets and the urban network have strong topological
similarities and the quite obvious fact that streets are mostly straights lines
between crossings (or crossings linked to each others by straight lines depending
on one’s point of view), we assess this method provides a useful and relevant tool
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for urban network analysis using real traffic data which will be used for future
works on traffic measures network analysis.

2 Available data

OpenStreetMap [1] is a collaborative project that provides free and open map
data at world scale. It relies on open databases provided by various institutions
as well as data entered by its users/contributors. In France, most data come from
land registry or from IGN1, and they are regularly updated by OSM contributors.
This ensures a high reliability for OSM data on France. The OSMnx Python
library built on top of OSM allows to easily use those data and perform network
analysis on them [2].

In an effort to develop open data and related applications, more and more
administrations and cities in the world publicly provide their data on dedicated
platforms. In particular, many cities provide traffic measurements composed
of the coordinates of some sensors deployed in the city and the traffic they
observe over time. For instance, Paris 2, Berlin 3, Lyon 4, Montreal 5 or Geneva
6 provide such data. In general, these measures are carefully scrutinized by city
hall traffic control officials who provide the data.

We take the case of Paris as a paradigmatic example of a large western
city for our work. In this case, OSM street network data are very complete and
accurate, and the city publicly provides reliable traffic measurements.

We obtain the Paris street network using OSMnx as follows.We do not
use the OSMnx simplification feature as it deeply modifies the graph. We do
use the OSMnx consolidation feature with a tolerance distance of 4 meters - the
average width of a road. It is needed to merge some similar OSM nodes which
actually are duplicates, but it preserves specific structures such as roundabouts
at Étoile in Paris. A more precise description both features can be found OSMnx
documentation. We also had to buffer the map by 350 meters in order to include
roads slightly outside the city where measurements are provided, typically the
ring road entrances and exits. With these parameters, OSMnx provides a
directed network of 40,198 nodes and 58,727 links although it is not
connected.

For Paris traffic measurements, we use the data provided by the city of
Paris open-data platform [10]. It relies on a set of more than 3000 sensors, each
giving traffic measurements on a sequence of segments that represents a street.

1 IGN is a French public institution producing and maintaining geographical
information for France, see https://ign.fr/institut/identity-card

2 https://opendata.paris.fr/explore/dataset/referentiel-comptages-routiers/
information/

3 https://api.viz.berlin.de/daten/verkehrsdetektion
4 https://www.data.gouv.fr/fr/datasets/comptage-criter-de-la-metropole-de-lyon/
5 https://donnees.montreal.ca/dataset/geobase
6 https://ge.ch/sitg/sitg catalog/sitg donnees?keyword=&geodataid=1530&topic=
tous&service=tous&datatype=tous&distribution=tous&sort=auto

https://ign.fr/institut/identity-card
https://opendata.paris.fr/explore/dataset/referentiel-comptages-routiers/information/
https://opendata.paris.fr/explore/dataset/referentiel-comptages-routiers/information/
https://api.viz.berlin.de/daten/verkehrsdetektion
https://www.data.gouv.fr/fr/datasets/comptage-criter-de-la-metropole-de-lyon/
https://donnees.montreal.ca/dataset/geobase
https://ge.ch/sitg/sitg_catalog/sitg_donnees?keyword=&geodataid=1530&topic=tous&service=tous&datatype=tous&distribution=tous&sort=auto
https://ge.ch/sitg/sitg_catalog/sitg_donnees?keyword=&geodataid=1530&topic=tous&service=tous&datatype=tous&distribution=tous&sort=auto
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Here we consider each segment independently (by cutting sequences into simple
segments when required) and associate each sensor to each segment representing
its street. We obtain the measurement graph in which edges represent these
segments and nodes represent segment extremities. This graph is undirected
and not connected, and it has 5594 edges and 5271 nodes.

3 Problem and framework

We display in Figure 1 a drawing of the Paris street network obtained from OSM,
together with the traffic measurement network. The two networks are defined
over the same geographical area but the nodes representing a same entity (e.g.,
a street extremity) in both networks generally have different coordinates. The
goal of this paper is to provide methods to match the links of the
measurement network to links in the street network.

Fig. 1: Overlayed drawings of OSM Paris street network (in black) and traffic sensor
network (in blue).

We say that the measurement network is a low-resolution network because
its links generally correspond to several links in the street network. Conversely,
we say that the street network is a high-resolution network. Figure 2 shows
that the measurement links are indeed longer than the links of the street network,
in general.

