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We study the heat transfer between N coupled quantum resonators with applied synthetic electric and magnetic
fields realized by changing the resonator parameters by external drivings. To this end we develop two general
methods, based on the quantum optical master equation and on the Langevin equation for N coupled oscillators
where all quantum oscillators can have their own heat baths. The synthetic electric and magnetic fields are
generated by a dynamical modulation of the oscillator resonance with a given phase. Using Floquet theory, we
solve the dynamical equations with both methods, which allow us to determine the heat flux spectra and the
transferred power. We apply these methods to study the specific case of a linear tight-binding chain of four
quantum coupled resonators. We find that, in that case, in addition to a nonreciprocal heat flux spectrum already
predicted in previous investigations, the synthetic fields induce here nonreciprocity in the total heat flux, hence
realizing a net heat flux rectification.

DOI: 10.1103/PhysRevA.108.042201

I. INTRODUCTION

In the past decade a great number of experiments have ver-
ified the near-field enhancement of thermal radiation between
two macroscopic objects down to distances of a few nanome-
ters [1–9]. In particular, the theoretically proposed effects of
thermal rectification with a phase-change diode [10,11], a
phase-change material-based memory [12], and active heat
flux switching or modulations [13–15] have been realized
experimentally. Also, several proposals for heat flux recti-
fication in nonreciprocal systems, called nonreciprocal heat
flux, have been made, but these effects have not been demon-
strated experimentally. Typically, these proposals rely on the
application of magnetic fields to nanoscale setups involving
magneto-optical materials or by using Weyl semimetals with
intrinsic nonreciprocal optical properties. It can be shown
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theoretically that by means of magnetic fields the magnitude
of the heat flux and its direction can be manipulated [16–23].
Due to the broken time-reversal symmetry, also nonrecipro-
cal heat fluxes can exist in such cases, leading to persistent
heat currents and fluxes [24,25], persistent angular momenta
and spins [25–27], normal and anomalous Hall effects for
thermal radiation [28,29], diode effects by coupling to non-
reciprocal surface modes [30–33], and spin-directional near-
and far-field thermal emission [34,35]. A tradeoff of using
magneto-optical materials is that to have observable nonre-
ciprocal heat fluxes, experiments with large magnetic fields
in a nanoscale setup are necessary. On the other hand, using
Weyl semimetals with intrinsic nonreciprocity does not allow
for dynamic tuning.

Recently, the modulation of resonance frequencies of a
system of resonators with a single modulation frequency
but different phases has been interpreted as a way to create
synthetic electric and magnetic fields [36]. For the energy
transmission in a setup of two resonators with applied syn-
thetic electric and magnetic fields, i.e., with a modulation of
the resonance frequencies and a phase shift, it could be shown
experimentally and theoretically that monochromatic waves
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are transmitted in a nonreciprocal manner [37] if there is a
nonzero phase shift, i.e., a synthetic magnetic field. If the
two resonators with applied synthetic electric and magnetic
fields are coupled to two thermal reservoirs within a master-
equation approach [38–41], then the transmission coefficients
for the heat current in both directions are not the same, which
is a manifestation of a broken detailed balance [42]. However,
in this case the total power transferred between both reso-
nances is reciprocal even in the presence of synthetic electric
and magnetic fields [42].

That the transferred power is reciprocal might not be sur-
prising for two reasons. First of all, in the context of Rytov’s
fluctuational electrodynamics it can easily be shown that the
total radiative heat flux between two objects is always recip-
rocal [16]. Nonreciprocal effects necessitate at least a third
object and nonreciprocal material properties of the objects
or environment [43,44]. Another argument is that within the
quantum master-equation approach for linearly coupled os-
cillators, typically nonlinear effects need to be included to
have nonreciprocal heat flow [45], even though it seems that
nonreciprocal heat flow can also be generated by specific
choices of temperatures in a linear chain of oscillators [46,47].
However, as we will show below, the application of synthetic
electric and magnetic fields can indeed generate nonreciprocal
heat flow in a tight-binding configuration of four coupled res-
onators without the need for nonlinearity due to the presence
of the synthetic magnetic field.

We distinguish our work from previous studies. Sev-
eral kinds of modulations have been proposed such as the
periodic modulation of the permittivity [48–50]. Such mod-
ulations have been shown to introduce synthetic magnetic
fields for photons [51] and consequently related effects like
the Aharonov-Bohm effect for photons [52]. In the context of
thermal radiation, it could be demonstrated that permittivity
modulations can introduce nonreciprocity, which manifests
in a breakdown of the detailed balance in Kirchhoff’s law
[53] and can be employed for photonic refrigeration [54]. In
similar approaches a combined dynamical modulation of the
resonances of heat exchanging objects and their interaction
strength was applied, resulting in a heat pumping effect and
nonreciprocal heat fluxes in a three-resonator configuration
[55,56]. Heat pumping effects also exist when only the inter-
action strengths in three-body configurations are dynamically
modulated [57]. It must be emphasized that these effects are
different from the heat shuttling effect where the temperature
or chemical potentials of two reservoirs are periodically mod-
ulated around their equilibrium values in order to have a heat
transport despite the fact that the system is on average in equi-
librium [58–60]. Indeed, in that case the modulation affects
the baths only and not resonator parameters. Finally, it could
be demonstrated theoretically that geometrical phases by adi-
abatic dynamical modulation of resonators with nonreciprocal
conductance can increase or reduce the thermal relaxation
[61] and rapid magnetic-field modulations in magneto-optical
systems can substantially increase the cooling [62].

