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Abstract
Key message  Phenomic prediction implemented on a large diversity set can efficiently predict seed germination, 
capture low-effect favorable alleles that are not revealed by GWAS and identify promising genetic resources.
Abstract  Oilseed rape faces many challenges, especially at the beginning of its developmental cycle. Achieving rapid and 
uniform seed germination could help to ensure a successful establishment and therefore enabling the crop to compete with 
weeds and tolerate stresses during the earliest developmental stages. The polygenic nature of seed germination was high-
lighted in several studies, and more knowledge is needed about low- to moderate-effect underlying loci in order to enhance 
seed germination effectively by improving the genetic background and incorporating favorable alleles. A total of 17 QTL 
were detected for seed germination-related traits, for which the favorable alleles often corresponded to the most frequent 
alleles in the panel. Genomic and phenomic predictions methods provided moderate-to-high predictive abilities, demonstrat-
ing the ability to capture small additive and non-additive effects for seed germination. This study also showed that phenomic 
prediction estimated phenotypic values closer to phenotypic values than GEBV. Finally, as the predictive ability of phenomic 
prediction was less influenced by the genetic structure of the panel, it is worth using this prediction method to characterize 
genetic resources, particularly with a view to design prebreeding populations.

Introduction

Oilseed rape (Brassica napus L.) is the leading oilseed crop 
in Europe (FAO 2023), but it faces numerous constraints, 
especially in a context of climate change and reduced chemi-
cal inputs. One of the keys to overcome these challenges 
would be to ensure successful plant establishment, enabling 
the crop to compete with weeds and tolerate stresses dur-
ing the earliest developmental stages in order to guarantee 

a high-yield potential (Nelson et al. 2022). Indeed, oilseed 
rape establishment is affected by a wide range of biotic and 
abiotic stresses, such as seed- and soil-borne pathogens 
causing damping-off, pest attacks reducing young plantlet 
biomass (slugs and flea beetles), and weed competition as 
well as environmental limiting factors, especially water (lack 
or excess) and extreme temperatures that can occur after 
sowing or during plant emergence (Haj Sghaier et al. 2022). 
These stresses can dramatically reduce plant density and 
biomass thus, ultimately affecting yield. Successful plant 
establishment results from a combination of developmen-
tal processes of which germination is the first step (Rajjou 
et al. 2012). As a matter of fact, rapid and highly efficient 
germination combined to uniform plant emergence strongly 
increase the likelihood of plant establishment, which is 
expected especially under adverse environmental conditions.

Seed germination is a complex trait subject to genetic 
and environmental controls. The environmental effect is 
generally referred to the so-called ‘seed-lot’ effect that 
encompasses the conditions during seed development on the 
mother plant as well as the post-harvest conditions (Rajjou 
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et al. 2012; Finch-Savage and Bassel 2016). In addition, the 
cultural practices also lead to variation in germination ability 
when considering factors such as the sowing date, seedbed 
preparation, intercropping, and choice of previous crop (Elli-
ott et al. 2007; Lamichhane et al. 2018). Several studies have 
reported the polygenic nature of seed germination, which 
is under the control of numerous loci with moderate-effect 
each (Hatzig et al. 2015; Nguyen et al. 2018; Gad et al. 2021; 
Luo et al. 2021).

Modeling low additive effects distributed along the 
genome can be addressed through the recent development 
of prediction methods. The benchmark article of Meuwis-
sen et al. (2001) conceptualized the prediction of complex 
traits using genotypic data, called genomic prediction (GP). 
GP combine phenotypic data and high-density molecular 
markers obtained on genotypes from a training population, 
to predict the genomic estimated breeding values (GEBV) of 
non-phenotyped genotypes from a testing population. Com-
bined with GWAS approach, GP can accelerate genetic gain 
in breeding (Hickey et al. 2017; Araus et al. 2018). Other 
emerging methods have focused on using endophenotypes 
as trait predictors to complement or even to replace molecu-
lar data. This enables to improve not only the modeling of 
additive effects, but also of non-additive and epistatic effects 
(Mackay et al. 2009; Patti et al. 2012; Ritchie et al. 2015). 
Multiple studies integrated transcriptomic and metabolomic 
data, as endophenotypes, into predictive models, either in 
combination with genomic data or not (Westhues et al. 2017; 
Schrag et al. 2018; Knoch et al. 2021). These integrations 
complemented the information provided by molecular mark-
ers and have demonstrated the ability to better capture small 
genetic effects. Rincent and coworkers (2018) proposed a 
low-cost and high-throughput method as an alternative to 
the use of -omics data, based on near-infrared spectroscopy 
(NIRS), called phenomic prediction (PP).

Up to now, most of the studies reporting the use of GP and 
PP models have focused on traits related to seed yield, seed 
quality, or plant phenology mainly in cereal crops (Heffner 
et al. 2011; Albrecht et al. 2011; Rincent et al. 2018; Voss-
Fels et al. 2019; Lane et al. 2020; Robert et al. 2022), with 
additional examples in other crops such as rapeseed (Wür-
schum et al. 2014; Werner et al. 2018; Knoch et al. 2021) 
or other species such as trees (Resende et al. 2012; Muranty 
et al. 2015; Isik et al. 2016; Rincent et al. 2018; Brault et al. 
2022). Considering seed germination phenotype, a first study 
reports the interest of GP to decipher the polygenic effect of 
seed germination capacity in barley (Rooney et al. 2022), 
with moderate-to-high predictive abilities.

As seed germination has rarely been considered as a 
selection trait in the past, it is very likely that certain genes 
and alleles of interest are present in both recent and ancient 
germplasms. Therefore, we investigate the genetic determin-
ism of seed germination-related traits in rapeseed and the 

predictive ability of GP and PP models for these traits in a 
broad genetic pool including ancient and recent germplasm 
of winter, semi-winter, and spring type. The combination of 
different germplasms provided potential access to favorable 
low-effect polygenes. Our goal was to investigate whether 
GP and PP were promising methods to improve germina-
tion capacity in addition to GWAS. Our results led to (i) 
identify relationships between germination-related traits, (ii) 
decipher the genetic control of these traits, and (iii) compare 
multiple models of GP and PP, integrating one or multi-
ple predictors, to evaluate the predictive abilities for seed 
germination-related traits.

