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In computational neuroscience, multicompartment models are among the
most biophysically realistic representations of single neurons. Construct-
ing such models usually involves the use of the patch-clamp technique
to record somatic voltage signals under different experimental condi-
tions. The experimental data are then used to fit the many parameters
of the model. While patching of the soma is currently the gold-standard
approach to build multicompartment models, several studies have also
evidenced a richness of dynamics in dendritic and axonal sections.
Recording from the soma alone makes it hard to observe and correctly pa-
rameterize the activity of nonsomatic compartments. In order to provide
a richer set of data as input to multicompartment models, we here investi-
gate the combination of somatic patch-clamp recordings with recordings
of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the
observation of extracellular potentials and neural activity of neuronal
compartments at subcellular resolution.

Andreas Hierlemann and Werner Van Geit share senior authorship.
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1288 A. Buccino et al.

In this work, we introduce a novel framework to combine patch-clamp
and HD-MEA data to construct multicompartment models. We first vali-
date our method on a ground-truth model with known parameters and
show that the use of features extracted from extracellular signals, in
addition to intracellular ones, yields models enabling better fits than
using intracellular features alone. We also demonstrate our procedure
using experimental data by constructing cell models from in vitro cell
cultures.

The proposed multimodal fitting procedure has the potential to aug-
ment the modeling efforts of the computational neuroscience community
and provide the field with neuronal models that are more realistic and can
be better validated.

1 Introduction

In computational neuroscience, multicompartment models provide one of
the most biophysically detailed representations of single neurons. They
are built by combining a precise morphological reconstruction of neurons,
obtained through imaging techniques, with electrophysiological charac-
teristics of ion-channel dynamics and their distribution over the neuron
morphology.

The use of multicompartment models has enabled researchers to ex-
plore several characteristics of neuronal dynamics, including active den-
dritic properties (Hay et al., 2011; Almog & Korngreen, 2014; Gidon et al.,
2020) and the role of the axonal initial segment in initiating action potentials
(Hallermann et al., 2012; Goethals & Brette, 2020; Fékété et al., 2021). The
models also were used to generate experimentally testable hypotheses to
drive research forward. In recent years, we have witnessed massive interna-
tional efforts in constructing and sharing biophysically detailed multicom-
partment models. The neocortical microcircuit portal (Ramaswamy et al.,
2015; Markram et al., 2015) of the Blue Brain Project contains thousands of
publicly available cell models of the rat somatosensory cortex. A similar
effort is being conducted by the Allen Institute of Brain Science, whose cell-
type database includes a growing number of cell models of mice and even
humans (Gouwens et al., 2018).

Historically, multicompartment models were constructed by taking ionic
mechanisms from preexisting knowledge bases and by manually and itera-
tively tuning the many parameters of the models, until the model matched
the expected or observed behavior (Almog & Korngreen, 2016). In more re-
cent years, computer-based optimization has enabled computational neu-
roscientists to explore the large parameter space more thoroughly and
faster—for example, by using evolutionary strategies to search for sets of
parameter values that provide good fits to experimental data (Druckmann
et al., 2007).
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Multimodal-Fitting Approach for Single-Neuron Models 1289

For the vast majority of available multicompartment models, experimen-
tal features used to fit the model are extracted solely from somatic patch-
clamp recordings. While the soma clearly is a very important “compart-
ment” of a nerve cell, neurons are much more than just their somata. For
example, complex dynamics can arise from active dendritic properties (e.g.,
calcium spikes, nonlinear integration) (Larkum et al., 1999; Koch & Segev,
2000; Ujfalussy et al., 2015; Hay et al., 2011) and from the axon initial seg-
ment, which is known to be the location where spikes initiate and which
has a determining role for neuron excitability (Huang & Rasband, 2018; De-
banne et al., 2011). However, performing simultaneous patch-clamp record-
ings of multiple compartments of the same cell is extremely challenging
(Larkum et al., 2001; Hay et al., 2011; Almog & Korngreen, 2014).

Astrategy to capture neuronal firing dynamics over a larger spatial range
includes the use of extracellular recordings. Extracellular signals are gen-
erated by transmembrane currents of all neuronal compartments (Nunez
& Srinivasan, 2006; Lindén et al., 2014; Hagen et al., 2018) and provide an
indirect readout of the intracellular signaling. Gold et al. (2007) first sug-
gested that extracellular electrical recordings could provide suitable data
for devising extracellular models, but their suggestion has not been fol-
lowed up by the modeling community. With the advent of high-density mi-
croelectrode arrays (HD-MEAs), however, extracellular signals have been
demonstrated to enable the recording, especially in vitro (and to a cer-
tain extent also in vivo; Jun et al., 2017; Jia et al., 2019), of signals of indi-
vidual neurons at subcellular resolution (Müller et al., 2015). The richness
of information obtained from extracellular signals enables one to observe
electrical potential and signal distribution over the entire neuron. There-
fore, extracellular recordings allow for parameterizing neuronal compart-
ments, which cannot be simultaneously and directly probed by patch-clamp
experiments.

Here, we present a proof-of-concept study combining patch-clamp and
HD-MEA data to construct single-neuron multicompartment models. We
first give a general overview of the workflow and describe the steps to in-
clude extracellular signals as an extra source of data into the models. Next,
we validate our approach on a ground-truth model with known parameters
to assess the benefit of including extracellular data on the final outcome. Fi-
nally, we present examples of cell models, constructed from rat cortical cell
cultures, and discuss the differences and improvements of our multimodal
strategy over the use of patch clamp alone.

2 Workflow to Construct Multicompartment Models
from Patch-Clamp Data

Before diving into our multimodal fitting approach, we introduce here the
general workflow for constructing multicompartment models in order to
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1290 A. Buccino et al.

Figure 1: General workflow to construct multicompartment models. In the data
acquisition phase, a patched neuron is stimulated by applying different pro-
tocols, and the respective responses are recorded. Then the patched neuron is
imaged, and the neuron morphology is reconstructed. Mechanisms that deter-
mine or describe the electrophysiological characteristics of the neuron need to
be defined. The corresponding parameters are then used for the fitting. Features
of the measured neuronal characteristics and responses are extracted to reduce
the dimensionality of the recorded data. In the optimization phase, the neu-
ron morphology and the defined mechanisms are used to emulate the applied
protocols, and the simulated electrophysiological characteristics are evaluated
against the experimentally obtained ones. This procedure is repeated while iter-
atively varying parameters until convergence is reached. Finally, the morphol-
ogy, mechanisms, and optimized parameters yield the fitted model.

lay out the different steps and terminology that computational neuroscien-
tists use to build biophysically detailed models of single neurons. The main
objective of the construction of a multicompartment model is to build an
in silico replica of a real neuron that can be used to describe the electrical
activity of a neuron. The pipeline to construct multicompartment models
consists of several steps (see Figure 1) that we next outline.

2.1 Data Acquisition. The first and essential step is data collection. A
target neuron is patched with a micro-pipette in current-clamp mode to
record its responses to different stimulation protocols. The different pro-
tocols are designed to unveil different characteristics of neural dynamics,
such as firing patterns, sub-threshold behavior, or spike adaptation. Each
protocol is usually applied in several runs. The patch pipette is loaded with
a dye (either biocytin or a fluorescent dye) that fills the cytosol of the target
neuron during the recording session and that is used for reconstructing the
neuron morphology.
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Multimodal-Fitting Approach for Single-Neuron Models 1291

2.2 Morphology Reconstruction. After the electrophysiology data ac-
quisition, the target neuron is imaged to reconstruct its 3D morphology. The
imaging consists of a z-stack of high-resolution images, which allows for a
precise reconstruction of the neurites and their diameters using specialized
software tools—for example, Neurolucida, Simple Neurite Tracer (Arshadi
et al., 2021), and vaa3D (Peng et al., 2014).

2.3 Definition of Model Mechanisms. The neuron morphology only
provides geometrical information for the model. In order to reproduce neu-
ronal behavior, the model needs to be populated with mechanisms, which
govern the equations that give rise to the neuronal dynamics. Mechanisms
can be passive (leaky) or active (voltage-gated ion channels); the latter
are usually modeled with a Hodgkin-Huxley formalism (Hay et al., 2011;
Markram et al., 2015). Additional mechanisms can further control the dy-
namics of specific ion concentrations—for example, of Ca2 +, which can af-
fect the dynamics of subpopulations of ion channels. Different mechanisms
are defined in different neuronal sections (e.g., soma, dendrites, axons).
Computational neuroscientists need to select the mechanisms for the differ-
ent neuronal compartments, which will greatly influence the performance
of the final model. The definition of the mechanisms also determines the pa-
rameters that need to be identified during the fitting procedure. Parameters
include, for example, the maximum conductances of an ion channel in a cer-
tain compartment; properties of passive components, such as membrane or
axial resistances; or free variables that are included in the mechanistic equa-
tions, such as the decay of calcium concentrations over time.

2.4 Feature Extraction. As the goal of the model is to optimally repro-
duce experimental data, one needs to define a cost function to quantify the
fit of the obtained solution. While a straightforward approach could be to
compute the point-to-point distance between the experimentally obtained
values and the in silico counterparts, such a procedure has proven to be
suboptimal in several previous studies (Druckmann et al., 2007; Weaver &
Wearne, 2006) due to the intrinsic variability of neural responses even to the
exact same input. A better and more viable solution includes processing the
raw neuronal responses and extracting features that describe the response
behavior in a compact and informative way. For example, if a protocol is
designed to characterize the firing properties of a neuron, one could extract
features, such as mean firing rate and spike counts, as well as bursting pat-
terns and adaptation indices. Additional features can be used to describe
the action potential (AP) waveforms (e.g., AP amplitude, AP duration) or
sub-threshold behavior. For each feature, one can extract the average value
and the standard deviation over different runs, namely, μexp and σ exp . Af-
ter extracting all the relevant features from the raw neuronal responses, the
model is ready to be optimized.
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1292 A. Buccino et al.

2.5 Optimization. The optimization step is aimed at finding good sets
of parameters to fit the extracted features. By combining the protocols, mor-
phology reconstruction, and mechanisms, a simulator runs the experiment
for a given set of parameters. Using the simulated responses, features, anal-
ogous to those that have been defined in the feature extraction step, are
computed and compared to those extracted from the experimental data. For
each feature i, a score si is computed,

si =
|μi

exp − f i|
σ i

exp
, (2.1)

where f i is the feature value computed from the simulated response, μi
exp

is the mean feature value from the experimental data, and σ i
exp is the ex-

perimental standard deviation of the feature. The scores of all features are
then summed to compute an overall fitness for a certain solution. Several
algorithms, mainly based on evolutionary strategies (Damart et al., 2020),
are then used to iteratively explore the parameter space to find solutions
with good fitness—solutions that fit the features extracted from the exper-
imental data well. The optimization procedure yields, upon convergence,
the solution (set of parameters) that yields the best fitness. The combina-
tion of morphology, mechanisms and the best parameters then constitutes
the final multicompartment model.