In this work we extend the quantum Langevin equa-
tion (QLE) and quantum master equation (QME) approach
used in Ref. [42] to the case of N coupled arbitrary resonators
with their own heat baths as sketched in Fig. 1 with applied
synthetic electric and magnetic fields. Both methods can be

FIG. 1. Sketch of N coupled quantum resonators, each coupled
to its own heat bath.

used to calculate the heat flux between any two resonators
which are coupled to their own reservoirs. We show numer-
ically that both methods give the same values for the heat
flux. The QLE approach naturally allows for calculating the
heat flux spectra, whereas the master-equation method is a
better choice for fast numerical calculations of the heat flux.
We use both methods to show that the heat flux itself is
nonreciprocal in the presence of synthetic fields in a linear
tight-binding chain of four resonators. This finding might be
of great interest in the field of quantum thermodynamics,
where energy flux management and thermal tasks in many-
body quantum systems are of high relevance as in the studies
on long-range transport and amplification in chains of atoms
and ions [63,64], distributed thermal tasks in many-body sys-
tems [65], chiral or nonlocal heat transport [66,67], quantum
fluctuation theorems [68], thermodynamical consistency of
master equations [69], and many others.

The paper is organized as follows. First, in Sec. II we in-
troduce the standard master equation for N coupled resonators
with N reservoirs. We derive the dynamical equations for the
mean values of products of the resonator amplitudes and in-
troduce the QLE for the coupled resonator system. In Sec. III
we introduce the synthetic fields in the QLE approach and
provide a formal solution in Fourier space. In Sec. IV we
introduce the synthetic fields in the master-equation approach
and give a formal solution by making a Fourier series ansatz.
In Sec. V we show the occurrence of nonreciprocal heat flux
in the presence of synthetic electric and magnetic fields in a
four-resonator chain. We conclude with a summary in Sec. VI.

II. LANGEVIN AND MASTER EQUATIONS

We start by writing the Hamiltonian of a coupled
harmonic-oscillator system (each oscillator coupled to its own
heat bath of oscillators), which is given by [70,71],

H = HS +
∑

i

HB,i +
∑

i

HSB,i, (1)

with the Hamiltonian of the system of coupled oscillators

HS =
∑

i

h̄ωia
†
i ai +

∑
i, j,i �= j

h̄gi ja
†
i a j, (2)
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with resonance frequencies ωi and coupling constants gi j =
g∗

ji for the Hermitian system H†
S = HS and the bosonic cre-

ation and annihilation operators a†
i and ai, respectively. The

bath oscillator Hamiltonians are given by (i = 1, . . . , N)

HB,i =
∑

j

h̄ωi jb
†
i jbi j, (3)

with bosonic creation and annihilation operators b†
i j and bi j ,

respectively, and the Hamiltonians describing the linear cou-
pling between the system oscillators and their baths are given
by

HSBi = ih̄
∑

j

gB,i j (ai + a†
i )(bi j − b†

i j ), (4)

with the corresponding coupling constants gB,i j . By assuming
the validity of the Born-Markov and rotating-wave approxi-
mation and tracing out the bath variables we can arrive at the
QME [71]

∂ρS

∂t
= −i

∑
i

ωi[a
†
i ai, ρS]

− i
∑

i, j;i �= j

gi j[a
†
i a j, ρS]

−
∑

i

κi(ni + 1)(a†
i aiρS − 2aiρSa†

i + ρSa†
i ai )

−
∑

i

κini(aia
†
i ρS − 2a†

i ρSai + ρSaia
†
i ), (5)

where the coupling to the bath oscillators is formally given
in terms of the coupling constants κi = π

∑
j g2

B,i jδ(ωi j −
ωi ) and ni = [exp(h̄ωi/kBTi ) − 1]−1 are the mean occupation
numbers at the bath temperatures Ti. As mentioned before, gi j

is in general a complex number with the constraint gi j = g∗
ji

to ensure Hermiticity of HS . This master equation is also
called the local approach and it is valid when the intersystem
coupling does not affect the system-bath coupling [41,72,73].

From the QME we can derive the dynamical equation for
the mean values of any observable. For example, for the mean
values of products of raising and lowering operators we obtain
the set of equations (k, l = 1, . . . , N ; k �= l)

d

dt
〈a†

kak〉 = −i
∑
j, j �=k

(gk j〈a†
ka j〉 − g jk〈aka†

j〉)

− 2κk〈a†
kak〉 + 2κknk, (6)

d

dt
〈a†

kal〉 = �kl〈a†
kal〉 − i

∑
j �=k; j �=l

(gl j〈a†
ka j〉 − g jk〈a†

j al〉)

− iglk (〈a†
kak〉 − 〈a†

l al〉), (7)

with

�kl = i(ωk − ωl ) − κk − κl . (8)

In the following we will refer to this set of equations for the
mean values of operator products (6) and (7) as the master-
equation approach as they are derived from the QME (5).