Material and methods

Plant material and genotyping data

The diversity set consisted of 223 genetically diverse B. 
napus inbred lines, including 127 winter oilseed rape 
(WOSR), 81 spring oilseed rape (SOSR), 13 winter fod-
der (WFR), and two swedes (Online Resource 1). Seed lots 
were all produced in the field by open pollination during 
the 2020/2021 season in Le Rheu, France. Each genotype 
was sown in a four-row plot. To avoid pollen mixing, the 
outer rows of each plot were discarded at harvest. All the 
genotypes were sown and harvested at the same time. Seeds 
were then stored under the same conditions. After harvest, 
seed lot was split intro sub-lots each dedicated to a specific 
analysis or experiment (i.e., seed germination monitoring, 
TSW measurements, and acquisitions of NIRS spectra) as 
described below. All the accessions were genotyped using 
the Brassica 60 K Infinium® SNP array (Illumina, Inc., San 
Diego, CA) (Clarke et al. 2016), and the data were visu-
alized using GenomeStudio software (Illumina, Inc., San 
Diego, CA). A total of 33,151 SNPs were validated using 
thresholds of 5% for the minor allele frequency (MAF), 
10% for the frequency of missing values, and 10% for the 
heterozygosity level. The missing SNP data were imputed 
using BEAGLE software following the method described in 
Browning et al. (2018). SNPs were physically anchored to 
the B. napus Darmor-bzh v10 reference genome (Rousseau-
Gueutin et al. 2020).

Acquisition of germination data

Seed germination dynamics were monitored using the 
high-throughput phenotyping platform for germination at 
the National Seed Testing Station in Angers, France (PHE-
NOTIC—Angers Seed Phenotyping Facility, Boureau 2020). 
Seeds were imbibed under controlled conditions at 20 °C, in 
the dark, during 96 h. The experimental design consisted of 
blocks of twenty-five seeds per genotype, repeated four times 
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(Ducournau et al. 2004; Wagner et al. 2011). Imaging and 
analysis methods are described in Demilly et al. (2014), with 
pictures taken every 2 h over the experiment.

Germination parameters were monitored for each block of 
twenty-five seeds as following (Table 1): seed volume increase 
after 20 h of imbibition (VI, in %), final germination percent-
age after 96 h (GP, in %), first germination time (FG, in h) cor-
responding to the time when the first seed germinates, mean 
germination time (MGT, in h) corresponding to the mean 
delay to germinate for each seed lot, and radicle elongation 
speed (ES, in mm/h). Supplementary parameters were deduced 
from the germination dynamics, such as germination after 36 h 
of imbibition (GP36, in %), time to reach 20% of germination 
(T20, in h), time to reach 50% of germination (T50, in h), time 
to reach 80% of germination (T80, in h), uniformity (UNI) 
assessed as the difference between T80 and T20, and the area 
under the curve (AUC) that represents the germination rate 
as a function of the time from the initiation of the imbibition. 
AUC was estimated for each genotype using the values for the 
100 seeds of the four blocks. Thousand seed weight (TSW, 
in g) was also measured for each seed lot by weighting seed 
samples after drying at 105 °C overnight.

Phenotypic heritability

Broad-sense heritability (H2) was calculated for each pheno-
typic trait. Genotypic and error variance were extracted from 
the following linear mixed model:

Yi = � + Gi + ei,

where Yi is the trait value obtained for the genotype i, Gi 
corresponds to the random genetic effect for genotype i, and 
ei is the residual effect. We assumed that Gi and ei were 
independent, identically distributed and followed a normal 
distribution.

H2 was then calculated as follows: H2 =
�2
G

�2
G
+

�2e
n

,where σ2
G 

is the genotypic variance, σ2
e is the error variance, and n is 

the number of repetitions.

NIRS data

NIR spectra were collected on a sub-set of dry seed samples, 
that originated from the same seed lots as the sub-set used 
for the germination phenotyping experiments. A MPA FT-
NIR spectrophotometer (Bruker Optic Inc., Germany) was 
used over the range of 4000–12,000 cm−1 with a 16 cm−1 
optical resolution. NIRS was converted in nm in steps of 
1 nm, so the final spectra range from 800 to 2781 nm. Three 
biological replicates were run per genotype, with each rep-
licate being the average of 64 technical repetitions measured 
by the spectrophotometer. Due to a lack of seeds, only 210 
genotypes were screened (Online Resource 1). NIR spectra 
were centered and scaled to reduce noise. Then, the first 
derivative of the Savitzky–Golay filter (Savitzky and Golay 
1964) was calculated using the R package signal (Signal 
Developers 2014) to smooth the curve. The three replicates 
were then averaged to obtain a mean NIR spectrum per 
genotype.

Table 1   Variation of the 
germination-related traits 
assessed over a diversity 
germplasm of 223 rapeseed 
genotypes

Abb trait abbreviation Min, Max, Mean, and SD minimum, maximum, mean, and standard deviation for fit-
ted values H2 broad-sense heritability

Trait Abb (unit) Formula Min Max Mean SD H2

Thousand seed weight TSW (g) 2.550 6.250 4.358 0.623293 /
Seed volume increase 

after 20 h of imbibition
VI (%) Volume20 h-Volume0 h 0.997 4.440 2.145 0.496137 0.40

Time of the 1st germ FG (h)
∑

h1st germination

nrep

22.00 58.00 30.25 4.805132 0.51

Time to 20% of germ T20 (h) 28.50 64.00 52.26 7.252935 0.69
Time to 50% of germ T50 (h) 36.00 79.67 51.93 8.855827 0.65
Time to 80% of germ T80 (h) 43.20 96.00 63.55 11.15751 0.61
Mean germ. time MGT (h) 38.12 75.43 52.26 6.849242 0.68
Uniformity UNI (h) T80-T20 11.53 50.00 24.04 7.472102 0.43
Area under the curve AUC (%.h−1) ∫ h1

h2
fhdh

1444 5888 4077 972.7179 /

Germ. percentage at 36 h GP36 (%) nbgerminated seeds at 36h

nbtotal
∗ 100 0.00 52.00 15.49 10.35249 0.69

Germ. percentage at 96 h GP (%) nbgerminated seeds at 96h

nbtotal
∗ 100 46.67 100 49.46 10.91978 0.46

Radicle elongation speed ES (mm.h−1) lradicule at 16h

16h
0.080 0.209 0.149 0.026788 0.56
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Exploratory analyses and correlations