3 Results

3.1 Combining Patch-Clamp and HD-MEA Data for Fitting Multicom-
partment Models. The general framework described above was developed
mainly for use of data from whole-cell patch clamp alone. In order to com-
bine patch-clamp and HD-MEAreadouts, we need to augment several steps
of the model-fitting pipeline.

First, during the data acquisition, intracellular and extracellular record-
ings of the target neuron need to be acquired (see Figure 2A, left). There-
fore, we used cultured neurons from embryonic rats plated on top of an
HD-MEA with 26,400 electrodes (Müller et al., 2015; see section 5.6.2 for
details). The patch-clamp and the HD-MEA systems were synchronized
so that we could simultaneously acquire the patch-clamp readout and the
extracellular signals from more 500 electrodes in proximity of the patch
pipette. Since the HD-MEA signals featured much lower signal-to-noise
ratios with respect to the patch-clamp readout, we used the patch-clamp
signals to precisely detect action potential times, which we then used to
average the extracellular signals (patch-triggered average; PTA). The re-
sulting signal is referred to as an electrical “footprint” (distribution of
measured electrical potentials across the array electrodes) or template (see
Figure 2A, right) and is a clean signal that contains high spatiotemporal
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Multimodal-Fitting Approach for Single-Neuron Models 1293

Figure 2: Combining HD-MEA and patch-clamp data. (A) Simultaneously
recorded patch-clamp (blue trace) and HD-MEA data (gray traces) were used
to extract the extracellular template using patch-triggered averaging (PTA).
(B) From the latter (after excluding channels with a peak-to-peak amplitude
below 5 μV), several extracellular features were computed, either channel by
channel (e.g., half-width in red, peak-to-trough ratio in green) or in relation to
the channel with the largest signal amplitude (e.g., negative peak time differ-
ence, in purple). (C) Examples of features computed across all the channels:
peak-to-trough ratio (left) and negative peak time difference (right).

resolution information, reflecting the underlying morpho-electric proper-
ties of the patched neuron. This footprint or template is used as input data
for feature extraction from the extracellular signals. Note that the template
is computed using all action potentials acquired during the execution of all
protocols, since the more the spikes are acquired, the cleaner the template
becomes (extracellular spikes are assumed to be relatively constant across
different protocols). In addition, the HD-MEA system we used features a
switch-matrix architecture so that not all electrodes but only 1024 of them
are recorded simultaneously (Frey et al., 2010), which may result in some
holes in the template. Finally, electrodes recording low-amplitude signals
(peak-to-peak amplitude below 5 μV) were excluded (see Figure 2B).

The second required modification of the overall process was at the fea-
ture extraction level. While intracellular features are scalar values, extracted
from the somatic patch-clamp trace (e.g., mean frequency or mean AP
amplitude), the extracellular template E includes C electrodes and T time
points and is therefore multidimensional in nature (E ∈ R

C×T ). In order to
extract relevant and lower-dimensional features from such templates, we
compiled a set of 11 extracellular features fext that were defined and used
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1294 A. Buccino et al.

for each recording electrode (or channel) ( fext ∈ R
C). The features either

describe channel-specific waveform parameters of the template (termed
absolute features, such as peak-to-valley duration, peak half-width dura-
tion, and peak-to-trough ratio) or values relating the measured value in
each channel to that of the channel exhibiting the largest signal amplitude
(relative features, for example, negative/positive peak time difference, neg-
ative/positive peak amplitude). In total, we defined 11 extracellular fea-
tures (N fext = 11) (see section 5.1.2 for details). In Figure 2B, we display
the thresholded template (including channels with peak-to-peak amplitude
above 5 μV) of a recorded cell, with the largest-signal-amplitude channel
depicted in blue and a second channel colored in orange. The right part
shows a close-up version of the template for these two channels and some
examples of how channel-wise features (peak-to-trough ratio, half-width)
were calculated. The negative peak difference was computed by compar-
ing the negative-peak amplitude of the second channel (orange) with the
peak of the largest-amplitude channel (blue). Figure 2C shows the feature
maps across the recording electrodes for two exemplary extracellular fea-
tures, peak-to-trough ratio and negative peak time difference.

Still, extracellular features were defined for each channel (C can be as
high as several hundreds of electrodes), so we explored three different
strategies to further reduce the dimensionality of extracellular features that
were then included in the optimization:

Single: With this strategy, a subset of extracellular signals was manually
selected (Nselected), and extracellular features were extracted separately
for all selected channels. Since the template was obtained by averag-
ing all available extracellular spikes from different runs, the standard
deviation of the feature σ exp , which was used to calculate the feature
score (see equation 2.1), could not be computed from experimental
data. In this case, σ exp was set to 5% of the feature value μexp . The
number of additional extracellular features used for optimization was
Nselected × N fext . We used seven single electrodes per cell.

All: In order to use the entire information from all extracellular elec-
trodes, we designed a second strategy that used the cosine distance
between simulated and experimental features as the score si,

si = 1 −
μi

exp × f i

‖μi
exp‖‖ f i‖ , (3.1)

where i refers to the ith feature. This strategy added N fext objectives to
the optimization (one scalar for each extracellular feature).

Sections: The third strategy lies in between the single and all strategies.
In this case, we manually selected Nsections extracellular areas of sev-
eral electrodes (10 to 20) that corresponded to different regions of
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Multimodal-Fitting Approach for Single-Neuron Models 1295

the neuron (e.g., dendritic, perisomatic, axon initial segment areas).
For each of these sections, the cosine distance between the simulated
and experimental features was used as a score. This strategy provided
Nsections × N fext features to the optimization. We used three to four sec-
tions per cell.

The different strategies to include extracellular signals allowed us to
explore how a modification of the balance between intracellular and
extracellular features that were used for the optimization procedure af-
fected the overall fitting performance. In order to provide informative fea-
tures for optimization, when using the single and sections strategies, we
selected electrodes/sections that covered different parts of the neuron (den-
dritic, perisomatic, axon initial segment). Figure 9 in the appendix shows
the channel selection for the single and sections strategies for the different
experimental cell models used in this article.

The final modification that we introduced to the overall pipeline con-
cerned the simulator that was used to generate the simulated responses in
the evaluation phase. The NEURON software (Carnevale & Hines, 2006) is the
gold standard to simulate the intracellular dynamics of single-cell models.
With the addition of a Python interface (Hines et al., 2009), the NEURON sim-
ulator has been included in the BluePyOpt (Van Geit et al., 2016) software
framework, designed to implement the fitting pipeline, introduced in the
previous section, with an easy-to-use and flexible API. In order to simu-
late extracellular signals in addition to intracellular ones, we extended the
BluePyOpt framework (see section 5.1 for details). We added a simulator in-
terface based on the LFPy (Lindén et al., 2014; Hagen et al., 2018) Python
package. LFPy is a wrapper to the NEURON software that uses the transmem-
brane currents from each neuron compartment Ii, obtained via the cable
equation, to compute extracellular potentials φ at the respective electrode
positions,

φ(r j, t) =
∑

i

1
4πσ

Ii(t)
∫

dri∥∥r j − ri
∥∥ , (3.2)

where σ is the extracellular conductance (set to 0.3 S/m; Goto et al., 2010),
and ri and r j denote the positions of compartment i and electrode j, respec-
tively. To model the physical size of the recording electrodes, we used the
so-called disk approximation (Hagen et al., 2018), which averages the ex-
tracellular potential over n points on the surface of the electrode (we used
n = 10).

3.2 Validation of the Multimodal Fitting Strategy on a Ground-
Truth Model. After extending the fitting framework to include extracel-
lular signals, we sought to quantitatively assess whether the inclusion of
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1296 A. Buccino et al.

extracellular features improved the overall model fitting performance. To
do so, we replicated our planned experiment in silico, using an existing mul-
ticompartment model with known parameters as ground truth. Although
model-to-model fitting is known to be easier than fitting a model to exper-
imental data (Druckmann et al., 2008), this first validation step is required
to assess the potential of the proposed multimodal fitting procedure.

The ground-truth model was built using an available morphology of a
rat somatosensory cortex layer 5 thick-tufted pyramidal cell (L5PC; Hay
et al., 2011). In the original model, the axon was substituted by a linear stub
axon of 60 μm; we introduced instead an axon initial segment (AIS) section,
expressing AIS-specific conductances (Hu et al., 2009; Shu et al., 2007; Kole
et al., 2007), namely, Nav1.2, Nav1.6, and Kv1 (see section 5.3 for details). The
AIS length was set to 35 μm following the reconstructed axon morphology
with a subsequent 1 mm long myelinated axonal section with a diameter
of 0.2 μm (see Figure 3B, left). The AIS ion channels in the model moved
the initiation of action potentials in the distal part of the AIS (see Figure 3B,
right), in accordance with a large body of experimental and computational
evidence (Hallermann et al., 2012; Bakkum et al., 2019; Huang & Rasband,
2018). The AIS properties were also strongly reflected in the extracellular
signals. The AIS was found to be the dominant contributor to extracellu-
larly measured potentials due to the strong membrane currents generated
to initiate an action potential (Teleńczuk et al., 2018; Bakkum et al., 2019).
The ground-truth model was placed on a 20-row-by-4-column planar simu-
lated MEA with 50 μm electrode-to-electrode center pitch. The extracellular
template was computed with equation 3.2 and averaged over several action
potentials in response to a step protocol. Figure 3A shows the ground-truth
neuron sitting on top of the MEA model. The black lines are the extracellu-
lar template at the electrode locations. The red trace depicts the signal with
the largest amplitude, which appears on the electrode closest to the AIS.
The ground-truth model includes 33 free parameters (10 somatic, 13 AIS, 6
apical, and 4 basal parameters) that need to be optimized. See section 5.3
and Tables 2 and 3 for details on the ground-truth model definition and
parameters.