Similarly, we obtain for the time evolution of the mean
values of the raising and lowering operators of each oscillator

ai the set of equations (k = 1, . . . , N)

d

dt
〈ak〉 = −�k〈ak〉 − i

∑
i;i �=k

gki〈ai〉, (9)

with �k ≡ iωk + κk . The set of equations for the mean values
of the lowering operators of the two oscillators in Eq. (9)
motivates the introduction of a set of QLE for the operators
themselves instead of their expectation values

ȧk = −iωkak − κkak − i
∑
i,i �=k

gkiai + Fk, (10)

where the coupling to baths is taken into account by the bath
operators Fk , which obviously must fulfill 〈Fk〉 = 0 to retrieve
Eq. (9). To be consistent with the QME approach and in
particular with the set of equations (6) and (7), the correlation
functions of the bath operators are given by

〈F †
k (t )Fk (t ′)〉 = 2κknkδ(t − t ′), (11)

〈Fk (t )F †
k (t ′)〉 = 2κk (nk + 1)δ(t − t ′), (12)

and 〈FkFk〉 = 〈F †
k F †

k 〉 = 0. Furthermore, the bath operators of
different baths are uncorrelated. Here the δ function in time is
due to the Markov assumption, whereas the prefactors (or dif-
fusion terms) can be derived from the QME with the method
used in Ref. [74]. Hence, the QLE approach is related via
(5) to the QME approach, so both approaches are equivalent
descriptions but on different levels. The QLE approach will
allow us to determine the heat flux spectra, whereas the QME
approach is a faster method for a direct computation of the full
heat flux.

III. LANGEVIN EQUATIONS WITH SYNTHETIC FIELDS

We now use the set of QLEs as introduced above and
include a frequency modulation (k = 1, . . . , N)

ωk → ωk + mkβ cos(�t + θk ), (13)

with phase shifts θk and mk = {0, 1} (for mk = 0 the modula-
tion of oscillator k is turned off and for mk = 1 the modulation
is turned on). The set of coupled QLEs in frequency space is
therefore (k = 1, . . . , N)

Xkak (ω) + i
∑
l �=k

gkl al (ω) = Fk + β

2i
(ak,−e−iθk + ak,+e+iθk ),

(14)
introducing

Xk = i(ωk − ω) + κk (15)

and the shorthand notation

ak,± = ak (ω ± �). (16)

The coupled QLEs can now be put in matrix form

ψ = MF + β

2i
MQ+ψ+ + β

2i
MQ−ψ− (17)
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by introducing the vectors

ψ =

⎛
⎜⎝

a1(ω)
...

aN (ω)

⎞
⎟⎠, ψ± =

⎛
⎜⎝

a1(ω ± �)
...

aN (ω ± �)

⎞
⎟⎠, F =

⎛
⎜⎝

F1(ω)
...

FN (ω)

⎞
⎟⎠

(18)

and the matrices

M = A−1, with A =

⎛
⎜⎜⎝

X1 ig12 · · · ig1N

ig21 X2 · · · ig2N
... · · · ...

...

igN1 gN2 · · · XN

⎞
⎟⎟⎠, (19)

and

Q± = diag(e±iθ1 m1, . . . , e±iθN mN ). (20)

In Eq. (17) it can be clearly seen that due to the modulation
there are couplings to the next sidebands ω ± � so that this set
of equations is recursive and infinitely large. These sidebands

can be understood as being the consequence of a synthetic
constant electric field. Furthermore, the phase shift adds a
phase ±θk to this coupling which can be understood as a
consequence of a synthetic magnetic field.

The solution of the coupled QLEs (17) can formally be
written for all orders. By introducing the block vectors

ψ = (. . . ,ψ++,ψ+,ψ,ψ−,ψ−−, . . .)T, (21)

F = (. . . , F++, F+, F, F−, F−−, . . .)T, (22)

the diagonal block matrix

M =

⎛
⎜⎜⎜⎜⎝

· · · · · · · · · · · · · · ·
· · · M+ O O · · ·
· · · O M O · · ·
· · · O O M− · · ·
· · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎠, (23)

and the tridiagonal block matrix

L =

⎛
⎜⎜⎜⎜⎝

· · · · · · · · · · · · · · ·
iβ
2 M+Q+ 1

iβ
2 M+Q− O · · ·

· · · iβ
2 MQ+ 1

iβ
2 MQ− · · ·

· · · O
iβ
2 M−Q+ 1

iβ
2 M−Q−

· · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎠, (24)

we can rewrite the coupled QLE (17) as a matrix equation

Lψ = MF. (25)

Hence

ψ = L−1MF. (26)

By considering only block vectors ψ of 2n + 1 vectors ψ with
the corresponding block matrices of size (2n + 1) × (2n + 1)
submatrices, we obtain the perturbation results up to order n.
Note that the full size of the block vectors and matrices is
N (2n + 1) and N2(2n + 1)2, respectively.

To evaluate these spectra in our general formalism, we
start with Eq. (26) and introduce the block matrices Y1 =
diag(1, 0, . . . , 0, 1, 0, 0, . . .), Y2 = diag(0, 1, 0, . . . , 0, 1, 0,

0, . . .), Y3 = diag(0, 0, 1, 0, . . . , 0, 1, 0, 0, . . .), etc., so that
there are N − 1 zeros between the nonzero entries and∑

k Yk = 1. These matrices allow us to split the contributions
from all baths k so that

ψ =
N∑

k=1

L−1MYkF. (27)

To evaluate products, we use the fluctuation-dissipation theo-
rem in the form

〈F †
k (ω + l�)Fk′ (ω′ + l ′�)〉 = δk,k′δl,l ′2πδ(ω − ω′)〈F †

k Fk〉ω,

(28)
where 〈F †

k Fk〉ω = 2κknk . Here, in agreement with the treat-
ment in the QME approach, we are assuming that nk is

constant, as demanded by the assumption of white noise. This
assumption is justified for β 	 ωk and � 	 kBT/h̄. Then we
have

〈ψ†
α
ψ

ε
〉ω =

N∑
k=1

2κknk (L−1MYkM
†L−1†

)ε,α, (29)

using the properties Y†
k = Yk and YkYk = Yk . From this ex-

pression we can numerically calculate all spectral correlation
functions.

