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We present a numerical approach for the solution of electromagnetic scattering from a dielectric cylinder
partially covered with graphene. It is based on a classical Fourier-Bessel expansion of the fields inside and outside
the cylinder to which we apply ad hoc boundary conditions in the presence of graphene. Due to the singular
nature of the electric field at the edges of the graphene sheet, we introduce auxiliary boundary conditions. The
result is a particularly simple and efficient method allowing the study of diffraction from such structures. We
also highlight the presence of multiple plasmonic resonances that we ascribe to the surface modes of the coated
cylinder.
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I. INTRODUCTION

Scattering of electromagnetic waves from a dielectric or
a metallic circular cylinder is rather a simple and classical
problem [1]. In this situation, the incoming and outgoing fields
can be represented in terms of cylindrical waves expressed
through Fourier-Bessel expansions, and all the channels are
independent because of the circular symmetry and homo-
geneity of the cylinder. Usually, when the wavelength of the
incoming wave is much larger than the diameter of the cylin-
der (this is the subwavelength regime), the wave is barely
scattered. Interestingly, it has been shown that when cylin-
drical structures involve plasmonic materials (noble metals or
graphene) they are able to exhibit quite unusual phenomena,
such as superscattering [2,3] (i.e., they scatter light as if they
were much larger than their actual size) and/or invisibility
(i.e., they scatter light as if they were much smaller than
their actual size). Furthermore, when the cylinder is partially
covered with a perfect rectric conductor circular strip [4] or
a circular strip of graphene [5,6], this breaks the symmetry
and homogeneity at the level of the surface, and then all the
channels can be mixed up leading to much richer physical
behavior. In Ref. [5], an integral equation approach, based on
the solution of the integral equation for the current induced
on the graphene strip, has been used to explore the interplay
between plasmonic-resonances and photonic-jet effects in ter-
ahertz (THz) wave scattering by a graphene-covered dielectric
cylinder. The same approach has been used in Ref. [6] to
study the performances of the THz antenna made of a circular
dielectric rod with conformal strip of graphene.

Among the numerical methods used to solve electromag-
netic problems, one can distinguish: (i) general methods, such
as the finite difference time domain [7] or the finite elements
method [8] capable of handling a vast variety of configu-
rations but at the expense of time and memory consuming;
and (ii) special methods specifically designed for certain
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configurations exploiting periodicity and/or symmetries, for
example. These latter prove to be very efficient and much less
time and memory consuming. It is this last kind of methods,
we are going to rely on in solving the problem of scattering
from a dielectric cylinder partially dressed with a graphene
strip. Thus, we are going to use the periodicity of the conduc-
tivity function and introduce its Fourier expansion directly in
the boundary conditions. After projection on the Fourier basis,
this leads to an algebraic system linking the outgoing ampli-
tudes of the fields to the incoming ones.This approach will be
called the Fourier modal method (FMM) since it is the coun-
terpart (or an extension) of the well known namesake method
introduced for planar strips gratings [9,10]. In this very con-
text (that of strip gratings), this method works extremely well
in the case of transverse electric polarization, the electric field
is parallel to the direction of invariance of the grating, but,
unfortunately, may face serious convergence problems in the
case of transverse magnetic (TM) polarization, the magnetic
field is parallel to the direction of invariance of the grat-
ing. This is due to the fact that the tangential component of
the electric field at the edges of the graphene sheet is null,
hence, preventing from using the correct Fourier factorization
rules [10,11] (cf. Sec. II B). In Ref. [10] Khavasi proposed
a strategy to improve the situation through the introduction
of approximate boundary conditions (ABCs) allowing the use
of the correct Fourier factorization rules. This approach (that
we will call FMM-ABC) shows a certain efficiency but does
not completely fix the problem of convergence, especially
for structures involving sharp resonances. Moreover, the tech-
nique introduces a new free parameter whose tweaking is very
delicate [12]. It is also important to emphasize that the tan-
gential electric field is singular in the vicinity of the graphene
strips edges and is at the origin of the slow convergence for
both the classical FMM and the FMM-ABC. Very recently, an
alternative approach has been put forward by Hwang [12] in
order to solve this issue. It is based on the use of a supple-
mentary expression of the tangential electric field, right at the
level of the interface, under the form of a special expansion
in terms of local basis functions (LBF) able to reproduce the
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FIG. 1. Sketch of the diffraction problem under consideration: an
electromagnetic plane wave hits the covered dielectric cylinder under
classical diffraction, i.e., the incident wave vector is perpendicular to
the direction of invariance oz.

aforementioned singularities (hereafter, this method will be
called FMM-LBF). This proved to be extremely efficient not
only from the standpoint of convergence of the efficiencies,
but also in the representation of the field around the graphene
strips.