After checking that our model could reliably reproduce AIS-specific
physiological features, which strongly influence the extracellular electrical-
potential landscape, we fully replicated the data acquisition phase in silico.
We utilized a set of protocols named eCode (Markram et al., 2015; Iavarone
et al., 2019) to probe the behavior of a patched neuron against several dif-
ferent stimuli (see Figure 3C). The eCode protocols included several long
(>1 s) step stimuli with different lengths and amplitudes (firepattern, IV,
IDrest) to monitor firing behavior, sub-threshold responses, and bursting
properties, as well as short-pulse steps (50 ms) to observe details of AP
properties (APWaveform). Additional more complex stimuli included a hy-
perpolarizing step, followed by depolarization (HyperDepol), a three-step
protocol to monitor after-hyperpolarization potentials (AHP) after several
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Multimodal-Fitting Approach for Single-Neuron Models 1297

Figure 3: Ground-truth model. (A) Visualization of the neuron on top of the
80-channel rectangular MEA used for the simulations. The extracellular electri-
cal signal template is overlaid in black. The red trace depicts the channel with
the largest amplitude, which is the channel closest to the AIS section. (B) Left:
Morphology of the ground-truth neuron, highlighting the additional AIS and
myelin sections. Right: Sample action potential signals at the soma (blue), mid-
dle AIS (orange), and distal AIS (green). The AP is initiated at the distal end of
the AIS and travels back toward the soma. (C) eCode protocols used in the vir-
tual experiment. For each protocol, the top traces show the somatic membrane
potentials and the bottom ones the applied current stimuli.

spikes (sAHP), and, finally, a series of triangular stimuli of different lengths
(PosCheops). All current amplitudes were computed with respect to the
neuron’s rheobase current (estimated using a 270 ms step). For our ground-
truth model, the rheobase current was 150 pA. See section 5.2 for details
about amplitudes and timings of the eCode protocols.

From the eCode-protocol ground-truth responses, we then extracted fea-
tures before running the optimization step. We selected a subset of protocols
that were used to fit the model (i.e., training), and we left the other protocols
for validation to assess how general the solutions were. For both, the in sil-
ico and the experimental data, we used six protocols for training: IDrest
(150%), IDrest (250%), IDrest (300%), APWaveform (290%), IV (−100%),
and IV (−20%) (the amplitude is expressed in percentage of the rheobase
current).
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Table 1: Optimization Strategies.

strategy name # intracellular features # extracellular features # total features

Soma 76 — 76
Single 76 77 153
All 76 11 87
Sections 76 33 109

Note: Summary of the four strategies used for fitting the models, specifying the intra-
cellular, extracellular, and total number of features used for optimization (the num-
bers refer to the ground-truth model).

A total of 76 intracellular features were extracted from these selected
protocols and used for optimization assuming that only the patch-clamp
data were available (soma fitting strategy). In addition to these features,
the all strategy (using all electrodes and the cosine distance in equation 3.1
as features) adds 11 extracellular features (total = 87). The sections strategy
added 33 (three sections times 11 extracellular features), and the single strat-
egy added 77 features (seven electrodes times 11 extra features). The num-
ber of intra- and extracellular features for each optimization strategy are
summarized in Table 1. See section 5.4 for details on feature extraction ac-
cording to different protocols.

For each optimization strategy, we ran 10 optimizations, each starting
from a different seed using a covariance matrix adaptation (CMA) opti-
mizer (see section 5.5 for details) (Damart et al., 2020). Figure 4A shows the
fitness of the 10 optimized solutions for each strategy with respect to intra-
cellular (left) and extracellular features (right: features were computed with
the all strategy for consistency). While the soma, all, and sections strategies
appeared to yield low scores (i.e., better fitness) for intracellular features,
the single strategy produced solutions with worse intracellular fitness. Con-
versely, the single strategy yielded the best performance with respect to ex-
tracellular features, while the worst performance was achieved by using the
soma strategy. These results reflect the balance between intracellular and ex-
tracellular features used for optimization (see Table 1). The single strategy
used almost as many extracellular features as intracellular ones, which may
have pushed the optimization to favor extracellular fitting at the expenses
of intracellular fitness. In contrast, the use of all and sections strategies pro-
vided a good balance between intracellular and extracellular fitness.

Next, we report the results of the solution with the best intracellular fit
for each strategy. Figure 4C displays intracellular responses for some val-
idation protocols. All of these solutions yielded a good fitting of the in-
tracellular traces used for validation (firepattern, HyperDepol, sAHP, and
PosCheops). Interestingly, for the HyperDepol stimuli, the soma, all, and
sections strategies failed to reproduce the absence of spikes observed in the
depolarization phase (second row: HyperDepol (−160%). Only the single
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Figure 4: Optimization results on ground-truth model. (A) Distributions of in-
tracellular (left) and extracellular (right) scores (i.e., sum of all feature scores) for
10 seeds for each applied strategy (soma: blue; all: orange; sections: green; single:
red). (B) Distributions of intracellular (left, N = 86) and extracellular (right, N =
796) feature scores for the solution with the best intracellular total score. The
*** represent a p < 10−5 with respect to soma. (C) Sample intracellular responses
from validation protocols using the seed with the best intracellular score. Black
traces are the ground-truth responses. (D) Normalized extracellular templates
(normalized to the respective template signal-amplitude peak-to-peak value),
computed from the fire pattern (120%) validation protocol, for the ground-truth
model (black) and optimized models (seed with best intracellular score).

strategy correctly did not generate a spike for HyperDepol (−160%) and
did generate one for HyperDepol (−40%). The overall distribution of scores
for all intracellular features, computed on validation protocols (total =
86 features), is shown in Figure 4B, left. No significant differences were
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detected across strategies (post hoc Mann-Whitney tests with Holm p-value
correction). To quantify extracellular performance, we computed all fea-
tures using the single strategy on all 80 electrodes (total of 796 features af-
ter excluding features that resulted in invalid values—for example, when a
clear signal peak was not available). The right panel of Figure 4B shows the
distribution of these extracellular features across the different strategies. All
strategies making use of extracellular data significantly outperformed the
soma strategy (post hoc Mann-Whitney tests with Holm p-value correction:
soma VS all - p < 10−5, soma VS sections - p < 10−5, soma VS single - p <

10−5). Figure 4D shows the normalized extracellular templates (each chan-
nel value has been normalized to the respective template signal-amplitude
peak-to-peak value) for the solution yielding the best extracellular fit. It is
evident at first glance that the three extracellular strategies achieve a better
fit for almost all electrodes, while the solution from the soma strategy, de-
spite providing a very good fit for intracellular features and traces, failed
to capture the complex dynamics of extracellular signals in many recording
channels.

Extracellular signals indirectly reflect membrane potentials across the
entire neuron morphology, as the latter drive transmembrane currents,
which are responsible for the generation of extracellular potentials. Having
a ground-truth model at our disposal, we could also analyze the intracel-
lular AP distribution, that is, the AP waveforms across different neurites.
We first took the fire pattern (120%) response of the ground-truth model
and the optimized models, detected action potentials in the somatic trace,
and finally used the detected AP peaks to average the action potentials of
different neurites (the first and last spikes were excluded as they could con-
tain artifacts originating from stimulus onset and offset). Once the average
AP was calculated, we computed the mean relative error of four commonly
used features with respect to the ground-truth AP: AP amplitude, AP half-
width, decay time, and AHP (afterhyperpolarization). Figure 5 shows the
morphology of the ground-truth neuron and the recording positions on the
neurites. Each inset displays the AP at the respective location obtained with
the ground-truth (black), soma (blue), all (orange), sections (green), and sin-
gle (red) models (left) alongside the mean relative errors with respect to the
ground-truth AP (right). The selected locations included 4 points along the
apical dendrite (apical left, right, middle, proximal), the distal and prox-
imal AIS locations, and two locations on the basal dendrites (basal left,
right). For all tested locations, the all strategy produces lower errors than
the strategy. For all dendritic locations (both apical and basal), all extra-
cellular strategies (all, single, sections) outperform the soma strategy. This
suggests that combining intracellular and extracellular features could pro-
vide a better representation of the AP waveforms across the entire neuronal
arbor.

In this section, we performed an in silico experiment using a ground-
truth model with known parameters to investigate whether the inclusion of
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Figure 5: Average AP distribution. Action potentials at different locations along
the neuron morphology. Each inset displays the average AP at a specific location
on the left (marked on the neuron morphology) and the mean relative error with
respect to the ground-truth values of four commonly used features (AP ampli-
tude, AP half-width, decay time, and AHP) for the four different optimization
strategies (ground truth: black; soma: blue; all, orange: sections, green; single: red).
The vertical dotted gray line marks the time of the somatic action potential peak.
For the majority of locations, the extracellular strategies yielded the better AP
waveforms fits than the soma strategy.

extracellular features (using different strategies) could be beneficial to con-
struct multicompartment models. We have shown that adding extracellular
features, in particular by using the all and sections strategies, improved the
optimization performance in terms of fitting intracellular signals, extracel-
lular templates, and action potential distribution across the entire neuronal
morphology. Note that this scenario is ideal because we imposed that the
ground-truth solution lies within the parameter space (i.e., all the mecha-
nisms and respective parameter boundaries are “correct”) and the forward
model used in the optimization to generate extracellular signals was the
same as the one used to generate ground-truth signals.

3.3 Cell Models from Cultured Neurons. After assessing the benefits
of combining intra- and extracellular signals with in silico experiments, we
looked into experimental data. We acquired paired patch-clamp and extra-
cellular signals from two cells of cortical cultures in embryonic rats. After
the electrophysiological data acquisition, cells were imaged with a confo-
cal microscope and fixated. We then stained the cultures with AIS-specific
antibodies to locate the axon initial segment in the morphology. Figure 6

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/7/1286/2378076/neco_a_01672.pdf by guest on 12 June 2024



1302 A. Buccino et al.

Figure 6: Experimental data. For each recorded neuron (cells 1 and 2), we dis-
play the maximum z-projection of the z-stack (top left), the reconstructed mor-
phology overlaid over the extracellular template (top center: AIS in green, axon
in blue), the Alexa Fluor 594 dye, and AIS-specific staining (bottom) and sample
somatic traces of one experimental run (right).

shows the two cells that we used to construct multicompartment models,
including a maximum intensity z-projection of the z-stack (top left), the re-
constructed morphology overlaid on the extracellular template (top middle:
AIS is green, axon is blue, other neurites in gray), sample somatic patch-
clamp traces from one of the runs (right), and AIS stainings (bottom: left
panel shows Alexa Fluor, the center panel displays the AIS-specific chan-
nel yielding the best signal—Kv7.3 for cell 1 and ankyrin-G for cell 2—
and the right panel shows the merged image with an indication of the AIS
location). Note that we stained with both Kv7.3 and ankyrin-G, and we re-
port here the brightest indicator. Given the early developmental stage of
the cultures (experiments performed between DIVs 18 and 21), there was
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no clear and unique apical dendrite. For this reason, when reconstructing
the morphology, we did not differentiate between apical and basal den-
drite, and we applied the same mechanisms to all dendritic sections. More-
over, for both cells, the AIS did not originate directly from the soma but
from one of the dendrites, which is termed an axon-bearing dendrite (ABD;
Thome et al., 2014; Goaillard et al., 2020). Despite these differences, we used
the same dendritic mechanisms of the ground-truth model detailed in the
previous sections and considered the ABD as a “normal” dendrite section.
Another important difference with respect to the ground-truth L5PC model
is that cultured cells do not exhibit myelinated axons. We therefore used ac-
tive axonal mechanisms without myelination (see section 5.6 for details).

