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Adaptive Observer from Body-Frame Relative Position Measurements
for Cooperative Localization

Nicola De Carli, Esteban Restrepo, Paolo Robuffo Giordano

Abstract— In this work, we propose an observer scheme to
estimate in a common frame the position and yaw orientation of a
group of robots from body-frame relative position measurements.
The state of the robots is represented by their position and
yaw orientation. The graph representing the sensing interaction
among the robots is directed and it is only required to be weakly
connected in addition to satisfy certain persistency of excitation
conditions. Our proposed observer scheme consists of three
distinct components. Firstly, an adaptive observer is used to
estimate the relative yaw corresponding to each persistently
exciting edge. Subsequently, an observer is used to estimate the
yaw orientation in a common frame based on these estimated
relative yaws. Finally, a third observer is employed to estimate
the positions in this common frame, using the estimated yaw
orientations. The stability of the whole system is investigated
and numerical simulations validate the theoretical findings.

I. INTRODUCTION

Cooperative localization from relative sensing is a relevant
topic in the multi-robot community [1]–[6]. It is especially
important to deploy highly autonomous systems in unstruc-
tured environments, such as inside buildings, underwater,
underground, or even in deep space, where centralized sensing
facilities, such as GPS and Motion Capture, are not available
and the robots can only rely on local onboard sensing and
communication with neighboring robots. Cooperative control
challenges often demand substantial coordination among
robots, mandating a shared comprehension of specific physical
quantities. This often entails establishing a consensus on
a shared frame to facilitate the exchange of information
initially captured in their local frames (e.g. for mapping or
target tracking applications). Absence of shared orientation
necessitates either global orientation estimation [1]–[4] or
coordinate frame alignment [7], [8]. Previous studies primarily
address orientation estimation when relative orientation mea-
surements are available [1]–[4], [9]. Fewer works, however,
tackle scenarios where solely body-frame relative position or
bearing measurements are accessible [5], [10]–[12]. Typically,
agents’ orientation can be estimated uniquely up to a
coordinated rotation. Estimating this unknown coordinated
rotation becomes feasible if at least one agent in the network
measures its orientation relative to the world frame.

In prior works [1], [2], [9], [13], algorithms are proposed
to estimate the global orientation of individual agents from
relative orientation measurements, demonstrating almost
global convergence. These algorithms rely on defining linear
dynamics depending on a matrix which is shown to be similar
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to a Laplacian matrix. The authors consider both the case
in which the orientation belongs to the unit sphere S1 [1]
and the case in which the orientation belongs to SO(3)
[2], [9], [13]. Addressing noise-affected relative orientation
measurements, [4] introduces a locally optimal maximum
likelihood estimator.

In another approach by [5], an observer estimates the
position and yaw orientation of a group of robots in a
shared frame using body-frame bearing measurements. This
method uses gradient descent for infinitesimally bearing
rigid formations, exhibiting local convergence. Meanwhile,
works such as [10], [11], present algorithms for estimating
orientation in a shared frame from body-frame bearing
measurements, relying on an undirected sensing graph to
recover relative orientations among robots from reciprocal
measurements. In [12], an algorithm based on distributed
Riemannian gradient descent was proposed to estimate the
full 3D rotation in a specific setup in which either the edges
are symmetric (i.e. undirected sensing graph) or for any edge
eij there is an auxiliary node k which is measured by both
the robots i and j.

In this work, we introduce an observer to estimate the
yaw orientation and positions of a fleet of Unmanned Aerial
Vehicles (UAVs) operating in R3 × S1 using body-frame
relative position measurements. While our approach assumes
the communication graph to be undirected, it differs from
previous works [10]–[12] by not requiring the sensing graph
to be undirected as well. This relaxed assumption is crucial for
practical robotic applications, considering constraints posed
by sensors with limited field of view (FoV). Instead, we
introduce a persistency of excitation (PE) condition, requiring
the robots to have non-zero velocity on the x-y plane, which
is a mild assumption in robotic applications. Our scheme
comprises three distinct steps:

1) An adaptive observer estimating relative yaw correspond-
ing to persistently exciting edges derived from body-
frame relative position measurements.