In this paper, we introduce (in Sec. II) the FMM in the
context of scattering by a dielectric cylinder partially cov-
ered with graphene as well as its FMM-ABC and FMM-LBF
extensions. In Sec. III, we examine the convergence and sta-
bility of these three approaches and show the superiority of
the FMM-LBF. Finally, we exploit the latter to highlight the
presence of multiple resonances in the scattering efficiency
spectrum for partially graphene-covered dielectric cylinders
(on the contrary of what is observed for fully and homo-
geneously graphene-covered cylinders) and link them to the
plasmonic surface modes over the structure.

II. THEORETICAL FRAMEWORK

The physical problem under study is depicted in Fig. 1
where a TM (magnetic field parallel to the direction of in-
variance oz), linearly polarized electromagnetic plane wave
with vacuum wavelength λ illuminates a dielectric cylinder
(radius R and relative dielectric permittivity εi) under clas-
sical incidence (the incident wave vector is perpendicular to
oz) with an angle ϕ. The cylinder lies in a host medium
(relative dielectric permittivity εo) and may be covered with
graphene strips whose electromagnetic behavior is captured
through their surface optical conductivity σ (ω). Both media
are supposed nonmagnetic (relative magnetic permeabilities
μi/o = 1). In the following, we will use harmonic Maxwell’s
equations with the time convention e−iωt .

Following Ref. [13], the graphene conductivity σ (ω) can
be written as a sum of interband and intraband contributions,
respectively, given by

σR(ω) = i

ω + i�

2e2kBT

π h̄2 ln

(
2 cosh

μ

2kBT

)
,

σI (ω) = e2

4h̄

[
G

(
h̄ω

2

)
+ i

4h̄ω

π

∫ +∞

0

G(ξ ) − G
(

h̄ω
2

)
(h̄ω)2 − 4ξ 2

dξ

]
,

(1)

G(x) = sinh(x/kBT )/[cosh(μ/kBT ) + cosh(x/kBT )], T is
the graphene strip temperature, � = 2π/τ , τ being the relax-
ation time, and μ being the chemical potential.

In cylindrical coordinates, the z components of magnetic
fields in the inner and outer media can be written in terms of
the elementary Fourier-Bessel solutions [1],

Hzo(r, θ ) =
∑

n

{anJn(kor) + bnH+
n (kor)}einθ ,

Hzi(r, θ ) =
∑

n

cnJn(kir)einθ , (2)

where ki/o = k0ni/o with k0 = 2π/λ and ni/o = √
εi/o, Jn and

H+
n being the nth order Bessel and Hankel functions of the

first kind, respectively (n ∈ Z). Here an = (ie−iϕ )n are the
coefficients of the incident wave, whereas bn and cn are the
scattering coefficients to be determined and from which all
the physical quantities of interest can be readily computed. In
the following, we will be mostly interested by the scattering
efficiency, the expression of which is given by

Qs = 2

koR

∑
n

|bn|2. (3)

The determination of bn and cn is accomplished via the bound-
ary conditions at r = R: Hzo(R, θ ) − Hzi(R, θ ) = σEθ i(R, θ )
and Eθ i(R, θ ) = Eθo(R, θ ) for all θ ∈ [0, 2π ], where Eθ i/o =
(−iZ0/k0εi/o)∂rHzi/o (Z0 being the impedance of vacuum).
Once projected on the Fourier basis (einθ )n∈Z,1 these equa-
tions will furnish a set of algebraic equations linking the
unknown coefficients to those representing the incident
field. When the cylinder is fully and homogeneously cov-
ered with graphene, applying the aforementioned procedure
leads to the following simple formulas of the scattering
coefficients:

bn = niJniJ ′
no − noJnoJ ′

ni + iηJ ′
niJ

′
no

noH+
n J ′

ni − niJniH+′
n − iηJ ′

niH
+′
n

an,

cn = ni

no

1

J ′
ni

{
J ′

noan + H+′
n bn

}
, (4)

where Jn(i/o) = Jn(ki/oR), J ′
n(i/o) = J ′

n(ki/oR), H+
n = H+

n (koR),

H+′
n = H+′

n (koR), η = Z0σ (ω), and where the primes denote
the derivation with respect to variable r.