Figures 7 and 8 show the results of the optimizations performed on cells
1 and 2 in Figure 6. Panel A displays the intracellular (left) and extracellu-
lar (right) scores for the optimized models starting from 10 different seeds
for the soma (blue) and all (orange) strategies (we report results only for
the all strategy for the extracellular options, as it showed the best perfor-
mance in the in silico tests). For both cell models, the application of the soma
strategy yielded better intracellular scores, while the use of the all strat-
egy resulted in better extracellular fitting. The scores obtained were almost
twice the ones we got for the fitting of the ground-truth model in Figure 4
(intracellular score: GT fitting: 62.8 ± 13.6 for soma and 59.3 ± 17.0 for all;
cell 1 fitting: 123.9 ± 11.2 for soma and 149.2 ± 47.2 (excluding one seed that
did not converge) for all; cell 2 fitting: 152.8 ± 9.22 for soma and 177.6 ± 20.4
for all). These discrepancies can be partly explained by the fact that for the in
silico validation, the optimization procedure was performed with a correct
cell model using the same mechanisms and distributions for optimization
that have been used for the ground-truth model. On the contrary, for the
experimental cells, we did not know the exact ion channels expressed by
the neurons and used the mechanisms present in the ground-truth model.
In fact, the experimental cells (putative excitatory neurons recorded in a
DIVs 18-24 cell culture) and the ground-truth model (designed to fit a L5PC
recorded in a P14-P20 slice) are likely to express different ion channels. De-
spite these apparent differences, the models fitted on the experimental data
could reproduce the main features of the intracellular spiking patterns of
the validation protocols (panels B, with the exception of the PosCheops
(300%) response for the soma strategy in cell 2; see Figure 8B).

Panels C in Figures 7 and 8 show the experimental extracellular tem-
plates (black) and the resulting simulated templates using the soma (blue)
and all (orange) fitting strategies on top of the reconstructed cell morpholo-
gies. The insets show a close-up of two representative channels for each cell.
The shapes of the fitted extracellular templates of both strategies are quali-
tatively similar to the experimental templates. The shape characteristics of
the waveforms appear to be reproduced by the optimized cell models, but
mismatches are still apparent, in particular for cell 2 (e.g., in the area below
the soma in Figure 8). The worse fit of cell 2 with respect to cell 1 is also
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Figure 7: Optimization results for the experimental cell 1 model. (A) Distribu-
tions of intracellular (left) and extracellular (right) scores (i.e., sum of all fea-
ture scores) for 10 seeds for each applied strategy (soma: blue; all: orange).
(B) Sample intracellular responses using validation protocols of the seed with
the best intracellular score. Black traces show patch-clamp recordings. (C) Neu-
ron morphology (gray: soma + denrites; green: AIS; blue: axon) and normal-
ized extracellular templates (black: experimental; blue: soma strategy; orange:
all strategy), computed using the fire pattern (120%) validation protocol for ex-
perimental data (black) and the optimized model (seed with best intracellular
score). The insets highlight the experimental, soma, and all extracellular wave-
forms on two channels.

reflected by the overall higher extracellular scores (right box plots of panels
B in Figures 7 and 8).

To investigate this further, we took a closer look at the nature of the
mismatch for cell 2. Specifically, focusing on the left panel of Figure 8C,
one can see that neither of the strategies, soma and all, can reproduce the
initial negative phase followed by the strong, positive upstroke observed
experimentally. We hypothesize that this is due to a wrong weight of dif-
ferent compartment contributions to the extracellular signal. We therefore
virtually patched the all cell model at the soma, AIS, and basal dendrite
locations and showed that indeed the mismatch could be explained by an
underestimation of the somatic contribution and an overestimation of the
AIS one to the EAP (extracellular action potential; for further details, see
Figure 10). From a modeling perspective, the mismatch could be caused by
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Figure 8: Optimization results on the experimental Cell 2 model. (A) Distribu-
tions of intracellular (left) and extracellular (right) scores (i.e., sum of all fea-
ture scores) for 10 seeds for each applied strategy (soma: blue; all: orange).
(B) Sample intracellular responses using validation protocols of the seed with
the best intracellular score. Black traces show patch-clamp recordings. (C) Neu-
ron morphology (gray: soma + denrites; green AIS; blue: axon) and normal-
ized extracellular templates (black: experimental; blue: soma strategy; orange:
all strategy), computed using the firepattern (120%) validation protocol for ex-
perimental data (black) and the optimized model (seed with best intracellular
score). The insets highlight the experimental, soma, and all extracellular wave-
forms on two channels.

several factors: (1) an underestimation of the size of the soma, resulting in
lower transmembrane currents (the overall current is proportional to the
compartment’s area); (2) the optimization boundaries chosen for the AIS
and the soma are not “correct,” resulting in an AIS that is too excitable; and
(3) the distance between the dendrite and the electrode plane is overesti-
mated, yielding lower dendritic contributions to the extracellular potential,
which in turn reduces the positive upstroke.

Considering the confounding factor of probable mismatches between
experimentally recorded signal traces and the model traces based on the
mechanisms included in the model fits, it is virtually impossible to state
whether any of the strategy (soma or all) is better than the other in this case.
Nevertheless, the inclusion of extracellular features in the fitting procedure
does not impede the optimization to find acceptable models.
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4 Discussion

We have presented a multimodal strategy to construct biophysical multi-
compartment models using a combination of patch clamp and high-density
microelectrode arrays (HD-MEAs). After introducing the general concepts
of fitting multicompartment models, we presented the extensions that were
required to include extracellular signals in the procedure. We then validated
the approach using an existing ground-truth model with known parame-
ters and showed that the inclusion of extracellular data improves the over-
all fitting performance, specifically in terms of fitting extracellular signals
and the membrane potentials over the entire neuron morphology. Finally,
we applied the validated method to experimental data from two cultured
cortical neurons and demonstrated how to build cell models either fitted on
the base of patch-clamp data alone or by applying a combined patch-MEA
fitting strategy.

While the suggestion to use extracellular data as a source to construct
multicompartment models dates back more than 10 years ago (Gold et al.,
2007), the presented work is the first concise attempt to include high-quality
extracellular data into the fitting of single-neuron models. Our in silico val-
idation provides convincing evidence that extracellular data can be used to
improve the optimization performance and may provide better-validated
models. Nevertheless, including extracellular measurements as an addi-
tional data source is challenging and may entail various issues that merit
discussion. First, a setup to perform patch clamp and simultaneous extra-
cellular recordings needs to be available. It requires the use of an upright
microscope due to the opaqueness of the MEA substrate. Moreover, the
presence of the MEA within the patch-clamp setup may provide additional
noise sources for both systems, potentially yielding lower-quality data, al-
though several approaches to reduce noise are available. Second, in order
to record reliable and large-amplitude extracellular signals, the patched
cell needs to be located in close proximity to the extracellular electrodes
(Buzsáki, 2004). The closer the cell, the larger the signal and, therefore, the
signal-to-noise ratio. While proximity is not an issue when working with
2D cell cultures where (ideally) cells form a monolayer on top of the MEA,
the use of thicker preparations, such as brain slices, may add complications:
the patch experimenter will need to blindly target deep cells that lie close
to the surface. However, techniques to use the HD-MEA recordings to esti-
mate the precise patch pipette location help to render the cell targeting eas-
ier (Allen et al., 2018; Obien et al., 2019). Another attractive possibility to
use slices is to use organotypic slice cultures (Egert et al., 1998; Gong et al.,
2016), where slices are cultured for several weeks on an MEA device and
thin down over time. Finally, for imaging the patched neurons, a precise
registration between the 3D electrode locations and the neuron morpholo-
gies is required in order to correctly assign extracellular signals. Due to the
relatively low resolution in the z-dimension of the microscope (in our case
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0.4 μm), the electrode registration may include errors that may cause mis-
matches between experimentally recorded and reconstructed extracellular
signals. In order to minimize this mismatch, we imaged the cell right af-
ter the patch experiment without a staining step, which causes shrinkage.
However, there could still be a movement of the soma with respect to the
MEA due to the retraction of the pipette. We tried to minimize this effect
by carefully and slowly removing the pipette from the cell and targeting
neurons that were not too isolated, so that the neighbor cells could help
maintain the neuron during the retraction.

The forward-modeling framework used to simulate extracellular sig-
nals from transmembrane currents is well established and widely accepted
(Einevoll et al., 2013). However, this framework makes several assumptions
that may not be fully satisfied under experimental conditions. The extracel-
lular milieu is assumed to be infinite, isotropic, homogeneous, and ohmic.
Clearly, the sample is not infinite, and it is bounded by the well and the
substrate on which the cells are cultured. However, considering that the
reference electrodes are at the borders of the sensing area and we targeted
cells lying in the center of the HD-MEA (Frey et al., 2009), the infinity condi-
tions can be considered to be partially met. The isotropy and homogeneity
assumption are harder to relax: For in vitro cultures, the cells mainly are ar-
ranged in a monolayer on top of the substrate. Therefore, the arrangement
of cells and medium is not homogeneous and the conductivity of the tissue
is not isotropic. Cell density is high and conductivity is low along lateral
directions within the cell layer. Cell density becomes lower, and conduc-
tivity increases on moving perpendicular to the cell layer into the medium.
Moreover, the MEA substrate, on which the cell layer is arranged, is an insu-
lating material, while the medium is conductive. However, different analyt-
ical solutions can be used to correct for the anisotropy of the tissue (Hagen
et al., 2018) and discontinuities, for example, using the method of images
(Ness et al., 2015), which corrects for the amplitudes of the extracellular
potentials. We did not explicitly include these modeling extensions in the
forward model, but we did account for the presence of the MEA substrate
in computing extracellular features by using relative amplitudes instead of
absolute ones. The adoption of the method of images would only affect the
overall amplitude of the extracellular signals; therefore, the computation of
features based on relative amplitudes would not be influenced by different
modeling schemes. The assumption that the medium shows ohmic behav-
ior seems to be justified in the frequency range of extracellular signals (Goto
et al., 2010). Besides assumptions concerning the extracellular medium, the
cable equation that has been used to calculate transmembrane currents as-
sumes that extracellular potentials outside the cell membrane are constant
(i.e., extracellular axial currents are zero), and self-ephaptic phenomena (the
effects of the self-generated extracellular potentials on the neuron itself) are
therefore ignored (Buccino et al., 2019). This assumption is widely accepted
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due to the very low amplitude of extracellular signals in comparison to
intracellular ones. Some of the simplifications and assumptions mentioned
above could partially account for the mismatch between simulated and ex-
perimentally recorded signals. The use of more advanced and sophisticated
modeling frameworks, such as the finite element method (Agudelo-Toro &
Neef, 2013; Tveito et al., 2017; Buccino et al., 2019, 2021), could help to over-
come some of the simplifications in that MEA substrate, and intracellular
and extracellular space can be specifically modeled. However, the use of
such methods would be computationally very expensive for performing
model optimizations with several thousands of simulations until conver-
gence to a stable solution. A probably major contributor to the discrepancies
observed between experimental and fitted data (see Figures 7 and 8) may
originate from the model definition that we used to reconstruct the data of
the experimental cells. We used the model structure of a layer 5 pyrami-
dal cell recorded in a P20 slice to fit data recorded of putative pyramidal
cells recorded in culture at DIV 18-24. Clearly, the developmental path of
neurons in a living animal (from which the slice was obtained) differs from
that of cultured neurons in a dish starting from embryonic state. Therefore,
the use of an L5PC model to fit neurons of an embryonic cell culture is not
ideal. In addition, we did not explicitly model the axon-bearing dendrite
(ABD), but rather treated it as a normal dendrite. It is likely that the ABD
is more excitable than the rest of the dendritic tree, and therefore modeling
it explicitly could produce better-fitting models. Nevertheless, to the best
of our knowledge, there are no models for cell-cultured neurons available
in the literature. Another possible line of improvement would be to extend
on the optimization itself. The extended feature space proposed here could
benefit from recent optimization approaches that, instead of finding a sin-
gle “optimal” solution, aim at finding solution subspaces (Gonçalves et al.,
2019; Schneider et al., 2023) and/or from including additional constraints
to reduce parameter degeneracy, such as energy efficiency (Jedlicka et al.,
2022).