2) A modification of the observer introduced in [1] to
estimate the robots’ yaw in a shared frame from the
estimated relative yaws. Notably, our adaptation accounts
for time-varying orientation and imperfect measurements,
unlike [1].

3) An observer estimating positions in a shared frame,
using estimated yaw orientations and body-frame relative
position measurements.

We point out that considering only planar orientation is
justified by the fact that typically, the attitude of UAVs



can be retrieved from Inertial Measurement Units (IMUs)
measurements using well-established observers such as [14].
However, in scenarios like indoors, the reliability of the
magnetometer, which offers yaw measurements, can diminish,
resulting in yaw estimation drift.

The paper is organized as follows. In section II, we give
the necessary preliminaries and the statement of the problem.
In section III, we present the proposed observer and we study
its stability properties. In section IV and V respectively, we
show the simulation results and we give the conclusions and
future directions.

II. PRELIMINARIES

Similarly to previous works [5], [7], we consider a group
of N UAVs modeled as simple first order kinematic system
with known body-frame velocities and yaw rate commands
ui := [v⊤

i ωi]
⊤ ∈ R4:[

ṗi
ψ̇i

]
=

[
Ri 0
0 1

] [
vi
ωi

]
(1)

where pi ∈ R3 is the robot position, ψi ∈ (−π, π] is the
yaw angle and Ri := Rz(ψi) ∈ SO(3) is the associated
rotation matrix around the z-axis, with SO(3) := {R ∈
R3×3|R⊤R = I3,det(R) = 1}. Additionally, we assume
vi ∈ Υi ⊂ R3 (and ωi ∈ Wi ⊂ R), where Υi (and
Wi) is a compact set, and both vi and ωi are continuously
differentiable.

Each robot is assumed to be capable of exchanging data
over a communication channel and to have a camera sensor
and a sensor providing relative distance measurements (e.g.,
an RGB-D camera). These sensors combined provide the
relative position of robot j in the i-th robot body-frame:

ipij := R⊤
i (pj − pi) (2)

We model the interactions among the robots using a directed
sensing graph Gs := (V, Es) and an undirected communica-
tion graph Gc := (V, Ec), where V = {0, 1, ..., N − 1} is
the vertex set and E∗ ⊆ V × V is the edge set. A directed
sensing edge esk = (i, j) ∈ Es implies that robot i can
sense robot j, the opposite is not necessarily true. This
assumption is motivated by the fact that employing a camera
sensor naturally induces a directed sensing graph due to
FoV limitations. We consider the communication graph to
correspond to the undirected counterpart of the sensing graph,
hence, if robot i can measure robot j then the two robots
can communicate in a bidirectional way and there exist both
the edges eck = (i, j) ∈ Ec and eck = (j, i) ∈ Ec.

III. OBSERVER DESIGN

For robots to be able to cooperate, it is of paramount impor-
tance to be localized one relative to the other. Furthermore, it
is also highly desirable to share a common frame in which to
express shared physical quantities to facilitate the exchange
of locally available information. In this section, we present
a cascaded observer designed to estimate the position and
orientation of robots within a common frame.

The proposed observer is composed by the following three
systems in cascade: (i) an adaptive observer which is used

to estimate the relative yaw orientation ψij := ψj − ψi,
among each couple of neighboring robots from the body-
frame relative position measurements, (ii) an observer which
uses the estimated relative yaws to estimate the yaw ψi of
each robot in a common frame and (iii) an observer which
uses the estimated yaw measurements in a common frame
and the body-frame position measurements to estimate the
position pi of each robot in a common frame. The stability
of each observer and of their interconnection is studied.

A. Relative State Observer

In this section, we formulate the adaptive observer used
to estimate the relative yaw orientation among each pair of
neighboring robots. First of all, we consider the relative state
among two robots given by (ipij , ψij) and we write down
the relative state dynamics:

iṗij = −vi − Se3ωi
ipij +

iRjvj

ψ̇ij = ωij
(3)

where Se3 := [e3]×
1, iRj := R⊤

i Rj = Rz(ψij) and
ωij := ωj − ωi.