A. The classical FMM

If the cylinder is partially covered with graphene, one can
use the classical FMM [4,9] where the conductivity function is
expanded into Fourier series with respect to variable θ (σ (θ ) =∑

p σpeipθ ) and inserted into the boundary conditions, which
leads to the following expressions for the scattering coeffi-
cients:

b = B−1a,

c = ni

no
J ′−1

i {J ′
oa + H+′

b}, (5)

1Throughout the paper, we use the classical inner product : 〈 f , g〉 =
1

2π

∫ 2π

0 f (θ )g∗(θ )dθ , the asterisk indicating complex conjugation.
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FIG. 2. Sketch of the contours used to derive the ABC. Top
Right: A contour across graphene and bottom right: a contour on
a bare part of the cylinder.

where matrices A and B are given by

A = niJiJ
′
o − noJoJ ′

i + iZ0J ′
i �J ′

o,

B = noH+J ′
i − niJiH

+′ − iZ0J ′
i �H+′

, (6)

where we introduced vectors a, b, c = (an, bn, cn)n∈Z and
diagonal matrices Ji/o = diag(Jn(i/o) ), H+ = diag(H+

n ),
J ′

i/o = diag(J ′
n(i/o) ), H ′+ = diag(Hn

′+). � is the Toeplitz
matrix built from the Fourier components of the conductivity
such that its mn element is given by �mn = σm−n. A rapid
comparison between expressions in Eqs. (4)–(6) shows that
they have the same structure where the role of η in the former
equations is played by Z0� in the second set of equations.
In the former case, the scattering channels are independent
of each other (in the sense that each coefficient bn depends
only on its counterpart of the same order an), whereas, in the
second case, they are coupled through matrix � (i.e., each
bn depends on the set of all an coefficients). In the numerical
implementation, the series are truncated to a limited number
of harmonics usually going from n = −M to n = M such that
N = 2M+1 coefficients are kept. M is called the truncation
order.

B. The FMM with ABCs

In the classical FMM, Laurent’s direct rule has been used to
Fourier factorize the product σ (ω, θ )Ezi(R, θ ), whereas, it is
the inverse rule [11,14] that should be used. Unfortunately, the
inverse rule will make use of the reciprocal of the conductivity
function, 1/σ (θ ), whereas, the latter takes infinite values on
the part of the circumference without graphene. This clearly
forbids the use of such a rule. To circumvent this problem,
Khavasi, in the case of planar graphene strip gratings, intro-
duced approximate boundary conditions [10] leading to an
effective conductivity whose reciprocal is never infinite, thus,
bringing back the possibility to use the inverse rule. Here, we
are facing the same situation and, hence, can transpose the
work performed in Ref. [10] in cylindrical geometry. To be
more specific, let us start from Ampere’s law and apply it to
the closed rectangular loops (�) shown in Fig. 2. Then, for a

fixed θ ,

l{Hzi(R
−, θ ) − Hzo(R+, θ )}

=
∫ R+

R−

∫ l

0
{σ (θ )δ(r − R) − iωε}Eθ (r, θ )dz dr, (7)

with R± = R ± �/2, l , and � being the width and the height
of the contour (�). For sufficiently small �, Eθ (r, θ ) can be
approximated by Eθ i(R, θ ) [or Eθo(R, θ )] and taken out of the
integral, which leads finally to the ABC,

Hzi(R
−, θ ) − Hzo(R+, θ ) = σ̃ (θ )Eθ i/o(R, θ ), (8)

where σ̃ (θ ) = σ (θ ) − iωε0�(εi + εo)/2 is the effective sur-
face conductivity (depending on the new parameter �) that,
now, never goes to zero. It is now possible to use the inverse
rule for this ABC which combined with the continuity of the
electric field leads to the new expressions of the scattering co-
efficients that are exactly those of Eq. (5) where the matrices
A and B are replaced by