As the main goal of this work was not to build models from cultured
neurons but to investigate and develop a methodology and software tools
to combine multimodal data sources in a fitting procedure, the application
to experimental data serves only as a proof of concept.

The main intention of introducing the multimodal method here was to
better constrain the many parameters of multicompartment models by us-
ing other information-rich data sources. While most of the available mod-
els are constructed by using electrophysiological data of a single somatic
patch-clamp experiment, a simultaneous patch recording from several neu-
rites, especially dendrites, can shed light on activities and nonlinear prop-
erties of dendritic regions (Larkum et al., 2001; Hay et al., 2011; Almog &
Korngreen, 2014). Despite such multi-pipette patch techniques being ex-
perimentally very challenging, one of their main advantages is that one
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can stimulate at both the soma and the dendrite location to induce calcium
spikes and fit the model to reproduce the associated phenomena. While the
combined use of an HD-MEA with a somatic patch clamp does not pro-
vide intracellular access to dendritic neurites, one can exploit the extracel-
lular stimulation capability of HD-MEAs to selectively stimulate dendrites
to induce calcium spikes, the effects of which then can be observed in the
soma (Hay et al., 2011). Here, we used high-density extracellular microelec-
trode arrays as an additional recording modality to probe the spatiotem-
poral distribution of electrophysiological signals across the entire neuron
morphology. However, other multimodal procedures could potentially con-
stitute attractive alternatives. For example, one could combine the patch-
clamp technique with optical electrophysiology readouts to obtain a proxy
of the intracellular signals from many different regions of a neuron simulta-
neously. Genetically encoded voltage indicators (GEVIs; Abdelfattah et al.,
2019) provide indirect membrane potential readout of neuronal compart-
ments that can be used to extract region-specific features for optimization.
One drawback of this approach, however, is that neurons would need to
be genetically modified to express the fluorescent indicators, which possi-
bly affects electrophysiological characteristics and spontaneous firing of the
cell. In considering the low yield of patch-clamp experiments, the question
arises whether it is possible to build multicompartment neuronal models
without patch clamp. The two main advantages of the patch-clamp tech-
nique are the capability of applying precise stimuli to the neuron through
multiple protocols (both supra- and subthreshold) and filling the neuron
with fluorescent markers for subsequent imaging to reconstruct its mor-
phology (an essential component of the model). The combination of GEVI
imaging and HD-MEA could represent another attractive multimodal ap-
proach that can provide similar features. Electrical stimulation with extra-
cellular electrodes can be used to apply different stimuli to the cell, with
the advantage that subcellular compartments of the neuron (Ronchi et al.,
2019) can be targeted; in addition, extracellular stimulation could also be
used to generate patch-clamp-like sustained stimuli (Abbott et al., 2020),
but probably with lower control and precision than patch-clamp stimula-
tion. The GEVI readout can provide indirect membrane potential measure-
ments across multiple neural compartments, as outlined above, and can
also be used to image the target neuron at high resolution for morphology
reconstruction owing to the brightness and stability of recently developed
indicators (Abdelfattah et al., 2019).

In summary, we developed and investigated a novel approach to com-
bine multiple data acquisition modalities, specifically patch clamp and
HD-MEAs, to construct more accurate multicompartment models that can
be better validated. As novel neurotechnologies are developed, it can be
foreseen that new multimodal strategies will become available to acquire
even richer data sets for building and constraining single-cell multicom-
partment models.
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5 Methods

5.1 Extensions to the Fitting Framework. As part of this project, we
extended the open-source BluePyOpt Python framework (Van Geit et al.,
2016), designed to fit neuroscience models, to enable us to use extracellular
signals in the fitting procedure.

5.1.1 Simulator Back End. BluePyOpt originally implemented a NEURON-
based cell model and simulator (CellModel and NrnSimulator classes). We
implemented two additional classes, the LFPyCellModel and LFPySimulator,
that use instead LFPy (Lindén et al., 2014; Hagen et al., 2018) as a back
end to construct and simulate neuron models. The LFPySimulator can be
instantiated with a recording probe object from the MEAutility package
(Buccino & Einevoll, 2021) and computes extracellular signals generated
by the neuron’s transmembrane currents (see equation 3.2). In addition,
a stimulus (LFPySquarePulse), response (TimeLFPResponse), and recording
(LFPRecording) classes were added to the framework to support extracellu-
lar simulations over the entire pipeline.

5.1.2 Extracellular Feature Extraction. We additionally extended the
feature-extraction capabilities of BluePyOpt to include extracellular features.
These features are based on the extracellular template, the average extra-
cellular action potential. We introduced a new class, extraFELFeature, that
preprocesses the responses to obtain the extracellular template and com-
putes extracellular features from a specified protocol (in our case, we used
IDrest (300%); see the eCode protocols section below). Note that in the ideal
and noise-free simulation, it is sufficient to use one protocol to compute
the extracellular template, while for experimental data, we combine several
protocols to obtain a cleaner template. The extracellular signals at the re-
spective electrode locations are first interpolated to match the sampling fre-
quency of experimentally recorded extracellular traces (in our case, 20 kHz).
Optionally, the interpolated traces can also be filtered with a zero-phase fil-
ter to mimic the filter applied to experimental traces (in our case, we used
a Butterworth bandpass filter with cutoff frequencies at 300 and 6000 Hz).
The somatic response was used to reliably identify peak times using the
eFEL “peak_time” feature (the first and last spike can be discarded because
they may contain artifacts of stimulus onsets and offsets). Peak times were
used to cut out snippets of the extracellular traces, which were averaged
and optionally upsampled to provide more precision in feature values. We
used 2 ms before and 5 ms after the peak time as cutouts and upsampled
the template 10 times.

When the template was extracted, extracellular features could be cal-
culated. We compiled a list of 11 features that have been included in the
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Multimodal-Fitting Approach for Single-Neuron Models 1311

BluePyOpt package (Anastassiou et al., 2015). Extracellular features are
either absolute, computed for each channel separately, or relative, com-
puted with respect to the channel with the largest extracellular signal
amplitude:

Peak-to-valley duration (absolute): Time in seconds between the negative
and positive peaks. If the negative peaks precede the positive one, the
value of the feature is positive. Conversely, when the positive peak
precedes the negative one, the value is negative.

Halfwidth (absolute): Width of waveform at half of its amplitude in sec-
onds. If the positive peak precedes the negative one, the value is nega-
tive. This procedure helps to maximize the shape information carried
by the feature value.

Peak-to-trough ratio (absolute): The ratio between positive and negative
peaks.

Recovery slope (absolute): After depolarization, the neuron repolarizes
until the signal peaks. The recovery slope is the slope of the action
potential after the peak, returning to the baseline in dV/dT. The slope
is computed within a user-defined window after the peak (default =
0.7 ms).

Repolarization slope (absolute): After reaching its maximum depolariza-
tion, the neuronal potential will recover. The repolarization slope is
defined as the dV/dT of the action potential between the negative
peak and the baseline.

Negative peak relative amplitude (relative): The relative amplitude of
the negative peak with respect to the negative signal peak of the chan-
nel with the largest amplitude. For the largest-amplitude channel, this
feature has a value of 1.

Positive peak relative amplitude (relative): The relative amplitude of the
positive signal peak with respect to the positive signal peak of the
channel with the largest amplitude. For the largest-amplitude chan-
nel, this feature has a value of 1.

Negative peak time difference (relative): The time difference between
the negative signal peak with respect to the negative signal peak of the
channel with the largest amplitude. For the largest-amplitude chan-
nel, this feature has a value of 0. Note that values can also be negative
if the respective negative signal peak occurs earlier than the negative
signal peak on the largest-amplitude channel.

Positive peak time difference (relative): The time difference between the
positive peak with respect to the occurrence of the positive peak of the
channel with the largest amplitude. For the largest-amplitude chan-
nel, this feature has a value of 0. Note that values can also be negative
if the respective positive signal peak occurs earlier than the positive
signal peak on the largest-amplitude channel.
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1312 A. Buccino et al.

Negative image (relative): Voltage values at the time of the negative sig-
nal peak on the largest-amplitude channel. The values are normal-
ized by the negative signal-amplitude value on the largest-amplitude
channel.

Positive image (relative): The voltage values at the time of the positive
signal peak on the largest-amplitude channel. The values are normal-
ized by the positive signal-amplitude value on the largest-amplitude
channel.

5.2 eCode Protocols. The eCode protocols used for both the in silico
validation and experimental data acquisition included a series of stimuli
designed to probe the neuron’s behavior under a wide range of conditions
(Markram et al., 2015; Iavarone et al., 2019). After a neuron was patched,
the holding current Iholding was manually adjusted so that the read-out
membrane potential was −70 mV (which corresponded to approximately
−84 mV after liquid junction potential correction (see section 5.6.4). A se-
ries of step stimuli of 270 ms duration with increasing amplitudes were then
applied to roughly estimate the neuron’s rheobase current Irheo, the current
at which a single action potential was induced. The subsequent stimulus
amplitudes are reported in percent values of the estimated Irheo current.