This leads to the following problem statement.
Input. We consider a high-resolution directed street network H = (VH , EH)
and a low-resolution measurement network L = (VL, EL) with |VH | > |VL|,
|EH | > |EL|. In addition, each node v in VH or VL has coordinates p(v) in the
Euclidean plane, and each link e in EH or EL has a length l(e) in meters.
Output. For each link e in EL we give a subset m(e) of EH of links that we
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Fig. 2: Cumulative distribution of link length (in meters) for both networks in Paris

consider to be the streets in H that correspond to the measurement of e. We
also provide a multi-criteria assessment of each proposed matching.

This problem is very general, and may be very challenging. We however
observe in Figure 1 that the two networks are strongly related, and that for each
measurement link there is a path in the street network that follows it closely. We
therefore make the following assumptions, that we will use to propose a matching
algorithm and assess its results.

Our first assumption is that the correct/best matching of a measurement
link (u, v) in L is a path in H from a node close to u to a node close to v, or
conversely. Indeed, each measurement link in L a priori consists of a coarse-grain
street that may be divided into a sequence of smaller streets in H. Therefore, for
a given integer k, we will consider in VH the k nearest nodes of each extremity
of the measurement link, and match this link with paths in H between these
nodes.

Going further, the measurements links correspond to straight pieces of streets
and the matching paths should therefore have a length (in meters) similar to the
one of the measurement link. This is our second assumption, therefore we will
only consider shortest paths, as their length is minimal, like the length of the
straight line corresponding to the measurement link.

For the same reason, our third assumption states that the considered
shortest paths should be close to straight lines. Therefore, we will avoid taking
paths with edges that form important angles, either between them or with the
measurement link.

To capture this, we introduce the following notations. Let us consider a
candidate path made of nodes (u0, u1, u2, ..., ul) inH for matching a measurement
link (x, y) in L. We denote by θr the angle between links (ur−1, ur) and (ur, ur+1)
viewed as segments, and we call it the r-th running angle. We denote by σs the
angle between the segment corresponding to the measurement link and the one
corresponding to the link (us, us+1), and we call it the s-th straight-line angle.
Notice that running angles and straight-line angles are related by: ∀i = 1..l− 2,
σi+1 = σi + θi+1, which implies that ∀i = 1..l − 1,

∑i
k=1 θk = σi − σ0.
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Last but not least, our forth assumption is that the matching path remains
close to the considered measurement links all along/throughout the path, therefore
we will try to minimize the area between the measurement link and the chosen
path.

4 Matching algorithm

We consider two input networks H = (VH , EH) and L = (VL, EL), as well as an
integer k. For any node x in VL, we denote by Nk(x) the set of the k nearest
neighbors (with respect to node coordinates) of x in VH . Then, for each link
(u, v) in EL we compute the set P (u, v) of all shortest paths in H from any
node in Nk(u) to any node in Nk(v). We also compute P (v, u) the similar set of
paths in the other direction. Finally, output the set m(u, v) of links in EH that
correspond to the path in P (u, v) ∪ P (v, u) that minimizes a given criterion,
excluding path with length equal to 0 (ie we took the same node in Nk(u) and
Nk(v)).

We consider the following library of criteria, in which each link is viewed as a
segment:

length criterion (LC): the length difference between the considered measurement
link and the considered path (where we added to the path length the distance
between the path endpoints and the measurement link endpoints)

running angle criterion (RC): the average running angle with the measurement
link over the path;

straight-line criterion (SC): the average straight-line angle between the links
of the path and the measurement link;

area criterion (AC): the area between the path and the measurement link.

We run the algorithm using one of these criteria but, for each obtained
matching of a measurement link, we also output its relevance with respect to all
other criteria. In this way, we give precious indications on the quality of proposed
matchings, as we illustrate in next section.

5 Results and discussion

We present here the results obtained by running the algorithm above on the Paris
street and measurement networks with k = 4, which is representative of a wide
variety of cases. As we compute for each measurement link 2 · k2 shortest paths,
we obtain here 32 candidate paths for matching each of them. Each criterion
provides a score for any shortest path, enabling us to analyze and compare them.
We noticed 3 edges from the measurement networks were not successfully matched
whichever criterion was used : two are on Rue de Rivoli, and the remaining one is
located in Bagnolet interchange. Due to Rue de Rivoli now being unavailable for
most vehicules but buses and bikes, it has recently been partly removed from the
Paris street graph obtained through OSMnx. Hence, connectivity issues explain
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the matching failure here as some one-way streets remain around there. As for
Bagnolet it clearly is a side effect : increasing the buffering even more would
help here as it is in fact impossible to find a path from the points selected
during the matching, but it might also possibly create similar issues elsewhere.
Overall, it mostly reminds us we need to be aware of structural modifications of
street networks over time. These unmatched edges thus explain why we will now
consider 5591 (successfully) matched low-res measurement edges out of 5594.