We point out that ipij is directly measured, vj and ωj can
be communicated, the only unknown is ψij , which affects
the dynamics of ipij . The idea is then to reformulate the
dynamics of ipij for the relative orientation to appear in a
more convenient way by changing parameterization so that we
can formulate an adaptive observer. In particular, we define
zψij := [cos(ψij) sin(ψij)]

⊤ ∈ S1, which is a representation
of the relative orientation among the two robots using sphere
coordinates, with Sd := {x ∈ Rd+1| ∥x∥ = 1}.

We can now rewrite the relative position dynamics as:
iṗij = −vi − Se3ωi

ipij + vjze3 + V̄jzψij (4)

with

V̄j(t) :=

[
vjx(t) −vjy(t)
vjy(t) vjx(t)

0 0

]
(5)

and vjx, vjy and vjz representing respectively the x, y and
z components of vj . It is worth noting that, as V̄j is a
linear transformation of vj , and given the compactness of Υj
and the continuous differentiability of vj , V̄j is uniformly
bounded and globally Lipschitz over Υj . Consequently, both∥∥V̄j(t)∥∥ and

∥∥∥ ˙̄Vj(t)
∥∥∥ are uniformly bounded. Contrary to

the basic adaptive setup, the unknown zψij is not constant,
but its dynamics are given by

żψij =

[
−ωij sin(ωijt)
ωij cos(ωijt)

]
= Ωijzψij (6)

with skew-symmetric Ωij :=
[
0 −ωij
ωij 0

]
.

Then, we formulate an adaptive observer as follows:
i ˙̂pij = −vi − Se3ωi

ipij + vjze3 + V̄j ẑψij − kpe
iepij

˙̂zψij = Ωij ẑψij − kψV̄
⊤
j
iepij

(7)

with iepij =
ip̂ij − ipij and kpe, kψ > 0.

1[·]× is defined such that [x]×y = x× y is the vector cross product.



Moreover, if both the directed edges (i, j) and (j, i) exist,
the update of the relative yaw can benefit from both edges.
One can consider that zψji = Zzψij , with Z :=

[
1 0
0 −1

]
.

Then, the update for the bidirectional edges can be written
as:

i ˙̂pij = −vi − Se3ωi
ipij + vjze3 + V̄j ẑψij − kpe

iepij
j ˙̂pji = −vj − Se3ωj

jpji + vize3 + V̄iZẑψij − kpe
jepji

˙̂zψij = Ωij ẑψij − kψ
(
V̄ ⊤
j
iepij +ZV̄ ⊤

i
jepji

) (8)

Remark 1. We point out that, from two reciprocal measure-
ments, if pj − pj is not aligned with the z-axis, it is also
possible to algebraically compute the relative yaw among the
two robots. However, since, in practice, measurements are
affected by noise, we avoid the algebraic computation.

In the following stability analysis, we consider the case
of a single directed edge, but the proof for the bidirectional
edge follows the same lines.

We define the yaw error eψij := ẑψij − zψij , where eψij
is the chordal distance on S1. Then, the error dynamics are
described by the following linear time-varying system:[

iėpij
ėψij

]
=

[
−kpeI3 V̄j
−kψV̄ ⊤

j 0

] [
iepij
eψij

]
+

[
0

Ωijeψij

]
(9)

Theorem 1. Since
∥∥V̄j(t)∥∥ and

∥∥∥ ˙̄Vj(t)
∥∥∥ are uniformly

bounded and assuming that, there exists T, µ > 0, such that
V̄j(t), as given by (5), satisfies the persistency of excitation
condition ∫ t+T

t

V̄ ⊤
j (τ)V̄j(τ) dτ ⪰ µI2 ∀t ≥ 0, (10)

then, (epij , eψij ) = (0,0) is a globally exponentially stable
equilibrium point of (9).

Proof. The proof uses conventional adaptive control rea-
soning [15], [16]. We outline the main steps demonstrat-
ing that the dynamics of zψij do not impact the conver-
gence proof. Consider the quadratic Lyapunov function
V (iepij , eψij ) :=

1
2
ie

⊤
pij

iepij +
1

2kψ
e⊤ψijeψij . Its derivative

is given by

V̇ = ie
⊤
pij V̄jeψij − kpe

∥∥∥iepij∥∥∥2

− e⊤
ψij V̄

⊤
j
iepij

+
1

kψ
e⊤
ψijΩijeψij = −kpe

∥∥∥iepij∥∥∥2

≤ 0
(11)

where we used the fact that Ωij is skew-symmetric. The
negative semi-definiteness of V̇ , implies uniform stability
of the origin. Leveraging Barbalat’s lemma demonstrates
convergence to zero of epij . The PE condition (10) ensures
convergence to zero of the error eψij . Global exponential
stability follows from the linear time-varying nature of the
system (see the Persistency of Excitation lemma in [15]).