IDthresh: The purpose of this protocol was to finely screen the current
levels to correctly reestimate Irheo before processing. It consisted of 21
sweeps with a 270 ms square pulse of increasing amplitudes from 50%
to 130% with step increments of 4%.

Firepattern: This protocol was aimed at characterizing the firing proper-
ties of the neuron. It consisted of two step pulses of 3.6 s at 120% and
200%.

IV: The purpose of this protocol was used to check on sub-threshold
properties of the neuron (e.g., the sag). The protocol consisted of 11
step stimuli of 3 s ranging from −140 to 20% with increments of 20%.

IDrest: This protocol was used to characterize the input/output curve
of the neuron. Eleven step stimuli of 1.35 s were delivered with am-
plitudes ranging from 50% to 300% in increments of 25%.

APWaveform: This protocol was defined to precisely record one to two
action potentials at high sampling rates (typically 200 kHz). It con-
sisted of short 50 ms pulses with amplitudes from 200% to 350% and
step increments of 30%.

HyperDepol: This protocol was aimed at looking at cell excitability at a
hyperpolarization potential. It consisted of four sweeps with hyper-
polarizing steps of 450 ms from −40% to −160% (increment step 40%),
followed by a 270 ms 100% step.

sAHP: This protocol was aimed at characterizing after-hyperpolariza-
tion potentials (AHPs) after several spikes. It consisted of four sweeps
starting with a 250 ms depolarizing step at 40%, immediately fol-
lowed by a larger-amplitude phase of 225 ms, ranging from 150% to
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Multimodal-Fitting Approach for Single-Neuron Models 1313

300% with 50% step increments, and a third 450 ms phase back at 40%
amplitude.

PosCheops: This final protocol was used to characterize the neuron’s re-
sponse to ramp stimuli. It contained three ramps of up to 300% ampli-
tude of different duration: the first ramp featured ramp-up and -down
phases of 4 s, the second ramp 2 s, and the third ramp 1.33 s.

All protocols (excluding IDthres, which was not used for training or vali-
dation) are shown in Figure 3D. For experimental data, the eCode protocols
were run four to six times.

5.3 Ground-Truth Model. To build the ground-truth model, we used
the morphology of a previously reconstructed layer-5 pyramidal neuron
(L5PC; Hay et al., 2011). The axon was removed except for the first 35 mi-
crometers (axon initial segment or AIS). A 1-mm-long myelinated cylin-
drical axon with a 0.2 μm diameter was attached to the AIS. The model
was composed of four sections, which contained specific voltage-gated con-
ductances (apical dendrites, basal dendrites, soma, AIS) and one section
(myelinated axon) that contained only passive channels. The voltage-gated
mechanisms were derived from the L5PC model of Markram et al. (2015). In
order to improve the simulation of action potential waveforms in the AIS,
we replaced the axonal sodium channels present in Markram et al. (2015) by
two different sodium channels (Nav1.2 and Nav1.6) that have been shown
to be present in the AIS of L5PC (Hu et al., 2009). As shown experimentally
(Hu et al., 2009), Nav1.2 density gradually decreased, while Nav1.6 density
gradually increased along the AIS. Moreover, we also added a gradual in-
crease of Kv1 channels along the AIS (Kole et al., 2007; Shu et al., 2007).
The parameters of the model were optimized in the different sections us-
ing BluePyOpt (Van Geit et al., 2016) in order to reproduce 58 electrical fea-
tures of L5PC. The somatic features (e.g., action potential waveforms, firing
rates) were taken from previously recorded L5PC (Markram et al., 2015).
The dendritic features (action potential backpropagation and calcium en-
try) were adapted from Stuart and Sakmann (1994), Helmchen et al. (1996),
and Schiller et al. (1995). The AIS features (action potential waveform) were
taken from Ritzau-Jost et al. (2021).

5.4 Feature Selection and Extraction. Relevant electric features (e-
features) were extracted from the somatic patch-clamp recordings of the
BluePyEfe Python package (Blue Brain Project, 2022a), which itself re-
lies on the eFEL Python package (Blue Brain Project, 2022b) for e-feature
computation.

To perform e-feature extraction, the e-features were first computed on
all voltage recordings independently. Then the rheobase of each cell was
computed as the lowest current amplitude, triggering at least one spike in
the majority of recordings of the cell. Each recording was then associated
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1314 A. Buccino et al.

Table 2: Ground-Truth Model Parameters (Nondistribution Type) and Opti-
mization Bounds.

Parameter GT value Section list Bounds Units

v_init −72 — mV
celsius 34 — °C
e_pas −74.64792 all — mV
cm 1 somatic, ais, basal — μF/cm2

cm 2 apical — μF/cm2

Ra 100 all — �-cm
g_pas 0.00000226 myelinated — S/cm2

cm 0.09091 myelinated — μF/cm2

g_pas 0.0000248 somatic, ais, apical, basal [1e−5, 6e−5] S/cm2

ek −90 somatic, ais, apical — mV
ena 50 somatic, ais, apical — mV
decay_CaDynamics_DC0 52.7290615 somatic [20, 300] ms
gamma_CaDynamics_DC0 0.01682752 somatic [5e−3, 5e−2] —
gCa_LVAstbar_Ca_LVAst 0.00412676 somatic [0, 0.01] S/cm2

gCa_HVAbar_Ca_HVA2 0.00098005 somatic [0, 0.001] S/cm2

gSKv3_1bar_SKv3_1 0.25953206 somatic [0, 1] S/cm2

gSK_E2bar_SK_E2 0.08579915 somatic [0, 0.1] S/cm2

gK_Tstbar_K_Tst 0.0108473 somatic [0, 0.1] S/cm2

gK_Pstbar_K_Pst 0.14280937 somatic [0, 0.2] S/cm2

vshiftm_NaTg 13 somatic — mV
vshifth_NaTg 15 somatic — mV
slopem_NaTg 7 somatic — mV
gNaTgbar_NaTg 0.27576985 somatic [0, 0.3] S/cm2

g_pas 0.0000248 basal [1e−5, 6e−5] S/cm2

gamma_CaDynamics_DC0 0.03485579 basal [0.005, 0.05 —
gCa_LVAstbar_Ca_LVAst 0.00055044 basal [0, 0.001 S/cm2

gCa_HVAbar_Ca_HVA2 0.0000959 basal [0, 0.0001 S/cm2

g_pas 0.0000248 apical [1e−5, 6e−5] S/cm2

cm 2 apical — μF/cm2

gamma_CaDynamics_DC0 0.00625451 apical [5e−3, 5e−2] —
gSKv3_1bar_SKv3_1 0.0000133 apical [0, 3e−3] S/cm2

vshiftm_NaTg 6 apical — mV
vshifth_NaTg 6 apical — mV
gCa_LVAstbar_Ca_LVAst 0.00016523 apical [0, 1e−3] S/cm2

gCa_HVAbar_Ca_HVA2 0.0000361 apical [0, 5e−4] S/cm2

gCa_LVAstbar_Ca_LVAst 0.00014743 ais [0, 0.01] S/cm2

gCa_HVAbar_Ca_HVA2 0.00029333 ais [0, 0.001] S/cm2

gSKv3_1bar_SKv3_1 0.26081743 ais [0, 1] S/cm2

gSK_E2bar_SK_E2 0.07743135 ais [0, 0.1] S/cm2

gK_Tstbar_K_Tst 0.16512831 ais [0, 0.2] S/cm2

gK_Pstbar_K_Pst 1.03159443 ais [0, 2] S/cm2

gNap_Et2bar_Nap_Et2 0.00231049 ais [0, 0.02] S/cm2

decay_CaDynamics_DC0 288.16009 ais [20, 300] ms
gamma_CaDynamics_DC0 0.02491751 ais [5e−3, 5e−2] —

Note: Only parameters with optimization bounds are fitted.
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1316 A. Buccino et al.

with an amplitude, expressed as a percentage of the rheobase of the cell to
which it belongs. Finally, the mean and standard deviation of the e-features
were computed across the recordings of the same stimulus and amplitude.
To perform this operation, a tolerance of 10% was added to the amplitudes.
This operation can be better understood as a running average of width 20%
of the e-feature value along the amplitude. The end result was a set of
e-features where combos e-feature name + stimulus + amplitude were
associated with a mean and standard deviation. Note that for the ground-
truth model described above, due to its deterministic nature and there-
fore lack of variance, the e-feature standard deviation was set to 5% of the
e-feature mean.

Following is a list of the e-features used as targets for optimizing and
validating the models. These e-features were chosen to fully describe the
firing pattern and shape of the APs seen in the experimental data. Ampli-
tudes were expressed as percentages of the rheobase of the cell. Refer to the
documentation of eFEL for a description of each e-feature.

The e-features used for optimization for different protocols are (total of
79 features):

IDrest (amplitudes: 150%, 250%, 300%): mean_frequency, burst_number,
adaptation_index2, ISI_CV, ISI_log_slope, inv_time_to_first_spike,
inv_first_ISI, inv_second_ISI, inv_third_ISI, inv_fourth_ISI, inv_fifth_
ISI, AP_amplitude, AHP_depth, AHP_time_from_peak, voltage_
base, Spikecount (before step), Spikecount (after step)

IV (amplitudes: −100%, −20%): Spikecount, voltage_base, voltage_
deflection, voltage_deflection_begin, steady_state_voltage_stimend,
ohmic_input_resistance_vb_ssse, decay_time_constant_after_stim,
sag_amplitude (only for −100%), sag_ratio1 (only for −100%), sag_
ratio2 (only for −100%)

APWaveform (amplitude: 290%): AP_amplitude, AP1_amp, AP2_
amp, AP_duration_half_width, AP_begin_width, AP_begin_voltage,
AHP_depth, AHP_time_from_peak

The e-features used for validations for different protocols are (total of 110
features):

firepattern (amplitudes: 120%, 200%): mean_frequency, burst_number,
adaptation_index2, ISI_CV, ISI_log_slope, inv_time_to_first_spike,
inv_first_ISI, inv_second_ISI, inv_third_ISI, inv_fourth_ISI, inv_fifth_
ISI, AP_amplitude, AHP_depth, AHP_time_from_peak

HyperDepol (amplitudes: −160%, −120%, −80%, −40%): Spikecount,
burst_number, AP_amplitude, ISI_values for the depolarized phase
of the stimulus and sag_amplitude, sag_ratio1, sag_ratio2 for the
hyperpolarized phase
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Multimodal-Fitting Approach for Single-Neuron Models 1317

sAHP (amplitudes: 150%, 200%, 250%, 300%): Spikecount, AP_
amplitude, ISI_values, AHP_depth, AHP_depth_abs, AHP_time_
from_peak, steady_state_voltage_stimend

Poscheops (amplitude: 300%): Spikecount, mean_frequency, burst_
number, adaptation_index2, ISI_CV, ISI_log_slope, inv_time_to_
first_spike, inv_first_ISI, inv_second_ISI, inv_third_ISI, inv_fourth_
ISI, inv_fifth_ISI (computed during the three pyramids indepen-
dently)

5.5 Optimization Algorithm. The optimization was performed using
the BluePyOpt python package (Van Geit et al., 2016) whose optimization
module relies on the DEAP Python package (Fortin et al., 2012). We ex-
tended the package and implemented a hybrid CMA optimization strategy
(Hansen, 2016; Damart et al., 2020) tasked to both:

• Minimize the sum of the scores defined as si = |μi
exp − f i|/σ i

exp, where
μi

exp and σ i
exp were the experimental mean and standard deviation for

e-feature i, respectively, and f i was the feature value computed on the
model to evaluate.