As detailed in Appendix B, the total power emitted by the
hot oscillator or reservoir k into the system is given by [41,45]

Pem
k =

∫
dω

2π
h̄ωk2κk (nk − 〈a†

kak〉ω ). (30)

Assuming that only reservoir k has nonzero temperature, then
the heat flux flowing into the reservoir l is given by

Pk→l =
∫

dω

2π
h̄ωl2κl〈a†

l al〉ω, (31)

where 〈a†
l al〉ω is given by 〈ψ†

α
ψ

ε
〉ω from Eq. (29) with ε =

α = Nn + l coming from the term involving nk due to bath k.

IV. MASTER EQUATIONS WITH SYNTHETIC FIELDS

Now, instead of the QLEs we use the QMEs (6) and (7)
with periodic driving as in Eq. (13). This directly leads to the
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set of equations
d

dt
〈a†

kak〉 = −i
∑
j, j �=k

(gk j〈a†
ka j〉 − g jk〈aka†

j〉)

− 2κk〈a†
kak〉 + 2κknk, (32)

d

dt
〈a†

kal〉 = �̃kl〈a†
kal〉 − i

∑
j �=k; j �=l

(gl j〈a†
ka j〉 − g jk〈a†

j al〉)

− iglk (〈a†
kak〉 − 〈a†

l al〉), (33)

with

�̃kl = i(ωk − ωl ) − κk − κl

+ iβ[mk cos(�t + θk ) − ml cos(�t + θl )]. (34)

To solve the equations, we make the Fourier series
ansatz for the expectation values of each observable O such
that

〈O〉 =
∑

n

e−in�t 〈O〉n. (35)

Then we note that∑
n

e−in�t 〈O〉n[cos(�t + θk ) − cos(�t + θl )]

=
∑

n

e−in�t

(
ηkl

2
〈O〉n+1 + η∗

kl

2
〈O〉n−1

)
, (36)

with

ηkl = (mkeiθk − mle
iθl ). (37)

Inserting this ansatz into the set of equations (32) and
(33) gives the following set of equations for the Fourier
components:

(−in� + 2κk )〈a†
kak〉n

= −i
∑
j, j �=k

(gk j〈a†
ka j〉n − g jk〈aka†

j〉n) + 2κknkδn0, (38)

(−in� − �kl )〈a†
kal〉n

= −i
∑

j �=k; j �=l

(gl j〈a†
ka j〉n − g jk〈a†

j al〉n)

− iglk (〈a†
kak〉n − 〈a†

l al〉n) − iβηkl

2
〈a†

kal〉n+1

− iβη∗
kl

2
〈a†

kal〉n−1. (39)

The set of equations for the Fourier components can again be
written in matrix form

Lψ = κ (40)

when introducing the block vector

ψ = (. . . ,ψ1,ψ0,ψ−1, . . .)
T, (41)

with

ψn = (〈a†
1a1〉n, . . . , 〈a†

N aN 〉n, 〈a†
1a2〉n, 〈a†

2a1〉n, . . . ,

〈a†
1aN 〉n, 〈a†

N a1〉n, 〈a†
2a3〉n, 〈a†

3a2〉n, . . . , 〈a†
2aN 〉n,

〈a†
N a2〉n, . . . 〈a†

N−1aN 〉n, 〈a†
N aN−1〉n)T, (42)

as well as the block vector

κ = (. . . , 0, 0,+2κ1n1, . . . ,+2κN nN , 0, 0, . . .)T. (43)

The block matrix L then takes the form of a tridiagonal block
matrix

L =

⎛
⎜⎜⎜⎜⎝

· · · · · · · · · · · · · · ·
· · · M1 G− O · · ·
· · · G+ M0 G− · · ·
· · · O G+ M−1 · · ·
· · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎠, (44)

with

Mn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−in� + 2κ1 0 · · · 0 +ig12 −ig21 · · · 0 0

0 −in� + 2κ2 · · · 0 −ig12 ig21 · · · · · · ...
... · · · · · · · · · · · · · · · · · · · · · ...

0 0 · · · −in� + 2κN 0 0 · · · −igN−1,N igN,N−1

−ig21 ig12 · · · 0 −in� − �12 0 · · · 0 0
ig21 −ig12 · · · 0 0 −in� − �21 · · · 0 0
... · · · · · · · · · · · · · · · · · · · · · ...

0 0 −ig3N ig3N · · · · · · · · · 0 −in� − �N,N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(45)

G+ = iβ

2
diag(0, . . . , 0, η12,−η12, . . . , ηN−1,N ,−ηN−1,N ),

(46)

and G− defined as the matrix obtained from G when complex
conjugating ηkl . The different perturbation orders n can be
obtained by using 2n + 1 subblocks in the matrix L. Note that
even though we use the same notation as in the QLE approach,

the vectors and matrices used are different and also have a
different dimension. Here the dimensions of the block vectors
and matrices are N2(2n + 1) and N4(2n + 1)22.

The mean heat flux (transferred power over one oscillation
period) from oscillator k at temperature Tk to an oscillator l at
temperature Tl = 0 K is defined by [42]

Pk→l = h̄ωl2κl〈a†
l al〉0, (47)
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FIG. 2. Sketch of a chain of four resonators 1, 2, 3, and 4
with equal nearest-neighbor couplings g and resonance frequencies
ω0. The oscillators in the middle are modulated with a modulation
strength β and a relative phase shift θ , resulting in synthetic electric
and magnetic fields.

taking ni = 0 for all other resonators. Again the total emitted
mean power by oscillator k is given by

Pem
k = h̄ωk2κk (nk − 〈a†

kak〉0) (48)

and we have energy conservation, i.e., Pem
k = ∑

l �=k Pk→l . The
advantage of the QME approach is that, differently from the
QLEs (30) and (31), a frequency integration is not necessary.
On the other hand, the size of the matrices for a given pertur-
bation order is much larger than for the QLE approach. Note
also that the simplifying white-noise assumption in the QLE
and QME approaches has the virtue that the cycle-averaged
energy which is pumped into the system by the modulation
is exactly zero. Hence any change in the power flowing be-
tween the oscillators or baths can be attributed to heat. (See
Appendix C for a detailed discussion.)