To explore the relationship between the different seed ger-
mination traits, a principal component analysis (PCA) was 
performed using FactomineR package (Lê et al. 2008). The 
number of dimensions was chosen according to the percent-
age of explained variance. Then, a clustering was carried 
out, using the partitioning around medoids (PAM) method 
(Kaufman and Rousseeuw 1990). The number of clusters 
(k) was chosen using silhouette index and gap statistic from 
cluster R package (Maechler et al. 2022). Due to nonlin-
ear relationships, Spearman correlations were calculated 
between traits.

Population genetic structure and diversity

Genetic structure of the germplasm was unraveled using 
the first two components of a principal coordinates analysis 
(PCoA, Gower 1967) carried out using the SNP data. The 
PCoA is based on the genetic distances between genotypes 
estimated by the dissimilarity matrix (1-K). The genomic 
kinship (K) was estimated using Astle and Balding (2009) 
algorithm as following:

With W, the matrix scaled on allelic frequencies with 
dimensions N × M, N is the number of genotypes and M is 
the number of molecular markers and WT is the transposed 
W matrix.

Nucleotidic diversity (π) per chromosome was estimated 
using VCFtools (Danecek et al. 2011).

Genome‑wide association study

For the GWAS only, a kinship matrix was re-estimated 
for each chromosome tested as described by Rincent et al. 
(2014). The estimation of the kinship matrix (K) is similar 
to the methodology previously described, except that SNPs 
located on the chromosome under investigation were dis-
carded. The pairwise linkage disequilibrium (LD) between 
SNPs (r2) was estimated per chromosome using PLINK soft-
ware v.1.9 (Purcell et al. 2007). LD decay according to the 
physical distance between markers for each chromosome is 
represented in Online Resource 2.

GWAS was performed using FaST-LMM algorithm (Lip-
pert et al. 2011). To reduce false associations (types I and 
II errors) due to population structure and kinship between 
genotypes, GWAS was performed with a mixed model that 
takes these two factors into account (Yu et al. 2006). Due to 
high average LD calculated between SNP pairs intra- and 

K =
WWT

M

inter-chromosomes (mean LD = 0.51), the SimpleM approach 
(Gao et al. 2008, 2010) was used to reduce type I error (false-
positive) by estimating the effective number of independent 
tests (Meff) based on composite LD for the GWAS. Markers 
were considered as significantly associated with a trait if the 
−log10 (p-value) exceeded a 5% threshold (using our data, the 
5% threshold was 3.51). In addition, false discovery rate (FDR) 
adjusted q-values were calculated to reduce type I errors using 
the q value R package (Storey 2002). Markers with a q-value 
inferior to 0.2 were retained.

QTL confidence intervals were estimated based on the 
method proposed by Albert et al. (2016). Briefly, LD calcula-
tion was performed between 100,000 randomly chosen pairs 
of unlinked loci located on different chromosomes. The criti-
cal LD threshold was chosen as the 95th percentile of the LD 
distribution, which equaled 0.16 using our data. Then, local 
pairwise LD with markers located upstream and downstream 
the significant marker (on the same chromosome) was calcu-
lated in the same way as pairwise LD explained above. Confi-
dence intervals were estimated for each significant marker as 
the interval between the first (upstream) and last (downstream) 
markers that presented a LD value higher than the LD thresh-
old when compared to the significant marker.

Effects of each single QTL (R2 and allelic effect) were esti-
mated at the peak marker that corresponded to the marker with 
the smallest p-value. Favorable alleles were identified for each 
QTL as the allele that improved the phenotype, that is to say 
increasing GP36, TSW, and VI values but decreasing MGT, 
T20, and T50 values. The number of favorable alleles across 
all QTL locations for each genotype and trait was calculated, 
ranging from 0 to the maximum number of QTL identified 
for the trait. An ANOVA and Tukey test at 5% probability 
level were performed to compare the effect of accumulating 
favorable alleles at QTL for each trait.

The genes under the identified QTL were obtained from the 
B. napus Darmor-bzh V10 annotation file (Rousseau-Gueutin 
et al. 2020). The function of candidate genes was obtained 
from TAIR (https://​www.​arabi​dopsis.​org/).

Genomic and phenomic predictions

Genomic heritability along NIR-based spectra was estimated 
for each wavelength from a statistical model considering a 
random polygenic effect. Genotypic and error variance were 
extracted from the following linear mixed model:

where Yi is the spectrum value obtained for the genotype i, 
Gi corresponds to the random genetic effect for genotype 
i, following a normal distribution G ∼ N(0,K�2

G
 ) with K 

the kinship (see above), and eij is the residual effect. We 

Yij = � + Gi + ei,

https://www.arabidopsis.org/
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assumed that Gi and ei were independent, identically dis-
tributed and followed a normal distribution.

Genomic heritability was then calculated as fol-
lows: H2

genomic
=

�̂2
G

�̂2
G
+�̂2

e

 , with �̂2
G
 and �̂2

e
 , the REML estimates 

of σ2
G and σ2

e obtained using the R package sommer (Covarru-
bias-Pazaran 2016).

A spectral matrix H was calculated to represent the kinship 
between genotypes based on the NIR spectra similarity.

With S, the raw NIR spectra matrix of dimension N × Nw. 
The S matrix gathered the value of absorbance pretreated as 
presented above, for each genotype and each wavelength. Val-
ues were also centered and scaled. N represents the number 
of genotypes, and Nw represents the number of wavelengths. 
Mantel test using 999 permutations was realized to compare 
the spectral relationship matrix H with the genomic kinship 
matrix K.