Remark 2. Condition (10) is satisfied if the velocity on the
xy-plane is non-zero for a time interval of non-zero measure
over each period T . In fact,

V̄j(t)
⊤V̄j(t) =

[
v2jx(t) + v2jy(t) 0

0 v2jx(t) + v2jy(t)

]
, (12)

which is clearly positive definite if the velocity on the xy-
plane is non-zero.

Remark 3. We point out that, given the update law (8) for
ẑψij , in presence of PE, the error eψij will asymptotically
go to zero, but the norm of ẑψij will not necessarily be 1
at each instant, meaning that it will not represent a valid
orientation. One can, anyway, extract the closest angle ψij
representing the orientation after renormalizing ẑψij .

B. Common Frame Yaw Observer

In the preceding section, we introduced an observer
able to estimate the relative orientation among neighboring
robots. While knowledge of their relative orientation allows
for coordination between two robots, it often falls short,
necessitating awareness of position and orientation within
a shared frame. Among its advantages, for instance, is the
ability to adapt to a time-varying graph; upon the creation of
a new edge, two robots can initialize their relative orientation
in an informed way.

To estimate the yaw orientations in a common frame,
we leverage the algorithm proposed in [1], designed for
estimating the yaw within a shared frame based on relative
yaw measurements. In our context, we substitute the relative
yaw measurements with estimated relative yaw orientations
obtained using (8) and, moreover, we consider time-varying
orientations.

In the design of this observer, we represent the orientation
of the i-th robot as a unit complex number zi := eιψi ∈
C, where ι =

√
−1, and, similarly, the relative orientation

between two robots as zij := eιψij= [1 ι] zψij ∈ C. While
equivalent to the representation used in the previous section,
we adopt this representation for analytical simplicity of the
proof and coherence with [1].

The objective of the observer is articulated as follows: for
a common complex value α ∈ C and robot orientations zi(t),
devise an estimation law such that ∠ẑi → ∠zi + ∠α ∀i as
t→ ∞, i.e. the estimated robot orientations should converge
to the real ones up to a common rotation.

The proposed estimation law takes the form:

˙̂zi = ιωiẑi + kz
∑
j∈Ni

(z̄ij ẑj − ẑi) (13)

where kz > 0 and z̄ij represents the complex conjugate of zij .
It differs with respect to [1] for the fact that the orientation of
the robots is time-varying. Defining ẑ :=

[
ẑ1, ..., ẑN

]⊤
and

ω :=
[
ω1, ..., ωN

]⊤
, the observer dynamics can be written

in matrix form as:

˙̂z = ιdiag(ω)ẑ − kzLcẑ = (ιdiag(ω)− kzLc)ẑ (14)

where

(Lc)ij :=


|Ni| if i = j

−z̄ij if j ∈ Ni

0 otherwise
(15)

and |Ni| is the cardinality of the neighbors set of the i-th
robot.



Now, we present the following Proposition, introduced in
[1] and, to better understand the following developments, we
provide a sketch of the proof.

Proposition 1 ( [1]). Zero is a simple eigenvalue of Lc(t) with
a corresponding eigenvector z(t) if and only if the associated
digraph has a spanning tree. Moreover, every eigenvalue,
except for the zero eigenvalue, has strictly negative real part.