V. FOUR RESONATORS CASE: NONRECIPROCAL
HEAT FLUX WITH SYNTHETIC FIELDS

We consider here the heat flux in a chain of four res-
onators as depicted in Fig. 2. We assume that all resonators are
identical and we further assume reciprocal nearest-neighbor
coupling with identical coupling strength g so that the nonzero
coupling constants are g12 = g21 = g32 = g23 = g34 = g43 =
g. The resonance frequencies ω1 and ω4 of resonators 1 and
4 are fixed to ω0, whereas the resonance frequencies of the
resonators in the middle are modulated as

ω2 = ω0 + β cos(�t ), (49)

ω3 = ω0 + β cos(�t + θ ). (50)

In this configuration, we first determine the power P14 trans-
ferred from resonator 1 to resonator 4 with T1 = 300 K
and T2 = T3 = T4 = 0 K. Then we compare with the heat
flow in the backward direction by calculating the power P41

transferred from resonator 4 to resonator 1 with T4 = 300 K
and T1 = T2 = T3 = 0 K. Hence, only the first and the last
resonator are in our configuration coupled to a heat bath.
Therefore, here the modulation frequency � and the modu-
lation strength β are in principle not limited by the constraint
due to the white-noise assumption because the two resonators
in the middle have zero temperature. Nonetheless, we will
restrict ourselves to values which fulfill the above criteria
for the white-noise approximation. For our numerical cal-
culations we use ω0 = 1.69 × 1014 rad/s and κ = 0.013ω0,
which are the values taken from those for a graphene flake

FIG. 3. Plot of (a) P14 (solid line) and P41 (dashed line) from the
QME approach (47) at perturbation order n = 15 normalized to the
value P14(β = 0) = P41(β = 0) = 5.88 × 10−22 W for g = 0.011κ

and � = 0.05ω0 for θ = 0.1π and 0.5π . The closed and open sym-
bols are the results for P14 and P41 from integration of spectra as in
Fig. 5 from the QLE approach according to Eq. (31) at perturbation
order n = 10. (b) Comparison of exact numerical results (solid lines)
for the difference P14 − P41 normalized to P14(β = 0) = P41(β =
0) = 5.88 × 10−22 W with the corresponding power difference from
the approximate expression (dashed lines) from Eq. (52).

with EF = 0.4 eV from Ref. [75]. The coupling constant g
is determined by the near-field heat flux value, which de-
pends on the relative distance between the graphene flakes.
For a distance d = 100 nm between two graphene flakes, a
fitting of the resonator model with the results from fluctuating
electrodynamics [42] gives g = 0.011κ . Hence, we are in the
weak-coupling regime.

In Fig. 3(a) we show the results for the transferred power as
a function of the modulation strength β and for two different
values of θ . We show the numerical results obtained with
the QME method with Eq. (47) and the QLE approach with
Eq. (31). First of all, we can see that both methods provide the
same values for the exchanged power. Furthermore, it can be
seen that the heat flux is clearly nonreciprocal, in contrast to
the case of two resonators or two graphene flakes, where the
heat flux is reciprocal despite the nonreciprocal spectra [42].

As detailed in Ref. [37], for instance, the nonreciprocity
in transmission as sketched in Fig. 2 can be understood in
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second-order perturbation theory as an interference of dif-
ferent transmission paths. The energy at ω0 provided by
resonator 1 can go through the chain in second order via
the upper and lower sidebands at ω0 ± � by two scattering
events ω0 → ω0 + � and ω0 + � → ω0 or ω0 → ω0 − �

and ω0 − � → ω0, as sketched in Fig. 2. Due to the pres-
ence of the synthetic magnetic field, a phase is picked up in
this process which is not the same in forward transmission
from resonator 1 to resonator 4 and backward transmission
from resonator 4 to resonator 1. This symmetry breaking of
the synthetic magnetic field can be directly understood from
Eq. (14), which shows that upward and downward transi-
tions in the Floquet sidebands are connected to picking up a
positive or negative phase. Hence the forward and backward
transmission along the upper or lower sidebands results in
different phase factors. We emphasize that when considering
the heat flux between only two resonators, like our resonators
2 and 3 with modulation, there is no heat flux rectification
due to the fact that because of the white-noise reservoirs the
heat can enter via all the sidebands from resonator 2 to 3 or
vice versa [42]. Here the rectification is achieved by adding
two more resonators 1 and 4 which act as spectral filters for
the energy entering resonator 2 from the left or 3 from the
right so that the situation is very similar to the plane-wave
transmission in Ref. [37]. For a plane wave with frequency ω

being transmitted through the coupled resonators 2 and 3, the
difference in the transmission is explicitly given by [37]

τ23 − τ32 = −2i
β2

4
[τ (ω + �) − τ (ω − �)] sin(θ ), (51)

where τ (ω) is the transmission coefficient without modu-
lation. This transmission coefficient shows that there is a
nonreciprocal transmission for any phase difference θ �= mπ

with integer m. From this expression it can be expected that
at least in second-order perturbation theory, i.e., when β is
sufficiently small, the largest difference can be expected for
θ = π/2. For the four-resonator configuration depicted in
Fig. 2, a similar expression can be derived using a second-
order perturbation theory for the QME approach as detailed in
Appendix A. In the weak-coupling limit g 	 κ we find for the
difference of heat flux in the forward and backward directions