GBLUP and HBLUP (using the K or H matrix, respec-
tively) were used to predict seed germination-related traits 
which are defined as follows:

where Yi is the mean phenotype value for the genotype i, μ is 
the intercept, Gi or Wi is the random genetic effect following 
a normal distribution G ∼ N(0,K�2

G
 ) with K the genomic 

kinship matrix (see above) or W ∼ N(0,H�2
G

 ) with H the 
hyperspectral matrix, and ε is the random residual effect 
following � ∼ N(0, �2

�
).

H =
SST

Nw

(1)GBLUP Yi = � + Gi + �i

(2)HBLUP Yi = � +Wi + �i

Both genomic (K) and spectral (H) matrices were 
included simultaneously in a GHBLUP model by integrat-
ing two variance–covariance matrices as follows:

with G ∼ N(0,K�2
G
) , and W ∼ N(0,H�2

W
).

GP and PP models were assessed for each trait using 
cross-validation (CV). Training set was composed of four-
fold over five of genotypes chosen randomly, and the testing 
set was composed of the remaining fold. CV was repeated 
100 times. These models were fitted using sommer R pack-
age (Covarrubias-Pazaran 2016). PA were estimated for each 
model by the Pearson correlation between the observed and 
the predicted values of the validation set.

By homology with the values estimated by genomic pre-
diction, called GEBV, we called the values estimated by phe-
nomic prediction PEPV, for phenomic estimated phenotypic 
values.

Results

Phenotypic distribution and correlations 
between traits

All germination-related traits displayed moderate-to-high 
heritabilities (Table 1). The highest heritabilities (> 0.60) 
were observed for GP36, T20, T50, T80, and MGT, and 
the lowest heritabilities were observed for VI (0.40) and 
UNI (0.43). Heritabilities could not be estimated for TSW 
and AUC as only one value per genotype was measured. 
GP, GP36, T20, T50, T80, AUC, and MGT were highly 
correlated as shown in Table 2. GP, AUC, and GP36 were 

(3)GHBLUP Yi = � + Gi +Wi + �i,

Table 2   Correlation coefficients for trait pairs associated with seed germination scored on 223 rapeseed genotypes

Significant values are shown in boldface
Significances were calculated at levels of: *p < 0.05, **p < 0.01, and ***p < 0.001
For details of trait abbreviations refer to Table 1 and “Material and methods”

AUC​ TSW MGT T20 T50 T80 UNI GP GP36 FG VI

TSW 0.08
MGT −0.97*** −0.06
T20 −0.94*** −0.04 0.96***
T50 −0.96*** −0.05 0.96*** 0.92***
T80 −0.91*** −0.12 0.91*** 0.84*** 0.88***
UNI −0.73*** −0.19** 0.67*** 0.53*** 0.67*** 0.88***
GP 0.89*** 0.10 −0.77*** −0.76*** −0.80*** −0.78*** −0.70***
GP36 0.89*** 0.07 −0.93*** −0.95*** −0.88*** −0.81*** −0.50*** 0.68***
FG −0.61*** −0.08 0.6*** 0.63*** 0.55*** 0.57*** 0.40*** −0.55*** −0.62***
VI 0.27*** 0.52*** −0.29*** −0.29*** −0.27*** −0.23*** −0.18** 0.18** 0.28*** −0.11
ES 0.35*** 0.19* −0.43*** −0.40*** −0.37*** −0.39*** −0.25*** 0.20** 0.42*** −0.22** 0.14*
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positively correlated as well as T20, T50, T80, and MGT, 
which can be partially explained by the non-independence 
of traits. However, these two groups of variables presented 
negative correlations one with each other. VI and ES pre-
sented significant but moderate correlations with other traits 
(Table 2). TSW was only significantly correlated to UNI 
(−0.19), ES (0.19), and VI (0.52). These correlations were 
strengthened by the correlation circle of the PCA (Fig. 1). 
Indeed, AUC, GP, GP36, T80, T20, T50, and MGT were 
highly correlated to the first axis that gathered 60.42% of the 
variability while TSW and VI were correlated to the second 
axis that explained 12.43% of the variability. ES, UNI, and 
FG were less correlated to these two principal components.

Germplasm structure using genomic, phenotypic, 
and spectral data revealed different patterns

Genetic structure of the germplasm was assessed using the 
first two axes of the principal coordinates analysis using SNP 
(PCoA), explaining 48% of the genetic variance (Fig. 2a). 
The first axis that encompasses 34% of genetic variance 
clearly discriminated winter and spring types. The second 
axis (14% of the genetic variance) separated Asian geno-
types on the one side and European and American genotypes 
on the other side. As a whole, four genetic clusters were 
identified using the PCoA clustering. Cluster 1 (n = 114, red) 
was mostly composed of European WOSR and WFR but 
also included some Asian WOSR. Cluster 2 (n = 62, green) 
was mostly composed of European and North American 

SOSR, but also gathered some Oceanian SOSR. Cluster 
3 (n = 23, blue) corresponded to Asian SOSR and WOSR. 
Finally, cluster 4 (n = 24, purple) was composed of Euro-
pean winter fodder, Asian, and European WOSR. The mean 
nucleotide diversity π was computed on the whole germ-
plasm and equaled 7.69e−05, indicating an important genetic 
diversity within the germplasm used in this study.

The relatedness between genotypes was also estimated 
using NIRS data (Fig. 2b). Heritabilities of the NIR spectra 
ranged between 0.00 and 0.95 regarding the wavelengths, 
with 34% and 16% of the wavelengths having a heritabil-
ity superior or equal to 0.50 and 0.70, respectively (Online 
Resource 3). This indicates that NIRS is suitable for fur-
ther genetic analysis. However, no cluster of genotypes was 
evidenced based on the NIRS data (Fig. 2b). In addition, 
when the genotypes were labeled according to their genetic 
cluster, no specific pattern was highlighted. Indeed, the cor-
relation calculated using Mantel test between genomic (K) 
and hyperspectral (H) kinship matrices was equal to 0.051.