• Maximize the hypervolume of the Pareto front formed by the current
population of models (Bader & Zitzler, 2011).

At each generation, all models in the population of size λ = 20 were ranked
for both criteria, and a mixed rank was obtained following the formula:

rank j
mixed = (whv × rank j

hv
) + ((1 − whv ) × rank j

scores)

The weight assigned to the hypervolume ranking, whv, was set to 0.4 in our
study. Following this ranking, the μ = λ/2 first individuals were selected to
update the CMA kernel for the next generation. Note that during the com-
putation of the scores, the scores computed for the extracellular e-features
by cosine similarity (all and sections strategies) were weighed by an empir-
ically obtained factor of 2.5, compared to the intracellular ones, in order to
balance the values of intracellular and extracellular scores.

For each model, we ran 10 optimizations of 600 generations, each for a
different starting seed of the random number generator.

5.6 Experimental Data Acquisition.

5.6.1 Ethics Statement. All animal experimental protocols were approved
by the Basel-Stadt veterinary office (cantonal no. 2358) according to Swiss
federal laws (national no. 30692) on animal welfare and were carried out in
accordance with the approved guidelines.
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5.6.2 HD-MEA System. We used an in-house-developed high-density
microelectrode array (HD-MEA) system with 26,400 electrodes covering a
sensing area of around 2 × 4 mm2 (Frey et al., 2010; Müller et al., 2015). The
center-to-center electrode distance was 17.5 μm, and the electrodes were
coated with Pt-black to lower impedance and improve the signal-to-noise
ratio. The HD-MEA system can be configured to record from up to 1024
electrodes simultaneously at 20 kHz. Electrode configurations were chosen
according to the position of the target neuron.

5.6.3 Embryonic Rat Cortical Cultures. All experimental protocols involv-
ing animals were approved by the Basel-Stadt veterinary office according
to Swiss federal laws on animal welfare and were carried out in accordance
with the approved guidelines. We used rat primary neurons, obtained from
dissociated cortices of Wistar rats at embryonic day 18, following the pro-
tocol described in Ronchi et al. (2019).

Before cell plating, HD-MEA chips were sterilized with 70% ethanol
for 30 minutes. After the ethanol was removed, the chips were rinsed
three times with sterile tissue-culture-grade water. The HD-MEA chips
were coated with a layer of 0.05% polyethylenimine (Sigma-Aldrich,
Buchs, Switzerland) in borate buffer to make the surface more hydrophilic.
Next, we added a layer of laminin (Sigma-Aldrich, Buchs, Switzerland,
0.02 mg/mL) in neurobasal medium (Thermo Fisher Scientific, Waltham,
MA) on the HD-MEA and incubated for 30 minutes at 37°C to facilitate cell
adhesion. We used trypsin with 0.25% EDTA (Gibco, Thermo Fisher Scien-
tific), followed by trituration, to dissociate embryonic cortices of E-18 Wistar
rats enzymatically and then seeded 15,000 to 20,000 cells in 7 μL on top of
the electrode arrays. The plated chips were incubated for 30 minutes at 37°C
before adding 2 mL of plating medium. The plating medium consisted of
neurobasal, supplemented with 10% horse serum (HyClone, Thermo Fisher
Scientific), 0.5 mM Glutamax (Invitrogen, Thermo Fisher Scientific), and 2%
B-27 (Invitrogen, Thermo Fisher Scientific). After three days, 50% of the
plating medium was replaced by the BrainPhys neuronal medium (Stem
Cell Technologies) growth medium. The procedure was repeated twice a
week. The chips were kept inside an incubator at 37°C and 5% CO2. All
experiments were conducted between days in vitro (DIVs) 18 and 24.

5.6.4 Patch-Clamp Solutions. The intracellular patch-clamp solution con-
sisted of potassium-gluconate (110 mM), phosphocreatine (10 mM), KCl
(10 mM), hepes (10 mM), GTP (0.3 mM), ATP-Mg (4 mM) dissolved in
nanopure water (chemicals purchased from Sigma-Aldrich, Buchs, Switzer-
land). The pH was adjusted to 7.2–7.3 by adding potassium hydroxide at
5 M. On each experimental day, an aliquot was thawed, Alexa Fluor 594
(50 μM; Sigma-Aldrich) was added, and the final solution was filtered us-
ing a Millex GV 0.22 μm filter.
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The extracellular artificial cerebrospinal fluid (aCSF) solution contained
NaCl (125 mM), KCl (2.5 mM), MgCl2·6H2O (1 mM), NaH2PO4 (1.25 mM),
and CaCl2·2H2O (2 mM). On the day of the experiment, 2 L of 1× aCSF was
prepared by combining 200 mL of a 10× stock solution with 1 L nanopure
water, dissolving 9 g of glucose and 4.2 g of NaHCO3, and topping up to
2 L with nanopure water. This solution was bubbled with carbogen (5%
CO2 / 95% O2) and heated to a temperature of around 34°C throughout the
experiment.

The combination of intra- and extracellular solutions yielded a liquid
junction potential (LJP) of approximately 14 mV that we used to correct the
values of the recorded membrane potentials.

5.6.5 Simultaneous HD-MEA and Patch-Clamp Recording. The experi-
ments were conducted with a custom patch-clamp rig with an upright
microscope equipped with the HD-MEA recording unit. The patch-clamp
system included a MultiClamp 700B amplifier (Axon Instruments, Victo-
ria, Australia), Axon Digidata 1440A (Axon Instruments), PatchStar Mi-
cromanipulator (Scientifica, Uckfield, U.K.), and an Olympus BX61WI
microscope (Olympus, Tokyo, Japan). The WinWCP software was used to
control the patch-clamp system and acquire the intracellular recordings.
Glass micropipettes (4–8 M�) were pulled using a P-1000 micropipette
puller (Sutter Instruments, Novato, CA). Whole-cell current-clamp record-
ings were low-pass-filtered at 10 kHz and digitized at 20 kHz. After whole-
cell current-clamp mode was established with a target cell, the holding
current was manually adjusted to obtain a resting membrane potential of
around −70 mV (note that with LJP correction, this corresponds to −84 mV).
Brief current pulses to induce action potentials were then delivered to the
neuron in order to assess that the extracellular signals reliably showed
spikes. We discarded cells with extracellular spikes lower than 50 μV. The
patch-clamp and HD-MEA systems were synchronized by sending TTL
pulses from the patch-clamp output channel to the field-programmable-
gate-array (FPGA) board controlling the HD-MEA device at the beginning
of each sweep. Next, we roughly estimated the patched neuron’s rheobase
current using increasing step pulses of 270 ms duration. The estimated
rheobase current was used to automatically generate the eCode protocol
files that were then injected into the neuron. The eCode protocols were re-
peated during four to six runs (each run lasted approximately 200 s).

5.6.6 Confocal Imaging. After the electrophysiology data acquisition, the
chip was mounted under a Nikon NiE upright microscope, equipped with
a Yokogawa W1 spinning disk scan head, an ORCA-Flash4.0 V2 digital
CMOS camera (Hamamatsu Photonics, Tokyo, Japan), and a 60×/1.00 NA
water-objectives (Nikon, Tokyo, Japan). Prior to imaging, we co-registered
the location of the electrodes to the microscope stage position using the
stage positions of three electrodes at the vertices of the sensing area. The
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confocal channel for imaging had an excitation laser of 561 nm and an emis-
sion filter of 609/54 nm. The patched neurons were then imaged using mul-
tiple tiles covering their entire morphology. For each tile, a z-stack with 0.4
μm z-step was acquired. The x-y resolution of the images was 112.5 nm. We
acquired 6 × 4 tiles and 66 z images for cell 1, and 7 × 4 tiles and 61 z images
for cell 2.

5.6.7 Fixation and Staining. After imaging, the culture was fixated by
removing the remaining medium and adding 1 mL of a 4% paraformalde-
hyde (PFA, Thermo Fisher Scientific, MA) solution for 10 minutes. Sub-
sequently, the chip was washed three times with PBS for 10 minutes
with gentle agitation. Permeabilization of the membrane and blocking of
unspecific binding sites were performed in one step by adding 0.5% Tri-
ton X-100 (Sigma-Aldrich, Buchs, Switzerland) to the blocking solution
(PBS; Thermo Fisher Scientific) with 10% normal donkey serum (Jackson
ImmunoResearch, West Grove, PA), 0.02% Na-Az (Sigma-Aldrich), 1%
bovine serum albumin (Sigma-Aldrich) for 30 minutes. The cultures were
then stained for AIS-specific antibodies (Ankyrin-G and Kv7.3) to identify
the AIS tract for the morphology reconstruction. The primary antibodies
were diluted in the reaction solution (PBS with 3% normal donkey serum,
0.02% Na-Az, 1% bovine serum albumin, 0.05% Triton X-100) and added
to the culture. After 2 hours at room temperature on a shaker, the primary
antibody solution was aspirated, and the culture was washed thrice with
PBS. The secondary antibodies were diluted in fresh reaction solution and
added to the culture. After 4 hours at room temperature on a shaker, the sec-
ondary antibody solution was removed, and the culture was washed thrice
with PBS. Until imaging, the culture was kept in PBS at 4°C. The antibod-
ies used in this study included rabbit-α-Kv7.3 (Alomone Labs, Jerusalem,
Israel), guinea pig-α-AnkG (Synaptic Systems, catalog number 386 004),
donkey-α-rabbit Alexa Fluor Plus 488 (Thermo Fisher Scientific), donkey-
α-guinea pig Alexa Fluor 647 (Jackson ImmunoResearch).