Define the matrix Dz := diag(z1, ..., zN ) ∈ CN×N 2.
Notice that, since zi is a unit complex number, then |zi| = 1.
Moreover, Dz is a nonsingular matrix and its inverse is
D−1
z = DH

z , where we indicated with H the conjugate
transpose. As Dz is a nonsingular matrix, we define the
similarity transformation L = DH

z LcDz . Since Dz is a
diagonal matrix, the off-diagonal entries of L are:

(L)ij =
(
DH
z

)
ii
(Lc)ij (Dz)jj = −e−ιψie−ιψij eιψj

= −eι(−ψi−ψij+ψj) = −eι0 = −1
. (16)

In contrast, the diagonal entries are invariant under this
transformation (i.e. e−ιψi |Ni|eιψi = |Ni|). This demonstrates
that, L is the classical unweighted Laplacian matrix, which,
as well-known [17], [18], is positive semi-definite and if the
graph has a spanning tree, then 0 is a simple eigenvalue
corresponding to the right eigenvector 1N =

[
1, ..., 1

]⊤ ∈
RN . Since Lc and L are similar matrices, then zero is
a simple eigenvalue of Lc as well. Furthermore, since
0 = L1N = DH

z LcDz1N = DH
z Lcz, it follows that, z

is the right eigenvector associated to the zero eigenvalue.

Remark 4. From (8), each robot gets an estimate of the
relative orientation with respect to both the in- and out-
neighboring robots in the directed graph Gs. Hence, the
Laplacian L corresponds to the undirected graph Gc and the
condition for zero to be a simple eigenvalue of Lc reduces
to the graph Gc being connected.

The following theorem extends the one from [1] to the
case in which the yawrate of the robots may be different
from zero.

Theorem 2. The observer (14) globally exponentially con-
verges to ẑ(t) = (zH(0)ẑ(0)/N)z(t), if and only if the
graph is connected.

Proof. Consider the change of coordinates ẑ = Dzy. Notice
that, yi = z̄iẑi corresponds to the rotation error on S1, where
yi = 1 represents the identity rotation zi = ẑi. Unlike [1], we
consider non-zero yaw rates for the robots, resulting in (i) an
additional term in the dynamics (14) and (ii) a time-varying
change-of-coordinates matrix. Consequently:

˙̂z = Dzẏ + Ḋzy = Dzẏ + ιdiag(ω)diag(z)y

= Dzẏ + ιdiag(ω)Dzy
. (17)

From (17) and (14)

ẏ = −kzDH
z LcDzy + ιDH

z diag(ω)Dzy − ιDH
z diag(ω)Dzy

= −kzLy
(18)

2diag(·) represents a diagonal matrix of the input arguments and
blkdiag(·) represents a block diagonal matrix of the input arguments

for which the consensus subspace {y1 = y2 = ... = yN}
is a globally exponentially stable equilibrium set [19]. In
particular, since L is a symmetric Laplacian, y(t) →
(1TNy(0)/N)1N , which corresponds to the same rotation
error for each angle ẑi, i.e. 1TNy(0)/N = α. By applying
again the change of coordinates:

ẑ(t) → Dz(t)

(
1

N
1TNy(0)

)
1N

=

(
1

N
1TNDz(0)

H ẑ(0)

)
Dz(t)1N =

(
1

N
zH(0)ẑ(0)

)
z(t)

(19)
We also note that, ẑ(t) = 0 is an undesired equilibrium of
the system, as it does not represent a valid orientation. But
ẑ(t) → 0 if and only if zH(0)ẑ(0) = 0.

The stability proof in Theorem 2 relies on Proposition
1, assuming perfect measurements zij . However, using ẑij
from (8) in place of zij may render the estimated relative
orientations unrealizable. Consequently, the existence of a
z∗ :=

[
z∗1 . . . z∗N

]⊤ ∈ CN compatible with all estimated
ẑij ∀(i, j) ∈ E is not guaranteed. Specifically, within a graph
containing cycles, while (16) may hold for edges within a
spanning tree, this might not hold for the remaining edges
outside the spanning tree.

Let us denote L̂c as the matrix derived similarly to (15)
but using the estimated ẑij and L̂ := DH

z∗L̂cDz∗ , in which
Dz∗ := diag(z∗1 , ..., z

∗
N ). For edges within cycles, instead of

(16), we might encounter
(
DH
z∗L̂cDz∗

)
ij
= −eιψ̃ij where

ψ̃ij = ψ∗
j − ψ∗

i − ψ̂ij , with ψ∗
i = ∠z∗i and ψ∗

j = ∠z∗j .
Consequently,

(
L̂
)
ij

:=


|Ni| if i = j

−1 if (i, j) ∈ Gτ
−eιψ̃ij if (i, j) ∈ Gc
0 otherwise

(20)

where we used Gτ and Gc to denote respectively a subgraph of
Gc representing the considered spanning tree and a subgraph
representing the remaining cycle edges. As eιψ̃ij = e−ιψ̃ji

and |eιψ̃ij | = 1, L̂ emerges as a Hermitian weakly diagonally
dominant matrix with positive elements on the diagonal, estab-
lishing its positive semidefiniteness. Consequently, (18), and
hence (14), remain stable also using imperfect measurements
ẑij .