Based on the germination data, three phenotypic clusters 
of genotypes representing their seed germination perfor-
mance were identified by PAM clustering (Fig. 2c). The first 
phenotypic cluster (from the left, light gray) corresponded 
to genotypes with a high germination capacity (high GP, 
GP36, AUC and low UNI, MGT, T80, T20, T50). The sec-
ond phenotypic cluster (medium gray) consisted of geno-
types with an intermediate behavior. Finally, the third cluster 
(dark gray) was composed of genotypes with poor germina-
tion ability (low GP, GP36, AUC and high MGT, T20, T50, 
T80, UNI). Each cluster gathered SOSR and WOSR types 
(Fig. 2c). Genomic clusters C1 and C4, which represented 
WOSR genotypes, were predominantly present in pheno-
typic clusters 1 (65% and 19%, respectively) and 2 (50 and 
5%), i.e., clusters grouping genotypes with medium-to-high 
germination capacity. In contrast, genotypes from these 
genomic clusters (C1 and C4) were scarce in phenotypic 
cluster 3 (25 and 0%), respectively. Genotypes from clusters 
C2 and C3 were present at low frequency in the first phe-
notypic cluster (10 and 6%, respectively) and more frequent 
in the phenotypic clusters 2 (33 and 12%, respectively) and 
3 (57 and 18%, respectively). Therefore, a link between the 
type or origin of rapeseed genotypes and their seed germina-
tion behavior was revealed.

Identification of multiple QTL confirmed 
the polygenic determinism of seed germination

A total of 17 unique regions (QTL) were detected by 
GWAS for seed germination traits (GP36, MGT, T20, 
T50, and VI) and thousand seed weight (TSW), with 
an explained variance (R2) ranging from 6.30 to 8.78% 
(Table 3). Among these 17 QTL, three were identified for 
four germination traits (GP36, MGT, T20, and T50) on 

Fig. 1   Plot of principal components for 12 variables associated with 
seed germination scored on 223 genotypes. Trait description is pro-
vided in Table 1
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A06 (QTL.A06.1), A09 (QTL.A09.1), and C02 (QTL.
C02.2). QTL.C01.1 was identified for GP36 and MGT, 
QTL.A06.2 for MGT and T50, and QTL.C04.2 for MGT 
and T20. Example of Manhattan and QQ plots for GP36 
is available in Online Resource 4. Few QTL detected were 
trait-specific: three for GP36 (QTL.A07.1, QTL.C02.1, 
and QTL.C07.1), three for MGT (QTL.A10.1, QTL.
C04.1, and QTL.C05.1), two for T50, (QTL.A07.2 and 
QTL.C07.2), one for TSW (QTL.A10.2), and twp for VI 
(QTL.C03.1 and QTL.C09.1) (Table 3). TSW QTL and 
VI QTL did not colocate with any QTL detected for the 
other traits. For most of the QTL, the favorable allele was 
the major allele in the germplasm (Table 3). Indeed, this 
was the case for one of the two QTL for VI, 5 QTL out of 
9 for MGT, 3 QTL out of 4 for T20, and 5 QTL out of 6 
for T50. On the contrary, for GP36, 5 QTL out of 7 had 
the minor allele as the favorable one. On the same line, 
the only QTL detected for TSW presented the minor allele 

as the favorable one. For all traits, a positive effect of the 
accumulation of favorable alleles was observed (Online 
Resource 5).

A search for candidate genes within the confidence inter-
vals of the quantitative trait loci (QTL) identified two genes 
involved in germination (Online Resource 6): A10p30660.1_
BnaDAR, located under QTL.A10.2, is an ortholog of A. 
thaliana gene involved in seed germination and radicle 
development, ARGINYL-t-RNA PROTEIN TRANS-
FERASE 1 (ATE1); and C03p76020.1_BnaDAR, located 
under QTL.C03.1, is an ortholog of another A. thaliana gene 
GDSL-motif lipase 1 (GDSL1).

Relative performances of PP and GP at the whole 
panel level

Then, VI, ES, and TSW were dropped from the further 
analyses as they were weakly correlated to sensu stricto 

Fig. 2   Genetic and phenotypic 
characterization of the panel 
used. Relatedness of 223 geno-
types of rapeseed is highlighted 
by a principal coordinate 
analysis (PCoA) using the first 
two components using a SNP 
and b NIRS data acquired on 
seed samples. c PAM clustering 
on principal components of 12 
variables associated with seed 
germination measured on 223 
genotypes. Unfilled symbols 
correspond to winter types and 
plain symbols correspond to 
spring types



	 Theoretical and Applied Genetics         (2024) 137:156   156   Page 8 of 16

Table 3   QTL controlling germination-related traits detected in a 
population of 223 rapeseed through GWAS. QTL were ordered 
regarding their position on the genome. For each QTL, information 
is given about the peak and flanking markers, the peak SNP position, 
QTL size, as well as major and minor allele, followed by the minor 

allele frequency (MAF). For each trait, the SNP weight indicating 
the favorable allele version and the phenotypic variance explained by 
the SNP (R2) are represented. Positions are relative to the reference 
genome Darmor-bzh V10 (Rousseau-Gueutin et al. 2020)

SNP weight in boldface stands for minor alleles that are favorable

QTL name Chr Trait Peak SNP
Peak position (pb)

Flanking marker 1/
Flanking marker 2

QTL size (kb) Major/
minor 
allele

MAF SNP weight R2

QTL.A06.1 A06 GP36 Bn_A06_p836912
(1,102,221)

Bn_A06_p709547/Bn_A06_
p908271

279 T/C 0.15 2.60 7.60
MGT −1.83 8.46
T20 −1.81 7.64
T50 −2.38 8.78

QTL.A06.2 A06 MGT Bn_A06_p14121814
(34,532,655)

Bn_A06_p19574863/Bn_
A06_p18040423

4272 T/C 0.20 1.78 7.99
T50 2.25 7.78

QTL.A07.1 A07 GP36 Bn_A07_p15220175
(21,453,055)

Bn_A07_p14390667/Bn_
A07_p15885711

1530 A/G 0.25 2.91 8.59

QTL.A07.2 A07 T50 Bn_A07_p16553147
(22,869,578)

Bn_A07_p16157761/Bn_
A07_p17026444

909 G/T 0.13 2.19 7.62

QTL.A09.1 A09 GP36 Bn_A09_p2733282
(4,101,875)