A = niJ̃iJ
′
o − noJ̃oJ ′

i + iZ0J ′
i �̃

−1J ′
o,

B = noH̃+J ′
i − niJ̃iH

+′ − iZ0J ′
i �̃

−1H+′
, (9)

where �̃ is the Toeplitz matrix built from the Fourier
components of the reciprocal of the effective conductivity
σ̃−1(θ ). J̃i = diag[Jni(kiR−)], J̃o = [Jno(koR+)], and H̃+ =
diag[H+

n (koR+)].
Although this approach has been shown to be effective

(at least, for the far field calculations) for planar diffraction
gratings, it appears to experience some problems (as will
be shown below) in the case of circular strips especially
near sharp resonances that are generally the most interesting
spectral zones. The FMM equipped with ABC can ensure
convergence, but for that, a suitable choice of � is necessary
which requires ancillary calculations. In addition, � depends
on the wavelength. It is for this reason that a new and very
efficient method has been proposed in Ref. [12] to model
diffraction from planar strips and that we adapt here for cylin-
drical strips and present in the following section.

C. The FMM with LBFs

We start from the expressions of the fields in the inner and
outer media [Eqs. (2)] and add an expression of the electric
field valid on the interface r = R, given in terms of the LBFs,
gm(θ ) and sm(θ ), that reproduce its singularities at θ = 0 and
θ = θg,

Eθ (θ ) =
⎧⎨⎩

∑Ng

m=1 pmgm(θ ), 0 � θ � θg,∑Ns−1
m=0 qmsm(θ ), θg < θ < 2π,

(10)

where

gm(θ ) = sin (mπθ/θg),

sm(θ ) = cos [mπ (θ − θg)/θ̄g]/
√

(θ̄g/2)2 − (θ − θc)2,

pm and qm are the associated expansion coefficients, θ̄g =
2π − θg and θc = (θg + 2π )/2. Parameters Ng and Ns repre-
sent the number of basis functions in the graphene strip and
slit regions, respectively. Functions gm(θ ) are a good choice to
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FIG. 3. Shapes of the first four functions (a) gm(θ ) and (b) sm(θ ).

represent Eθ over the graphene region (r = R and 0 � θ � θg)
since this component vanishes to zero at the ends of the strip
as has been shown in Ref. [10]. In the complementary region
(r = R and θg < θ < 2π ), Eθ presents two singularities at
the end points of the interval and are well described through
functions sm(θ ). These functions are shown in Fig. 3.

Now, for the boundary conditions, we must have

Eθ i(R, θ ) = Eθo(R, θ ),

Hzo(R, θ ) − Hzi(R, θ ) = σ (θ )Eθ i(R, θ ),

Eθ i(R, θ ) = Eθ (θ ). (11)

The first two equations correspond to the classical boundary
conditions used before. As for the third one, it enforces the
electric field at r = R to match the one represented by LBFs:
Eθ (θ ). Projecting the first equation on the Fourier basis yields,
under matrix form

ki

εi
J ′

i c = ko

εo
(J ′

oa + H+′
b). (12)

Then, projecting the second and third equations on the same
basis gives

Jic − Joa − H+b = σGp, (13)

and

−iZ0

ni
J ′

i c = Gp + Sq, (14)

where p (respectively, q) is the column vector formed by the
Ng coefficients pm (respectively, Ns coefficients qm). Matri-
ces G and S (with sizes N × Ng and N × Ns, respectively)
are given by Gnm = 〈gm(θ ), einθ 〉 and Snm = 〈sm(θ ), einθ 〉, and
more specifically,

Gmn = −iθg

4π
e−i

nθg
2

[
ei mπ

2 sinc(α−
nm) − e−i mπ

2 sinc(α+
nm)

]
,

Snp = 1

4
e−inθc

[
ei pπ

2 J0(β−
np) + e−i pπ

2 J0(β+
np)

]
.

α±
nm = (mπ ± nθg)/2 and β± = (mπ ± nθ̄g)/2. Here, we

adopt the notation sinc(x) = sin(x)/x.