P14 − P41

h̄ω0ng
= β2 g5

κ5

(
7

8

Im(A2)

|A|4 + κ Im(A3)

|A|6 − κ3Im(A5)

|A|10

)

× sin(θ ), (52)

where A = 2κ − i� and n ≡ n1 = n4 is the mean occupation
number of the resonator 1 in the forward direction or resonator
4 in the backward direction. In Fig. 3(b) we compare its
predictions with the exact numerical results from Fig. 3(a),
clearly showing its validity in the small-β limit. This expres-
sion has a similar structure to Eq. (51), indicating the same
dependence on θ in the limit of small driving amplitudes
β. To see this effect, we show in Fig. 4 the relative power
transmission

E ≡ P14 − P41

P14 + P41
. (53)

It can be seen that indeed for β < 0.05ω0 the maximum
difference in the forward and backward heat flow happens
at θ = ±π/2. For larger modulation strengths higher-order

FIG. 4. Relative power transmission E defined in Eq. (53) as a
function of the dephasing θ for � = 0.05ω0 and different values of
modulation strength β using the QME approach in order n = 15.

effects play a role, so this maximum shifts to slightly larger
or smaller values of dephasing.

Finally, in Fig. 5 the spectra of power P14,ω and power P41,ω

obtained with the QLE approach in the forward and backward
directions are shown using � = 0.05ω0, β = 0.05ω0, and
θ = π/2. It can be seen that the spectra for the heat flow
in the forward and backward directions are not the same as
also found for two graphene flakes only [42]. Furthermore, it
can be seen that the sideband contribution is very small, so
the main nonreciprocity stems from frequencies around the
resonance ω0. Integrating these spectra according to Eq. (31)
gives the full transferred power for the forward and backward
directions shown in Fig. 3(a).

Let us compare our results with the heat transport in other
nonreciprocal systems, such as those in Refs. [31–33], where
nonreciprocal heat flux between two nanoparticles is achieved

FIG. 5. Spectra for mean power P14,ω = 2κ h̄ω0〈a†
4a4〉ω for the

forward heat flow and P41,ω = 2κ h̄ω0〈a†
1a1〉ω for the backward heat

flow calculated from the spectra for the mean occupations numbers
〈a†

4a4〉ω and 〈a†
1a1〉ω in Eq. (29). The modulation parameters are

� = 0.05ω0, β = 0.05ω0, and θ = π/2 and we use perturbation
order n = 10.
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by the heat transport via nonreciprocal surface waves of a
nearby plasmonic substrate. In these systems the energy or
heat flux rectification can be very efficient but at the cost of
applying strong magnetic fields or using intrinsically nonre-
ciprocal materials which do not allow for any active control
of the rectification mechanism. In our system the rectifica-
tion ratio expressed by the relative power transmission E can
be close to one. We find for our choice of parameters at
maximum a rectification ratio R1 = |P14 − P41|/|P41| = 8.6 or
R2 = |P14 − P41|/max|P41|, |P12| = 0.9 in Fig. 4. The rectifi-
cation ratio reported in Ref. [31] is R2 = 0.2 for a magnetic
field of 0.1 T and R2 ≈ 0.9 for a magnetic field of 1 T,
whereas in Ref. [32] a rectification ratio R2 ≈ 1 or R1 ≈ 249
is achieved for a magnetic field of 2–3 T. By replacing the
plasmonic substrate by a Weyl semimetal one can achieve
even higher rectification ratios. Depending on the specific
value of the momentum separation, parameter values of R1 =
2673 or even larger were reported in Ref. [33]. However,
Weyl semimetals do not allow for any active control of the
nonreciprocal heat flux, whereas in our system the direction
and the rectification strength can be controlled by the phase
shift and modulation strength. Our rectification mechanism is
also different from the modulation method in Ref. [56], where
a nonreciprocal heat flux is observed for the heat flow through
a specific triangular three-oscillator system by modulation of
two of the three resonance frequencies with specific phase
shifts and a modulation of the coupling strength between two
of the three resonators. In that case, there are also significant
pumped currents due to the modulation in the system, so a
direct comparison is difficult. Depending on the choice of
parameters, maximal relative power transmissions of E ≈ 0.5
and even E ≈ 1 are reported for cases without spectral filter-
ing. This system is more complicated than ours in the sense
that this system needs a dynamic modulation of the coupling
strength and a frequency modulation including pump currents,
whereas in our model only frequency modulations are needed.

Hence, in our four-resonator system we clearly find a non-
reciprocal heat flow due to synthetic electric and magnetic
fields. Even though our example might be difficult to realize in
practice, it clearly shows that synthetic electric and magnetic
fields can generate a nonreciprocal heat flux. We emphasize
that this result is not limited to near-field heat transfer between
graphene flakes but it is generally valid for any configuration
and any heat transfer channel which can be described by four
coupled resonators with synthetic fields.