Bn_A09_p951202/Bn_A09_
p7560188

8824 G/A 0.45 −4.00 8.31
MGT 2.27 6.48
T20 2.43 6.95
T50 3.00 8.03

QTL.A10.1 A10 MGT Bn_A10_p9459037
(13,661,179)

Bn_A10_p7835472/Bn_
A10_p9645870

1990 C/T 0.27 −1.88 6.60

QTL.A10.2 A10 TSW Bn_A10_p15838932
(18,901,950)

Bn_A10_p13817274/Bn_
A10_p16933405

3226 G/T 0.28 0.23 7.44

QTL.C01.1 C01 GP36 Bn_scaff_15838_5_p446059
(3,600,398)

Bn_scaff_19244_1_p388798/
Bn_scaff_17731_1_
p308944

6736 T/G 0.45 3.07 7.47
MGT −1.91 6.73

QTL.C02.1 C02 GP36 Bn_scaff_18507_1_p957588
(35,173,323)

Bn_scaff_18507_1_p737065/
Bn_scaff_17067_1_
p669413

6469 A/G 0.13 2.66 6.99

QTL.C02.2 C02 GP36 Bn_scaff_16139_1_p720716
(61,523,315)

Bn_scaff_15918_1_p303294/
Bn_scaff_16139_1_p41217

5361 T/C 0.32 −3.13 7.31
MGT 2.15 8.30
T20 2.16 7.75
T50 2.47 7.04

QTL.C03.1 C03 VI Bn_scaff_17440_1_p552871
(57,791,809)

Bn_scaff_19740_1_p203934/
Bn_scaff_16394_1_
p2229812

5070 T/C 0.39 0.21 6.50

QTL.C04.1 C04 MGT Bn_scaff_18440_1_p77767
(9,746,347)

Bn_scaff_27469_1_p45054/
Bn_scaff_16576_1_p202308

12,852 T/C 0.24 2.53 6.69

QTL.C04.2 C04 MGT Bn_scaff_24979_1_p13103
(53,828,390)

Bn_scaff_19208_1_p476848/
Bn_scaff_20079_1_
p289504

5714 T/C 0.36 1.88 7.05
T20 1.93 6.73

QTL.C05.1 C05 MGT Bn_scaff_16414_1_p1774629
(254,723)

Bn_scaff_23107_1_p7608/
Bn_scaff_15712_10_
p173981

5460 C/T 0.38 −2.01 6.30

QTL.C07.1 C07 GP36 Bn_A07_p3467400
(15,046,703)

Bn_A07_p3467400/Bn_
scaff_16721_1_p1551224

28 C/G 0.07 3.01 8.69

QTL.C07.2 C07 T50 Bn_scaff_16110_1_p1076892
(54,582,081)

Bn_scaff_16110_1_
p2439331/Bn_
scaff_16110_1_p1076892

1509 A/G 0.07 2.22 7.91

QTL.C09.1 C09 VI Bn_A09_p694190
(579,848)

Bn_scaff_16486_1_p88236/
Bn_scaff_17297_1_
p202207

6571 A/T 0.46 −0.16 6.84
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seed germination traits (Table 2). Predictions of seed ger-
mination traits were run either using genomic (GBLUP) 
or phenomic (HBLUP) prediction models (Fig. 3). Models 
that used a combination of the genomic and the spectral 
kinships were also tested (GHBLUP). In a first approach, 
we consider a first cross-validation (CV) scenario where 
the whole panel was used as training and prediction set 
(CVwhole). More precisely, the training set included 80% 
of the whole population chosen randomly, the valida-
tion set being the remaining 20% of the whole popula-
tion. Overall, low-to-medium predictive abilities (PA) 
were obtained, varying between 0.40 (FG, UNI) and 0.59 
(T20) for GBLUP, 0.32 (FG) and 0.50 (T20, MGT) for 
HBLUP, and between 0.13 (GP36) and 0.34 (GP) for 
GHBLUP. For all traits, the PA of GBLUP appeared to 
be slightly higher or similar to the PA of HBLUP (Fig. 3). 

For instance, for GP36, the overall predictive ability of the 
genomic prediction was moderate (0.59), whereas the PA 
of HBLUP equaled 0.49. Furthermore, GHBLUP was less 
performant than GBLUP and HBLUP alone for all traits. 
Interestingly, when genotypes were labeled according to 
their genetic cluster affiliation, a separation between the 
different genetic clusters was revealed when looking at 
the GBLUP results, each genetic cluster corresponding to 
a specific stratum (Fig. 4). This result was observed for 
all traits (Online Resource 7). This highlighted the impact 
of the genetic structure on the genomic prediction model. 
Such pattern was less observed for the phenomic predic-
tion model (Fig. 4, Online Resource 7). In conclusion, 
when the CVwhole scenario was considered, we found that 
PP was less performant but also less impacted by popula-
tion structure than GP.

Fig. 3   Predictive abilities of the nine seed germination-related traits 
using genomic (GBLUP), phenomic (HBLUP), or combined (GHB-
LUP) prediction models run for scenarios CVwhole, CVlocal, and 
CVwhole/local. Scenario CVwhole corresponds to the utilization of the 
whole germplasm for calibration and estimation of the PA, scenario 
CVlocal corresponds to cluster 1 genotypes used for calibration and 

estimation of the PA. Scenario CVwhole/local corresponds to the utiliza-
tion of the whole germplasm for calibration, and only genotypes of 
the cluster 1 were used for PA estimation. PA were obtained from a 
fivefold cross-validation with 100 repetitions. Each boxplot indicates 
the mean (bold line), the first and third quartiles (boxes), and the first 
and ninth deciles (whiskers) (color figure online)
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Relative performances of PP and GP 
for unstructured population