FIG. 4. Scattering efficiency spectrum computed with the classi-
cal FMM for different values of the truncation order M.

Solving these algebraic systems leads to expressions of the
coefficients b and c that have, once again, the same form as in
Eq. (5) where matrices A and B are given by

A = niJiJ
′
o − noJoJ ′

i + iZ0σJ ′
iW J ′

o,

B = noJ ′
i H

+ − niJiH
+′ − iZ0σJ ′

iW H+′
. (15)

W = W1W
−1

2 , where W1 = [G 0] is the concatenation of ma-
trices G and the matrix 0 denoting the zero matrix of size
N × Ns and W2 = [G S] is the concatenation of matrices G
and S. Then, coefficients p and q can be obtained simply from
Eq. (14).

III. RESULTS

A. Convergence and stability

Let us now compare the performances of the three ap-
proaches in terms of convergence and stability when the
total number of Fourier harmonics retained in the numerical
computations is increased. Such a number will be denoted
by N = 2M + 1 where M is, usually, called the truncation
order. We consider a cylinder with radius R = 0.5 µm, lying
in vacuum and filled with a dielectric of relative permittivity
εi = 3.9, it is covered with a sheet of graphene whose param-
eters are θg = π , μ = 0.5, h̄� = 0.1 eV taken at T = 300 K.
The angle of incidence is first fixed at ϕ = π/2. Figure 4
shows the spectrum of the scattering efficiency computed with
the classical FMM approach for different truncation orders.
We can clearly distinguish two subdomains in this spectrum:
a low wavelength subdomain where the method seems to
behave properly and a high wavelength subdomain where
there are some resonances (due to surface plasmons polaritons
on graphene [15]) and where the method fails to converge.
This manifests as many spurious and unstable peaks and dips
appearing in this region of the spectrum. It is of fundamental
importance to emphasize that increasing further the truncation
order does not lead to any stabilization of these resonances. As
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FIG. 5. Scattering efficiency spectrum computed with the FMM-
ABC for different values of � and for a truncation order: M = 90.

stated in the theoretical section, this lack of convergence was
expected for the classical FMM (it is due to the improper use
of the correct Fourier factorization rules, cf. Refs. [10,11]) and
is clearly demonstrated in these calculations.

Now, let us examine the behavior of the FMM with ABCs
and explore the influence of the free parameter �. Figure 5
shows the scattering efficiency spectrum computed for dif-
ferent values of � and for M = 90, which is a rather high
truncation order. First, we observe far better convergence
and stability behaviours as compared to the classical FMM.
Second, we clearly see the predominance of two main peaks
keeping almost the same spectral positions, in contrast with
the former results. A closer look at these peaks, reported in
Fig. 6, reveals that they shift towards low wavelengths as the
parameter � is decreased, and seem to converge to specific
positions.

To clarify this last point, we focus on the rightmost peak
and follow the evolution of its wavelength λp as the param-
eters M and � are varied. The results are shown in Fig. 7
where we plot λp versus M for three different values of �. For
each value of �, we observe a convergence process leading to
different values of λp. For comparison we added, in Fig. 7,
the results obtained by use of the FFM-LBF (magenta solid
line with squares) which show a clear and fast convergence
to λp 	 44.86 µm which we will consider as the reference
value [12].

Thus, we see that the FMM-ABC can predict quite cor-
rectly the shape and the number of resonances but presets
stability problems regarding the peaks associated with reso-
nant phenomena in the structure. This is linked to the difficulty
of choosing the right �, all the more so that this latter may
vary with the wavelength. For the FMM-LBF, on the con-
trary, there is no supplementary parameters involved, and the
method proves to be stable against the positions of sharp
resonances. It is worth emphasizing that, from our numer-
ical experiments, the same conclusion holds for the lower
wavelength peak (λp 	 21.93 µm). From the standpoint of
convergence, the superiority of the FMM-LBF is evident as
can be seen from Fig. 8 where we plot the scattering effi-

FIG. 6. Zooms over the two main resonances observed in Fig. 5.
Left around 22 µm and right around 45 µm.