VI. CONCLUSION

To summarize, based on the local QME, we have intro-
duced a formalism for a QLE and a QME approach for
N coupled resonators with synthetic electric and magnetic
fields. Both approaches are equivalent and reproduce the same
numerical results for the heat fluxes. However, the QLE ap-
proach is the natural choice when heat flux spectra are studied,
whereas for the heat flow the QME approach is a better choice,
because it is faster. As a very important example, we used
both approaches to show, for a system of four linearly coupled
resonators, that the heat flow is nonreciprocal when synthetic
electric and magnetic fields are present. This is in contrast to
the case of only two resonators where the heat flux is strictly

reciprocal. We also verified numerically that both approaches
give the same values for the heat flux. Even though for the nu-
merical evaluation we considered the near-field heat transfer
in a system of four coupled graphene flakes, our findings are
very general and applicable to any system and any heat flux
channel which can be described by coupled resonators. Hence,
our formalism provides the fundament for further studies on
heat flux and other physical effects in coupled many-resonator
systems with synthetic fields.
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APPENDIX A: PERTURBATION THEORY
FOR THE QME APPROACH

In this Appendix we derive the second-order expression in
Eq. (52). To this end, we start with Fourier equations for the
QME (40) taking terms with n = 0, 1,−1. Then we have

M0ψ0 = κ − G+ψ+1 − G−ψ−1, (A1)

M+1ψ+1 = −G+ψ2 − G−ψ0, (A2)

M−1ψ−1 = −G+ψ0 − G−ψ−2. (A3)

By inserting the expressions for ψ+1/−1 into the equation for
ψ0 and neglecting terms from |n| � 2 we arrive at

Nψ0 = κ ⇒ ψ0 = N−1κ, (A4)

with

N = [
M0 − G+M−1

+1G
− − G−M−1

−1G
+]

. (A5)

By defining

G+ = iβ

2
G̃, G− = iβ

2
G̃

∗
, (A6)

with G̃ = diag(0, . . . , 0, η12,−η21, . . . , ηN−1,N ,−ηN−1,N ),
we have

N =
(
M0 + β2

4

(
G̃M−1

+1G̃
∗ + G̃

∗
M−1

−1G̃
))

. (A7)

From this expressions it becomes more obvious that the first
nonvanishing contributions to the zeroth order are stemming
from the second-order terms, i.e., there is no contribution
linear in β.

For the tight-binding model of the four identical resonators
the involved vectors have 16 components and the matrices
have a size of 16 × 16. By definition of ψ0 we are interested
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FIG. 6. Comparison of exact numerical results for P14 (black
lines) with the second-order perturbation approach from Eq. (A7)
(PA 1) and with those from Eq. (A8) (PA 2) using the same param-
eters as in Fig. 3(a) and θ = π/2. The approximations for P41 are
similar (not shown).

in the terms N−1
14 and N−1

41 , which determine the transferred
power P4→1 and P1→4. Obviously, there can only be nonre-
ciprocity if N−1 �= (N−1)T . From the equation for N it can
be seen that due to the phase terms G̃ and G̃

∗
in the second-

order contribution, in general, we have N �= NT , so also

P4→1 �= P1→4 in general. Hence, the synthetic magnetic field
results in an asymmetry for N and hence for N−1.

For small β we can further simplify the inverse of N as

N−1 =
(
M0 + β2

4

(
G̃M−1

+1G̃
∗ + G̃

∗
M−1

−1G̃
))−1

=
(
1 + β2

4
M−1

0

(
G̃M−1

+1G̃
∗ + G̃

∗
M−1

−1G̃
))−1

M−1
0

≈
(
1 − β2

4
M−1

0

(
G̃M−1

+1G̃
∗ + G̃

∗
M−1

−1G̃
))

M−1
0 .

(A8)

In Fig. 6 we show a comparison of the second-order results
using Eqs. (A7) and (A8) with numerically exact results.
As expected, the second-order expansion is only reliable for
small enough values of β and the perturbation expression
in Eq. (A7) is valid for a larger range than the perturbative
expression in Eq. (A8).

Now we want to derive an analytical expression for the
heat flux difference. Note that the heat flux difference for the
forward and backward cases in our example is given by

P14 − P41 = 4h̄ω0nκ2�N14, (A9)

where �N14 = N−1
14 − N−1

41 and n ≡ n1 = n4. That means we
can focus on �N14 and add the prefactors later. Starting with
the approximate expression in Eq. (A8) and making a Taylor
expansion for g 	 κ , we obtain with Mathematica for �N14

the relatively long expression

�N14 ≈ β2g2

8|A1|6
g4

κ4

( |A1|2Im
(
A2

1

)
A3

0

{4[Im(η13η
∗
12) + Im(η34η

∗
24)] + 3[Im(η23η

∗
13) + Im(η24η

∗
23)] + Im(η14η

∗
13) + Im(η24η

∗
14)}

+ Im
(
A3

1

)
A2

0

[Im(η14η
∗
12) + 2 Im(η24η

∗
13) + Im(η34η

∗
14) − 3 Im(η12η

∗
23) − 3 Im(η23η

∗
34)]

+ 2
Im

(
A4

1

)
|A1|2A0

[Im(η24η
∗
12) + Im(η34η

∗
13)] − 2 Im

(
A5

1

)
|A1|4 Im(η12η

∗
34)

)
, (A10)

where we have introduced An = 2κ − in�. From this ex-
pression it can be seen that only for complex ηi j is there
nonreciprocity. It can be further observed that there seem to be
plenty of combinations which give a nonreciprocal heat flux.
In our four-oscillator example resonator 3 is the only one with
a nonzero phase θ ≡ θ3 �= 0 and resonators 1 and 4 are not
modulated at all, so η12 = −1, η14 = 0, η24 = 1, η34 = eiθ =
−η13, and η23 = 1 − eiθ . With these specific values we get

�N14 ≈ β2g6

4κ4
sin(θ )

(
7 Im

(
A2

1

)
|A1|4A3

0

+ 4 Im
(
A3

1

)
|A1|6A2

0

− Im
(
A5

1

)
|A1|10

)
.