5.1 Score evaluation
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Fig. 3: Normalized scores for each criterion with all 5591 matched edges ranked in
ascending score order (logarithmic scale of the y-axis is used on the right)

For all cases, we observe in Figure 3 that scores are overall very low (that is
logical as we wanted to minimize scores) for most of the paths before a salient
increase at the very end. The meaning behind is that the matching algorithm is
relevant in picking paths that are overall good candidates for our criteria, and
only struggle for a small part of the edges.
It is remarkable that both angle criteria have seemingly quite similar behaviour,
while the two others do even more : we might wonder if they provide complementary
information, but also if LC and AC are just too strong at discriminating as about
99% of the edges have an almost null score while RC and SC work slightly better
at ranking edges.
While no rank correlations were observed for any criterion, the scores are very
low similar overall for most of the paths selected by the matching algorithm,
making it difficult to unravel any real distinction between them but also to have
one standing out. Nonetheless, we can still notice from Figure 3, especially on
the right plot, that three different regimes can be observed : the lowest scores
on the very left, the highest scores on the very right and then all the others
inbetween which are in fact most of the paths.
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5.2 Correlation between criteria scores

Fig. 4: Correlation scores (normalized to [0,1] for both axis each time) of paths matched
using a criterion (on the x-axis) with all other criteria one by one (on the y-axis) : first
line is LC, then RC, SC, AC. Red dots correspond to correlation with RC, green with
SC, blue with AC, orange with LC. Scores are normalized : both axis are [0,1]. Hence
the first red plot on top left corner is the correlation between LC and RC scores for
edges matched by minimizing LC. The green one just on its right is the correlation
between LC and SC scores from matching minimizing LC, and so forth. To understand
how to analyze this figure, from the correlation between LC and RC (top-left corner)
we focus on the few reds dots around (1,0). These dots are edges with good RC score,
but extremely bad LC score (though LC was the focus of the matching here) : this
path has very little angular variation yet it is way too short or long.

On Figure 4, we provide the correlations obtained between the scores of the
set of edges matched for a given criterion and the three other scores for that
same set. We can notice that LC and AC appear to have a correlated behaviour
whatever the criteria used for matching. Applying matching with SC as criterion
also seem to efficiently choose edges with fairly good LC and AC scores while
on the opposite using AC or LC as criterion for the algorithm picks a set of
edges with a wide range of scores - and not necessarily good ones - for RC and
SC. We also notice that minimizing RC provides similar yet better results than
SC for most criteria, as SC is seemingly more difficult to minimize than others
: this is the criterion with the most low-scored edges. On Figure 5, we see the
output of the matching minimizing RC, where all the lowest-scoring edges are
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highlighted for each criteria. Unsurprisingly, lowest-scoring edges are the same
for LC and AC. We remark here that all criteria but RC point ring-road edges
as part of the worst scores, whereas RC mostly has its worst scores on various
places inside the city. It might lead to consider applying AC inside the city and
RC on the ring road could be an relevant strategy. We can also observe on Figure

Fig. 5: Output of the matching for RC, where the lowest-rated edges for each criteria
are highlighted (50 for LC/AC, 300 for RC/SC due to scores on Figure 3).

6 the location of the lowest-scoring edges for RC but considering all four different
matching outputs. First of all, we can simply note that no major mistakes seem
to be observed if we compare them to Figure 1. On the one hand, we observe
from Figure 6 that LC and AC matching outputs are quite similar yet they
both have a tendency to include small links or dead-ends - especially compared
to to the two others - as if it was buffered around major roads all around the
network, even though AC does it less than LC. On the other hand, RC and SC
outputs are also similar and pick more edges than required for the matching
but on different places, for example on the outer edge of the ring road where
some unrequired loop structures can be seen. Focusing now on the location of
lowest-scoring edges for each output, there are a lot of similarities and more
specifically we can find some of the largest road infrastructures such as Place
de l’Etoile or Porte Maillot, meanwhile the Bercy interchange has an extremely
complex topology yet it does not seem to be such an issue. We might need to
check closer to understand what is really at stake here.

5.3 Visual inspection of limit cases

To provide a deeper understanding of the matching on Figure 6 for each criteria,
we study more precisely its behaviour on three cases on Figures 8 7 9 : a
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Fig. 6: Output of the matching for all criteria, where the 300 lowest-scoring edges for
RC are specifically highlighted in red. Top-left is for LC, top-right for RC, bottom-left
for SC and bottom-right for AC.

significant roundabout at Etoile and two massive interchanges at Bercy and
Porte de Maillot. The best output for Etoile clearly is AC as we can observe
small mistakes on all the others. This is way more confusing for the two other
cases, although we might want to exclude LC as a relevant criterion for such
areas considering missing yet expected edges for Bercy, or RC as relevant due
to unexpected edges at Etoile and Maillot. However, it is not surprising that
the criteria that mostly value straight-lines fail in complex structures such as
interchanges. We could even say that the opposite would have been worrying : in
fact we are able to detect areas where in any case here, human intervention would
be mandatory to ensure no significant mistake is done. It also seem relevant to
consider in such infrastructures, our main hypothesis about the difference in
resolution between the two networks is no longer valid or at least weaker.