5.7 Experimental Data Analysis.

5.7.1 Electrophysiology. The combined patch-clamp and HD-MEA sig-
nals were analyzed using SpikeInterface (Buccino et al., 2020) and NEO

(Garcia et al., 2014) to interface with extracellular and intracellular record-
ings, respectively.

The patch-clamp and extracellular recordings for each run were pro-
cessed separately. The TTL pulses, sent by the patch-clamp system to the
HD-MEA FPGA, were detected in both data streams and used to synchro-
nize the intra- and extracellular traces (all patch-clamp protocols for each
run were concatenated at this time). We removed extracellular channels
that displayed saturation of the amplifiers (denoising) and filtered the sig-
nals with a third-order Butterworth filter with cutoff frequencies at 300 and
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6000 Hz. Next, the patch-triggered average was used to compute extracel-
lular templates: intracellular action potentials were detected from the patch
signals (the PosCheops protocol was discarded because of the strong spike
waveform modulation due to the high-frequency firing rate) and used to ex-
tract extracellular waveforms, which were further centered around the ex-
tracellular peaks on the channel with the largest signal amplitude to correct
for possible mismatches between the intra- and extracellular peak times.
To obtain a cleaner template, we discarded waveforms, whose amplitudes
were over ±2 standard deviations away from the median amplitude on the
channel featuring the largest signal amplitude. The template was then com-
puted as the sample-wise median of the waveforms (we used median be-
cause it is less sensitive to noise outliers). Templates were extracted for each
run, and the template, which yielded the largest number of channels after
denoising, was used for downstream analyses.

5.7.2 Imaging and Morphology Reconstruction. We employed Huygens
Professional (version 21.10, Scientific Volume Imaging, the Netherlands,
http://svi.nl) to perform the image deconvolution and stitching. Specifi-
cally, we first deconvolved images using the CMLE algorithm with SNR:12
and 40 iterations. Subsequently, the deconvolved images were stitched to-
gether with an overlap of 10%, using the circular vignetting correction
model.

We used the SNT plug-in in Fiji (Arshadi et al., 2021) to reconstruct
the 3D morphology of the neurons. The soma position was reconstructed
as a single point by merging all the branches originating from it to the
same root. Neurites were tagged as “soma,” “dend,” and “axon.” The
AIS tract was identified using the staining images and it was labeled as
“apic” since the SWC format that we used to export the morphology did
not formally support the axon initial segment tag. Subsequently we rela-
beled the AIS correctly at instantiation in BluePyOpt. The radii of the re-
constructed paths were fitted using the Refine/Fit tool and exported to
SWC format. The raw morphology was preprocessed with a custom Python
function (https://github.com/alejoe91/multimodalfitting/blob/master/
multimodalfitting/imaging_tools/correct_swc.py) that interpolated miss-
ing radii (below or equal to 0.1 μm) and smoothed the radii of each path
with a 15-sample moving average. The imaging data were also used to
estimate the distance between the center of the soma and the underlying
HD-MEA plane.

5.7.3 Experimental Model Definition and Feature Selection. The models
based on experimental data were built using a similar set of mechanisms
and boundaries used for the ground-truth model. However, due to the
early-development stage of the cultured neurons and the absence of clearly
defined basal and apical dendrites, all dendrites were considered the same
and expressed all the basal mechanisms (no apical dendrites were defined).
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Table 4: Experimental Model Parameters (Nondistribution Type) and Opti-
mization Bounds.

Parameter Value Section list Bounds Units

v_init −84 — mV
celsius 34 — °C
cm 1 somatic, axonal, ais — μF/cm2

cm 2 basal — μF/cm2

Ra 100 all — �-cm
ek −90 all — mV
ena 50 all — mV
e_pas — all [−95, −60] mV
g_pas — all [1e−05, 6e−05] S/cm2

decay_CaDynamics_DC0 — somatic, axonal, ais [20, 300] ms
gamma_CaDynamics_DC0 — all [5e−3, 5e−2] —
gCa_HVAbar_Ca_HVA2 — somatic, axonal, ais [0, 0.001] S/cm2

gCa_HVAbar_Ca_HVA2 — basal [0, 0.0001] S/cm2

gCa_LVAstbar_Ca_LVAst — somatic, axonal, ais [0, 0.01] S/cm2

gCa_LVAstbar_Ca_LVAst — basal [0, 0.001] S/cm2

vshiftm_NaTg 6 basal — mV
vshifth_NaTg 6 basal — mV
gSKv3_1bar_SKv3_1 — basal [0, 3e−3] S/cm2

vshiftm_NaTg 13 somatic — mV
vshifth_NaTg 15 somatic — mV
slopem_NaTg 7 somatic — mV
gNaTgbar_NaTg — somatic [0, 0.3] S/cm2

gK_Pstbar_K_Pst — somatic [0, 0.2] S/cm2

gK_Tstbar_K_Tst — somatic [0, 0.1] S/cm2

gSKv3_1bar_SKv3_1 — somatic, axonal, ais [0, 1] S/cm2

gSK_E2bar_SK_E2 — somatic, axonal, ais [0, 0.1] S/cm2

gNap_Et2bar_Nap_Et2 — axonal, ais [0, 0.02] S/cm2

gK_Pstbar_K_Pst — axonal, ais [0, 2] S/cm2

gK_Tstbar_K_Tst — axonal, ais [0, 0.2] S/cm2

gNa16bar_Na16 — axonal [0, 8] S/cm2

gkbar_Kd — axonal [0, 2] S/cm2

constant_decay — meta [−0.1, 0] —

Note: Only parameters with optimization bounds are fitted. The constant_decay param-
eter is a meta-parameter that controls the gNaTgbar_NaTg distribution in Table 5.

The axon-bearing dendrite (ABD) was also treated as a basal dendrite. Fur-
thermore, an axonal section was added to the model to represent the un-
myelinated axon. In total, the experimental models had 42 free parameters
to optimize. Tables 4 and 5 list all the parameters for the experimental cell
models, including their values (for fixed parameters), boundaries (for free
parameters), and distributions (see Table 5).
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Appendix: Supplementary Figures

Figure 9: Visualization of channels selected for the single strategy (top row) and
sections strategy (bottom row) for the ground truth (A–D), cell 1 (B–E), and cell 2
(C–F) models.
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Figure 10: Analysis of cell 2 EAP mismatch. To further characterize the EAP
mismatch, we virtually patched the cell 2 all model at the soma, AIS, and at basal
dendrite. The left panel shows the location of the virtual pipettes, the cell mor-
phology, and the overlaid EAP signals. The associated transmembrane currents
Im, at the top right (normalized), show different characteristics: soma (red), initial
small positive phase, followed by a strong negative signal and a repolarization
positive phase; basal dendrite (brown), strong initial positive upstroke and a long
negative phase afterward; AIS (purple), early strong negative phase going back
to zero without a positive phase. Looking at the zoomed-in EAP signals, we be-
lieve that the mismatch can be explained by an underestimation of the somatic
contribution and an overestimation of the AIS contribution. The upstroke of the
experimental EAP close to the basal dendrite (black trace in the green box on
the right) seems to coincide with the somatic negative peak, rather than the AIS
one. The initial negative phase instead is time-locked to the AIS negative peak. A
smaller AIS contribution paired with a stronger somatic current could therefore
explain the experimental trace: the positive upstroke in the green box would be
the result of the larger return current associated with the somatic inward cur-
rent. To further motivate this hypothesis, the blue box shows the EAP on an
electrode close to the AIS. The experimental EAP, different from the modeled
ones, shows a stronger contribution of the soma (late negative peak), despite
being closer to the AIS compartment.

Data and Code Availablility

All the data and code used in this article are openly available. The con-
tributions to the BluePyOpt (https://github.com/BlueBrain/BluePyOpt)
package are summarized in the pull request (https://github.com/Blue
Brain/BluePyOpt/pull/385) and included in the 1.13.88 version release.
The script, notebooks, and preprocessed data used for optimizations
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(including cell morphologies, feature and protocol files, extracellular tem-
plates and probe files) are available on this GitHub repo: https://github
.com/alejoe91/multimodalfitting. The reconstructed cell morphologies are
also available through the NeuroMorpho.org (Ascoli et al., 2007) portal:
https://neuromorpho.org/neuron_info.jsp?neuron_name=Buccino_Hierl
emann_Cell1 and https://neuromorpho.org/neuron_info.jsp?neuron
_name=Buccino_Hierlemann_Cell2. Finally, the raw electrophysiology
data (simultaneous patch-clamp and extracellular HD-MEA recordings)
are available in Neurodata Without Borders (NWB) format (Teeters et al.,
2015; Rübel et al., 2021) on the DANDI archive: https://dandiarchive
.org/dandiset/000294.
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axon initial segment to action potentials recorded extracellularly. Eneuro, 5(3).

Thome, C., Kelly, T., Yanez, A., Schultz, C., Engelhardt, M., Cambridge, S. B., . . .
Egorov, A. V. (2014). Axon-carrying dendrites convey privileged synaptic input
in hippocampal neurons. Neuron, 83(6), 1418–1430. 10.1016/j.neuron.2014.08.013

Tveito, A., Jæger, K. H., Lines, G. T., Paszkowski, L., Sundnes, J., Edwards, A. G., . . .
Einevoll, G. T. (2017). An evaluation of the accuracy of classical models for com-
puting the membrane potential and extracellular potential for neurons. Frontiers
in Computational Neuroscience, 11, 27. 10.3389/fncom.2017.00027

Ujfalussy, B. B., Makara, J. K., Branco, T., & Lengyel, M. (2015). Dendritic nonlinear-
ities are tuned for efficient spike-based computations in cortical circuits. eLife, 4,
e10056. 10.7554/eLife.10056

Van Geit, W., Gevaert, M., Chindemi, G., Rössert, C., Courcol, J.-D., Muller, E. B.,
. . . Markram, H. (2016). BluePyOpt: Leveraging open source software and cloud
infrastructure to optimise model parameters in neuroscience. Frontiers in Neuroin-
formatics, 10, 17. 10.3389/fninf.2016.00017

Weaver, C. M., & Wearne, S. L. (2006). The role of action potential shape and param-
eter constraints in optimization of compartment models. Neurocomputing, 69(10–
12), 1053–1057. 10.1016/j.neucom.2005.12.044

Received March 15, 2023; accepted February 20, 2024.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/7/1286/2378076/neco_a_01672.pdf by guest on 12 June 2024

https://doi.org/10.1073/pnas.0702041104
https://doi.org/10.1038/367069a0
https://doi.org/10.1016/j.neuron.2015.10.025
https://doi.org/10.1016/j.neuron.2014.08.013
https://doi.org/10.3389/fncom.2017.00027
https://doi.org/10.7554/eLife.10056
https://doi.org/10.3389/fninf.2016.00017
https://doi.org/10.1016/j.neucom.2005.12.044