C. Position Observer

In this section, we design an observer for the position
of each robot within a common frame. This observer is
added in cascade with respect to (14). The primary objective
of this observer can be defined as follows: for a common
translation p̄ ∈ R3, a common rotation Rα (where α ∈ C
remains consistent with the preceding section), alongside the
real position pi and orientation ∠zi, the aim is to devise an
estimation law ensuring that p̂i → p̄+R⊤

αpi ∀i as t→ ∞



Each robot implements the following update law:

˙̂pi = R̂ivi − kp

[ ∑
j∈N out

i

(p̂i − p̂j + R̂i
ipij)

+
∑
j∈N in

i

(p̂i − p̂j − R̂j
jpji)

] (21)

where kp > 0, N in
i and N out

i represent the in- and out-
neighbors of the i-th robot, while R̂i and R̂j are obtained
from observer (14) and the corresponding angle communi-
cated among neighboring robots.

Let us denote R̄ := blkdiag({Ri}Ni=1) ∈ R3N×3N and
R̄E := blkdiag({Rk}|E|k=1) ∈ R3|Es|×3|Es|, where Rk is the
rotation matrix corresponding to the initial node of the edge
ek := (i, j) and we use the ’hat’ to indicate the estimated
counterpart. The dynamics of the observer can be expressed
in matrix form as follows:

˙̂p = ˆ̄Rv − kpE3

(
E⊤

3 p̂− ˆ̄RE
bpE

)
(22)

where E3 := E ⊗ I3 is the incidence matrix of the directed
sensing graph Gs, ⊗ is the Kronecker product and bpE :=
R̄⊤

E E
⊤
3 p. Similarly, we define for later use pE := E⊤

3 p.
Notice that, after convergence of the yaw observer, it holds
R̂i = R⊤

αRi and, by denoting R̄α := IN ⊗Rα, it follows:

ˆ̄RE
bpE = R̄⊤

α R̄ER̄
⊤
E pE = R̄⊤

αE
⊤
3 p. (23)

Before proceiding with the main theorem, we define some
quantities which will be used later. Let us denote L̄3 := L̄⊗
I3 = E3E

⊤
3 , where the Laplacian matrix L̄ has components:

(
L̄
)
ij

:=


|N in

i |+ |N out
i | if i = j

2 if j ∈ N in
i ∧ j ∈ N out

i

1 if j ∈ N in
i ⊕ j ∈ N out

i

0 otherwise
(24)

with ⊕ denoting the exclusive disjunction. Also, de-
fine the yaw estimation error eψ := ẑψ − zαψ, with
ẑψ := [cos(ψ̂1), sin(ψ̂1), ..., cos(ψ̂N ), sin(ψ̂N )]

⊤ and zαψ :=

[cos(ψ1 − α), sin(ψ1 − α), ..., cos(ψN − α), sin(ψN − α)]
⊤, as well

as R̄αE := I|E| ⊗Rα.

Theorem 3. Consider the estimation error up to a common
rotation ep := p̂− R̄⊤

αp and the observer dynamics (22).
Under the assumptions that Gc is connected and the inputs,
as well as the measurements (2), are uniformly bounded and
continuously differentiable, then, the set S := {ep1 = ep2 =
... = epN} is input-to-state stable (ISS) with respect to the
yaw error eψ .