FIG. 7. Evolution of the rightmost peak wavelength λp versus M
for different values of �.
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FIG. 8. Qs versus M at resonance for λ = 44.86 µm (upper
panel) and out of resonance for λ = 50 µm (lower panel).

ciency versus the truncation order M for two wavelengths
(at resonance and out of resonance) computed with the clas-
sical FMM, the FMM-ABC, and the FMM-LBF. The FMM
(solid purple line) is completely out of convergence for both
cases whereas the FMM-ABC behaves slightly better but
still presents the � choice problem. The FMM-LBF shows
clear convergence for both wavelengths and is even faster
for the out of resonance case. Therefore, and because of its
outstanding performances, the FMM-LBF will be our tool for
investigating the physics behind the observed resonances in
the considered structure.

B. Plasmonic modes over the graphene strip

We would like, now, to examine the physical origin of
the resonances observed in the scattering efficiency spec-
trum. For that, we first compute (using the FMM-LBF) and
report in Fig. 9, the scattering efficiency spectrum together
with the modulus of the smallest eigenvalue of matrix B of
Eq. (15) (rescaled for more clarity). The magnitude of this lat-
ter presents dips almost wherever the structure has a mode. We
observe that there are more modes than what can be observed
in the scattering efficiency spectrum. This is due to the lack
of compatibility between the absent modes and the symmetry
of the physical configuration. To gain more insight, we plot
the map of the modulus of the electric component Eθ (x, y)
around the coated cylinder for the four first resonant peaks ob-
served in the spectrum: λ1 = 44.86, λ3 = 21.93, λ5 = 16.66,
and λ7 = 13.98 µm (note that the last two peaks are tiny

FIG. 9. Scattering efficiency computed with the FMM-LBF
(blue) for M = 90. The red curve represents the modulus of the
smallest eigenvalue of matrix B of Eq. (15) (rescaled for the clarity
of the figure).

and hardly observable in Fig. 9). The results are depicted in
Fig. 10 where we first note the expected singular behavior at
the ends of the graphene sheet (namely, at θ = 0 and θ = π ).
The different peaks represent the plasmonic resonances [15]
supported by the graphene sheet at these wavelengths, and it is
of fundamental importance to remark that they all have an odd
number of antinodes (1, 3, 5, and 7, hence, their numbering)
because of the symmetry of the physical configuration. The
other plasmonic resonances (with an even number of antin-
odes) can be excited if we change the angle of incidence to be
compatible with these modes. An example of such a situation
is given in Fig. 11 where we took an angle of incidence

FIG. 10. Map of the modulus of the electric component Eθ (x, y)
computed for the four first resonant peaks observed in the spectrum
of Fig. 9: λ1 = 44.86, λ3 = 21.93, λ5 = 16.66, and λ7 = 13.98 µm.
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FIG. 11. Scattering efficiency spectrum computed with the
FMM-LBF at an incidence ϕ = π/4 with M = 90, and the other
parameters are unchanged.

ϕ = π/4 and computed a new spectrum clearly revealing the
missing plasmonic peaks. To complete the picture, we report
in Fig. 12 the map of the modulus of the electric component
Eθ (x, y) for the peaks λ2 = 27.34, λ4 = 18.72, λ6 = 15.16,
and λ8 = 13.07 µm.

IV. CONCLUSION

We presented an efficient and numerically very robust ap-
proach for the modeling of EM scattering from a cylinder
partially covered with graphene. It is based on the classical
Fourier-Bessel decomposition and classical boundary condi-
tions to which we adjoint an ad hoc expansion of the tangential
electric field valid over the circumference. This latter is

FIG. 12. Map of the modulus of the electric component Eθ (x, y)
computed for the new resonant peaks appearing in the spectrum of
Fig. 11: λ2 = 27.34, λ4 = 18.72, λ6 = 15.16, and λ8 = 13.07 µm.

introduced to better take into account the singular nature of
this field at the ends of the graphene sheet. Using this method,
we explored the scattering efficiency spectra of such struc-
tures and and showed that they present several peaks that we
related to the existence of surface plasmon polariton modes
over graphene. The nature of each mode has been examined
through the computation of the near field map of the electric
field that revealed their standing wave nature. This method can
be, safely, used in the study of the properties of this kind of
setups exhibiting superscattering or invisibility, for example.
Finally, it of interest to stress that it can be easily extended
to multilayered cylinders with many strips at each interface
which will allow a much more richer behavior.
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