(A11)

By adding the corresponding factors as defined in Eq. (A9)
and realizing that A0 = 2κ , we obtain the approximative ana-
lytical expression for the heat flux difference in Eq. (52).

APPENDIX B: DEFINITION OF HEAT FLUX

The heat flux between two oscillators k and l can be ob-
tained by the rate of work done on oscillator k by l , which is
classically defined by

Pk→l = k0(xk − xl )ẋk, (B1)

where k0 is the spring constant between the oscillators and xk

and xl is their displacement. By taking the classical–quantum-
mechanical correspondence and expressing the displacement
and its temporal derivative by the quantum-mechanical cre-
ation and annihilation operators a†

k and ak , respectively, one
can express the corresponding mean work rate by [38]

Pk→l = −ih̄ωkglk (〈aka†
l 〉 − 〈al a

†
k〉), (B2)

where gkl is the coupling constant between the oscillators.
This expression can be generalized for the case where the
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coupling can be asymmetric to

Pk→l = −ih̄ωk (glk〈aka†
l 〉 − gkl〈ala

†
k〉). (B3)

Now this work rate describes the heat flux when it is due to a
temperature bias.

Instead of using the analogy with the work rate, the heat
fluxes can also be directly determined from the QME. For
instance, the power exchanged between all oscillators k with l
can be defined as the mean change of the energy of oscillator
l by [41]

∑
k �=l

Pk→l = − i

h̄
〈[HS, Hl ]〉, (B4)

with HS defined in Eq. (2) and Hk = h̄ωka†
kak . This gives the

expression (B3) for Pk→l , validating the above reasoning. On
the other hand, the power flowing between the reservoir k and
the system is defined as [41,45]

Pem
k = Tr[Dk (ρ)Hk], (B5)

where

Dk (ρ) = −κk (nk + 1)(a†
kakρS − 2akρSa†

k + ρSa†
kak )

− κknk (aka†
kρS − 2a†

kρSak + ρSaka†
k ) (B6)

is the dissipator of the reservoir k and Hk = h̄ωka†
kak . Then

we arrive at

Pem
k = h̄ωk2κk (nk − 〈a†

kak〉). (B7)

Note that, due to Eq. (6), we have in steady state energy
conservation in the form

∑
k �=l

Pk→l = Pem
k . (B8)

To determine the power flowing between two oscillators k
and l we do not use the expression (B3), but we consider the
heat flowing into the reservoir l due to a temperature bias in
reservoir k, i.e., we assume that only reservoir k has nonzero
temperature, which leads to the power transferred to reservoir
l given by

Pk→l = −Pem
l = h̄ωk2κk〈a†

kak〉. (B9)

APPENDIX C: ENERGY PUMP DUE TO MODULATION

The power pumped into the system by the modulation can
be quantified from Eq. (B7) using only the modulation terms
from Eq. (13), so for each oscillator k we have

Pmod
k = h̄βmk cos(�t + θk )2κk (nk − 〈a†

kak〉). (C1)

We can compare this power input with that from the unmodu-
lated part

Punmod
k = h̄ωk2κk (nk − 〈a†

kak〉). (C2)

Then it is obvious that

Pmod
k

Punmod
k

= βmk

ωk
cos(�t + θk ). (C3)

Note that in the white-noise approximation the prefactor ful-
fills β/ωk 	 1, so the power pumped into the system due to
the modulation is negligibly small. In our model it can be
shown that it is exactly zero.

To see that within the white-noise approximation the en-
ergy pumped into the system by the modulation is exactly
zero, we first observe that by using the QLE (10) the change
in the mean occupation number of each oscillator due to the
modulation terms mkβ cos(�t + θk ) from Eq. (13) is constant
in time, i.e.,

d

dt
〈a†

kak〉mod = 〈ȧ†
kak〉mod + 〈a†

k ȧk〉mod

= imkβ cos(�t + θk )〈a†
kak〉

− imkβ cos(�t + θk )〈a†
kak〉

= 0. (C4)

Similarly, we can use the definition of the system Hamiltonian
HS from Eq. (2) with the modulation in Eq. (13) to show that

d

dt
〈a†

kak〉mod = − i

h̄
Tr

([
Hmod

S , ρS
]
a†

kak
)

= − i

h̄

〈[
a†

kak, Hmod
S

]〉
= 0, (C5)

with

Hmod
S =

∑
i

h̄β cos(�t + θi )a
†
i ai. (C6)

Hence, the energy of any oscillator, i.e., the energy of the full
system of oscillators itself, is not changed by the modulation.
This is in strong contrast to a modulation of the coupling
strength as in Refs. [54–56], where the modulation introduces
a strong pumping effect.

The full power emitted into the system by reservoir k with
modulation per modulation cycle can also be expressed as

P
em
k = 2π

�

∫ π/�

−π/�

dt
(
Pmod

k + Punmod
k

)

= −h̄ωk2κk〈a†
kak〉0

− h̄βmkκk (〈a†
kak〉−1eiθk + 〈a†

kak〉+1e−iθk ), (C7)

using the Fourier series expansion from Eq. (35). The sec-
ond line corresponds to the time-averaged contribution of
the power input due to the modulation. This contribution is
exactly zero due to the white-noise assumption, which re-
sults in 〈a†

kak〉+1 = 〈a†
kak〉−1 = 0, which can be inferred from

Eq. (40). Hence, the energy pumped into the system is zero
and using the expression

P
em
k = −h̄ωk2κk〈a†

kak〉0 (C8)

quantifies the full power emitted into the system by reservoir
k during one oscillation cycle.
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