As genetic structure influenced genomic predictions, par-
ticular attention was paid to investigating the most efficient 
way of predicting a specific genetic cluster. For this purpose, 
the genotypic cluster 1 was chosen as target population, as 
it is the only cluster that reached a sufficient size to allow 
model calibration (n = 114, but only 103 genotypes used due 
to missing NIRS, Fig. 2a). The cluster 1 gathered most of 
the winter oilseed rape genotypes. Therefore, two scenarios 
were compared (Fig. 3). In the first scenario, CVlocal, cluster 
1 genotypes were used as calibration and validation sets. 
More precisely, 80% of cluster 1 genotypes were included 
in the training set, and the remaining 20% composed the 
validation set. In the second scenario, CVwhole/local, 80% of 
the whole panel was used in the training set, while the vali-
dation set was composed of the genotypes of the cluster 1 
that was not present in the calibration set. Each scenario 
was repeated 100 times. Some PA could not be calculated 
due to non-convergent model repetitions. A first observa-
tion was that PA calculated for these two scenarios were 
lower than PA obtained for the whole panel (Fig. 3), which 
can be explained by the fact that the genomic structure of 
the panel caused a bias in the PA estimation. Furthermore, 
PA of GBLUP or HBLUP models for scenarios CVwhole/local 
and CVlocal were similar. But we observed that HBLUP 
model provided higher PA than the other two models, for 
all traits. In the context of the CVlocal scenario, the results 

indicated that low-to-medium PA were obtained, with val-
ues ranging from 0.06 (FG) to 0.32 (GP36) for GBLUP and 
from 0.23 (T50) to 0.48 (GP36) for HBLUP. The highest 
difference in PA between the models was observed for FG 
(GBLUP PA = 0.09 and HBLUP PA = 0.25), while the low-
est was observed for T50 (HBLUP PA = 0.23 and GBLUP 
PA = 0.15). In addition, GBLUP models outperformed 
GHBLUP models or obtained similar results (Fig. 3). Conse-
quently, in case of unstructured population, PP led to higher 
PA values than GP.

Choosing genotypes based on their PEPV rather 
than on their GEBV provided higher selection 
differentials

The performance of GBLUP and HBLUP models in select-
ing the top 10% of genotypes from the whole panel was 
investigated (Table 4). The mean of the BLUEs values of 
the whole panel for each trait was compared to the mean 
BLUEs value of different sets of genotypes. The first set 
corresponds to the top 10% of the whole panel based on 
the BLUEs values. The second set corresponds to the top 
10% of the whole panel according to their GEBV. And the 
third set corresponds to the top 10% of the whole panel 
according to their phenomic estimated phenotypic values 
(PEPV). For each method, the mean BLUEs value was 
calculated. The selection differential (S) was estimated 
for each sampling method as the difference between the 
mean whole population BLUEs and the top 10% mean 

Fig. 4   Predictive ability for GP36 using a genomic (GBLUP) and b 
phenomic (HBLUP) prediction models. Dots represent the observed 
and the predicted trait values across a fivefold cross-validation with 
10 repetitions. Colors and dot types represent genomic clusters pre-

viously defined. The mean predictive ability (r) calculated across the 
entire dataset using a fivefold cross-validation with 100 repetitions is 
represented by a black line
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BLUEs. The selection differentials were higher when 
genotypes were chosen on their PEPV than when they 
were chosen according their GEBV (average increase in 
S between S estimated for GEBV and S for PEPV = 29%), 
indicating that selection decisions based on PEPV would 
be closer to phenotypic selection than GP-based selec-
tion. Concordances between best (and worst, respectively) 
(Online Resource 8) selected genotypes according to their 
BLUEs and their GEBV or concordances between best 
(and, respectively, worst) genotypes selected according to 
their BLUEs and their PEPV were studied using Jaccard’s 
similarity coefficient. This allowed to compare GP and 
PP ranking, for each scenario. Average concordances of 
14.4% (BLUEs vs PEPV) and 7.2% (BLUEs vs GEBV) 
were obtained for the best 10% genotypes. Similar con-
cordances were obtained for the 10% worst genotypes, 
with a concordance rate of 13.6% between BLUEs and 
PEPV, and 8.2% between BLUEs and GEBV.

Discussion

In an attempt to get insights into the genetic architecture 
of seed germination in oilseed rape, we used a combina-
tion of genetic methods based on molecular as well as 
phenotypic and spectral predictors. The main results led to 
the highlight of 17 genomic regions that control seed ger-
mination-related traits in the large genetic diversity used. 
Moreover, genomic and phenomic prediction methods pro-
vided moderate-to-high predictive abilities, demonstrating 
the capacity to capture small additive and non-additive 
effects for seed germination. This study also provided the 
first application of phenomic prediction in oilseed rape and 
demonstrated the higher ability of phenomic prediction to 
estimate phenotypic values closer to BLUEs compared to 
genomic prediction.

Alleles promoting seed germination are almost all 
fixed in oilseed rape

A total of 17 QTL with small effects were detected con-
firming the polygenic nature of seed germination as illus-
trated in the previous studies (Bettey et al. 2000; Basnet 
et al. 2015; Hatzig et al. 2015; Nguyen et al. 2018). Six of 
these genomic regions controlled several traits (e.g., GP36, 
MGT, T20, and T50), which was consistent with the high 
correlations between these traits (r < −0.88 or r > 0.96). This 
suggests pleiotropy or linkage drag. Therefore, it would be 
interesting to study the underlying genes of these six spe-
cific regions. We found a QTL in common with Hatzig et al. 
(2015) through the identification of a gene orthologous to A. 
thaliana ATE1, also characterized by Holman et al. (2009) 
as involved in seed germination. In addition, we found 
C03p76020.1_BnaDAR gene, highlighted by Ding et al. 
(2019) as being involved in seed germination in A. thaliana 
and B. napus. However, we found no other QTL in com-
mon between those identified in our study and those identi-
fied in the studies deciphering the genetic control of seed 
germination sensus stricto in Brassica napus (Hatzig et al. 
2015; Nguyen et al. 2018; Boter et al. 2019; Gad et al. 2021; 
Luo et al. 2021), Brassica oleracea (Bettey et al. 2000), or 
Brassica rapa (Basnet et al. 2015) under optimal or stressed 
conditions. This lack of correspondence could be explained 
by the fact that these different studies (except Hatzig et al. 
(2015)) used restricted genetic diversity populations, limited 
either to WOSR or SOSR genotypes. Whereas we analyzed 
a larger genetic diversity.