Fig. 7: Etoile : OSM and measurements networks - Outputs for LC/RC/SC/AC
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Fig. 8: Bercy : OSM and measurements networks - Outputs for LC/RC/SC/AC

Fig. 9: Maillot : OSM and measurements networks - Outputs for LC/RC/SC/AC

6 Related work

Several works explore the limits of OSM [3] [4], including ways to overcome
missing data [5]. Based on OSM, OSMnx enables a wide range of studies on
urban networks dynamics and properties [6] [7] [8]. Among those, Paris street
network and congestions dynamics were previously studied by Taillanter [9] with
a network analysis restricted to the measurement network of Paris [10]. Although
these results are of interest, it may suffer from sensors geographical distribution
heterogeneity and some major traffic road may have been cut, with unknown
impact on obtained results. We also note that in spatial network theory and
geomatics, Lagesse [11] defined the notion of ”way” to overcome edges in network
theory as they induce side-effects due to the arbitrary selection of edges and
nodes inside a specific area while ignoring everything around. Ways are designed
in order to avoid significant angular variations along a path. The problem we
consider in this paper is close to map matching: the problem of matching a
curve in an embedded graph. Wenk et al. studied graph modeling of transport
data and geometrical algorithms for road networks and it can be encapsulated as
map-matching [12] [13], where their goal was to match traffic traces such as GPS
trajectories to edges on a graph considering all types of errors that can be found
in real datasets. This might include sampling errors, measurement errors, sensors
malfunction or more simply lack of precision which all have a strong influence on
map-matching [14]. This recent survey on map-matching methods [15] completes
what had been done by Houssou in his thesis [16], especially the part about map
matching under network topological constraints. What stands out overall is that
map-matching is an easy but tedious task for a human operator that needs to
be at least partially automated. This is also a classic task in geography and
geomatics, where specialists often use GIS (Geographic Information System),
such as QGIS 7, as they allow to tackle our problem by spatially joining two
networks [17] although it works a little too much like a black box for beginners

7 https://www.qgis.org/

https://www.qgis.org/
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and experienced users alike. These methods were further adapted and improved
for the specific case of Volunteered Geographic Information such as OSM but
only using geometric features [18] or buffering around a link to find matching
elements [19]. Nonetheless, we claim matching nodes to edges is not relevant here
(although sensors location is provided) as it would necessarily lead to fallacious
results, hence edges matching is by far the most appropriate technique for our
problem. What makes our work different from classical map-matching, graph
matching or GIS methods is that we intend to map low-resolution edges on
high-resolution edges : whereas trajectories might be both long and serpentine,
measurements are done on smaller - and necessarily way more straight - edges
to provide accurate results, and we take advantage of this topological specificity
linking both graphs by using shortest paths in our algorithm.

7 Conclusion

We designed a method taking advantage of the specific features of urban networks
to accurately solve our problem. We observed in most cases and for most criteria,
this task can be automated for a significant part of the graph even if the very
end inevitably requires human verification. A significant asset of our method is
that anyone can add its own criteria to be tested and compared to the previous
ones in order to improve or adapt the algorithm to some specific situation. We
also gained insight on all of our assumptions. Nonetheless, it seems quite obvious
some external factors might have a strong influence on the results such as map
data resolution and precision, the non-planarity of street networks (that may
add some confusion to the matching when picking nearest nodes, especially
for bridges, tunnels, or interchanges), and the fact that both datasets might
differ over time. A major perspective would be to focus on the unambiguity
of the matching as it would be valuable to avoid any high-resolution edge to
be matched more than once. Otherwise, how can we find which measurement
sensor was the most relevant one among several possibilities for any edge ?
Indeed, network topology implies that human verification is utterly mandatory
to check how the matching is done, making it sometimes difficult to simply
design a relevant criteria working perfectly anywhere in the graph. However,
most of these problems can be solved by hand and, on the whole, we are able to
understand where and why the algorithm works correctly or not. We assume it
might be improved either by a relevant combination of criteria with specifically
required properties (if not all at the same time) or by hand to avoid significant
mistakes. Further work could now explore similar cases in other cities to assess
those criteria on various street network topologies and deepen our analysis.
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dans des systèmes réels (Doctoral dissertation, Université de La Rochelle).
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