Proof. The error dynamics can be written as:

ėp = ( ˆ̄R− R̄⊤
α R̄)v − kpE3

(
E⊤

3 p̂− ˆ̄RE
bpE

)
+ kpE3R̄

⊤
αER̄E

bpE − kpE3R̄
⊤
αER̄E

bpE

= −kpL̄3ep + ( ˆ̄R− R̄⊤
α R̄)v + kpE3

(
ˆ̄RE − R̄⊤

αER̄E

)
bpE

= −kpL̄3ep +
(
blkdiag{V̄i}+ kpE3blkdiag{iP̄ij}E⊤

2⊗

)
eψ

= −kpL̄3ep +Beψ
(25)

where, in the second line, we added and subtracted
kpE3R̄

⊤
αER̄E

bpE , in the third equality, we used an analogous
transformations to (5), i.e.

iP̄ij(t) :=

ipijx(t) −ipijy(t)
ipijy(t)

ipijx(t)
0 0

 , (26)

to obtain linearly the orientation error eψ. Also, E2⊗ :=
E⊗ ⊗ I2, where

(E⊗)ik :=

{
1 if node i is the head of edge ek
0 otherwise

(27)

is the out-incidence matrix [18]. In the last equality, we de-
fined B(t) := blkdiag{V̄i}(t)+kpE3blkdiag{iP̄ij}(t)E⊤

2⊗.
Let us denote U := 1N ⊗ I3 and let e⊥p := ep −UU⊤ep
be the error orthogonal to the consensus subspace S and
ēp := U⊤ep be the average error (i.e. a common translation).
Then, the system dynamics can be written as:

ė⊥p (t) = −kpL̄3e
⊥
p (t) + (I3N −UU⊤)B(t)eψ(t) (28)

˙̄ep(t) = U⊤B(t)eψ(t) (29)

where we used the fact that U⊤L̄3 = L̄3U = 0 for
undirected graphs [18]. The unforced system (28) (i.e. for
eψ(t) = 0) is globally exponentially stable and since B(t)
is uniformly bounded and continuously differentiable, then
(28) is ISS with respect to eψ(t) (see [20, Corollary 5.16]).
Furthermore, as shown in the previous section, eψ(t) is
bounded ∀t ≥ 0 and eψ(t) → 0 as t → ∞, implying that
eψ(t) is integrable, and, as a consequence, ēp(t) remains
bounded.

IV. SIMULATION RESULTS

This section presents simulation results validating our
theoretical findings using a group of 8 quadrotors, whose
sensing graph is depicted in Fig. 1. The quadrotors execute a
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Fig. 1: Sensing graph

formation control task with a modified version of the control
law from [1] to suit a directed sensing graph,

vi = kckiµi (30)

with

µi :=
∑
j∈N in

i

(ipij−R̂⊤
i (p

∗
j −p∗

i ))+
∑
j∈N out

i

(R̂⊤
j (p

∗
i −p∗

j )− jpji),

(31)
kc > 0 and ki = 1 if ∥µi∥ ≤ νmax, ki = νmax/ ∥µi∥
otherwise, where νmax is the maximum velocity norm. The
yaw is controlled independently using a spline with random
coefficients. The initial estimated positions of the drones are
drawn from a gaussian distribution centered around the real
position of the drones and with standard deviation of 1m,
instead the initial common frame yaw estimate ẑ is drawn



from a uniform distribution in (−π, π]. The relative yaw
estimates ẑψij are initialized based on the initial common
frame yaw estimate, ensuring consistency with the graph
cycles. Consequently, Lc will be a similar matrix to a
Laplacian, with an eigenvalue exactly at 0.

The relative state observer (8) is run @200Hz with gains
kpe = 20 and kψ = 600, the common frame yaw observer
(15) @100Hz with gain kz = 40 and the common frame
position observer (21) @50Hz with gain kp = 1. Results for
the estimation of relative yaw, yaw in a common frame, and
position in a common frame, as well as the formation error
norm are depicted in Fig. 2.
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Fig. 2: The figures respectively illustrate the following: (a) the norm
of the estimation error on the relative yaw for each edge, (b) the
norm of the estimation error on the yaw in a common frame for
each robot, (c) the norm of the estimation error on the position in a
common frame for each robot, and (d) the norm of the formation
error for each robot.

V. CONCLUSIONS AND FUTURE WORKS

This work presents a novel observer for robots to estimate
their position and yaw in a common frame from relative
position measurements. We achieve this through a three-part
observer that leverages persistency of excitation, eliminat-
ing the need for restrictive assumptions about the sensing
graph. Future work will focus on extending this approach

to bearing measurements and exploring a single-observer
implementation.
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