To estimate the ability to improve seed germination in 
breeding by marker-assisted selection, we looked at the effect 
of QTL staking for each trait. The accumulation of several 
(> 3) favorable alleles increased seed germination speed. How-
ever, for most of the traits used in this study, the favorable 
alleles were also the most frequent alleles in our germplasm. 
Consequently, a low genetic gain is expected. Similarly, Hatzig 

Table 4   Average of the best linear unbiased estimates (BLUEs) for 
the whole germplasm, and the top 10% individuals selected based on 
their BLUEs, genomic estimated breeding values (GEBV), and phe-
nomic estimated phenotypic values (PEPV), for each trait, using 210 

rapeseed genotypes. For each average, the standard deviation is asso-
ciated. The selection differential (S) was calculated for each values, as 
the difference between the germplasm mean and the mean of the top 
10% genotypes

Mean whole population Top 10% BLUEs S BLUEs Top 10% GEBV S GEBV Top 10% PEPV S PEPV

GP36 1.07 ± 0.36 1.55 ± 0.07 0.48 1.33 ± 0.21 0.26 1.33 ± 0.22 0.26
T50 51.85 ± 8.87 40.24 ± 1.77 −11.61 48.55 ± 4.83 −3.3 45.33 ± 5.06 −6.52
T20 41.23 ± 7.20 31.68 ± 1.30 −9.55 36.96 ± 4.57 −4.28 35.80 ± 4.51 −5.43
T80 63.48 ± 11.13 48.33 ± 1.97 −15.15 58.89 ± 6.56 −4.59 55.19 ± 5.60 −8.29
AUC​ 40.84 ± 11.79 60.14 ± 2.43 19.3 53.08 ± 5.50 12.24 53.55 ± 7.71 12.71
FG 30.16 ± 4.75 24.29 ± 0.85 −5.87 27.95 ± 3.27 −2.21 27.26 ± 2.39 −2.90
GP 2.53 ± 1.16 4.40 ± 0.33 1.87 2.81 ± 0.74 0.28 3.17 ± 0.84 0.64
MGT 52.22 ± 6.87 42.43 ± 1.62 −9.79 49.21 ± 4.97 −3.01 47.12 ± 4.03 −5.10
UNI 24.02 ± 7.50 14.49 ± 1.16 −9.53 20.83 ± 4.03 −3.19 20.03 ± 4.20 −3.99
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et al. (2015) showed an improvement of T50 when stacking 
multiple favorable haplotypes. They also showed that the 
favorable haplotypes for this trait were the most frequent in 
the population, suggesting a strong selection for T50. Interest-
ingly, some minor alleles were identified as favorable, for some 
traits involved in seed germination capacity, such as GP36. 
Therefore, improving seed germination capacity could still be 
achieved by targeting these favorable alleles presenting a low 
frequency in the population.

SNP‑based genomic structure of oilseed rape 
diversity did not match to the structure observed 
using spectral data, but influenced seed 
germination capacity

No difference between WOSR and SOSR was observed 
using NIRS data. Furthermore, kinship estimated based on 
NIRS data (H matrix) was not correlated to the one based 
on SNP data (K matrix). Similar results were obtained for 
soybean RIL populations (Zhu et al. 2021) or for Dent and 
Flint maize populations (Weiß et al. 2022). Brault et al. 
(2022) also reported a low correlation between NIRS-based 
H matrix and SNP-based K matrix using a diversity panel 
of grapevine. A single study for triticale revealed a H matrix 
well correlated to the genomic (Zhu et al. 2022). The low 
correlations between H and K matrices might result from 
different histories of domestication and selection or from 
different ranges of considered genetic diversity.

As shown in the previous studies of oilseed rape genetic 
diversity (Diers and Osborn 1994; Hasan et al. 2006; Bus 
et al. 2011), we observed two specific genomic clusters for 
winter and spring accessions using SNP data. Clustering 
on seed germination traits revealed a difference in perfor-
mance between WOSR (C1 and C4) and SOSR (C2 and C3) 
genomic clusters. Nevertheless, within the panel, WOSR are 
represented in a similar proportion for each breeding period, 
unlike SOSR which were mainly bred between the 70 s and 
80 s (Online Resource 1). These differences in breeding 
dates between WOSR and SOSR could partly explain the 
difference WOSR/SOSR observed for seed germination per-
formance, thus confirming the hypothesis proposed when 
comparing H and K matrices. Indeed, Hatzig et al. (2018) 
showed that intensive selection conducted between the 70’s 
and 80’s to reduce erucic acid and glucosinolates content in 
seeds had a negative impact on seed germination capacity. 
Further investigation would be required to distangle the type 
effect (WOSR/SOSR) from the breeding history effect.

Genomic and phenomic predictions allowed 
capturing weak polygenic effects

After seeking to highlight moderate additive effects by 
GWAS, genomic and phenomic prediction models were 

used to consider polygenic background. The combination 
of spectral and genomic data in the model called GHB-
LUP performed worse than HBLUP and worse or similar 
than GBLUP. Similarly, Brault et al. (2022), who identified 
weak correlations between K and H matrices, obtained 
no gain in PA by combining NIRS and SNP information. 
However, these results differed from the previous stud-
ies using GHBLUP model, which showed superior PA 
compared to GBLUP or HBLUP models on yield traits 
(Krause et al. 2019; Galán et al. 2020; Zhu et al. 2021; 
Robert et al. 2022). In the case of soybean, the rrBLUP 
model combining SNP and NIRS data showed a higher PA 
than the genomic rrBLUP, even if K and H matrices were 
not correlated (Zhu et al. 2021). The type of trait studied, 
its genetic architecture and, in particular, the proportion 
of phenotypic value explained by non-additive genetic 
effects, could explain these differences in GHBLUP per-
formance. Therefore, this information could help to choose 
between genomic, phenomic, and combined predictions 
models. In particular, the use of NIRS data and PP models 
could be favored for traits moderately to strongly shaped 
by non-additive genetic effects. It is also necessary to 
remain cautious regarding the absorbance values for each 
wavelength. They can be influenced (i) by the environment 
in which the seeds were formed and stored, which can 
have an impact on the PA when predicting in independent 
environments, and (ii) by the environment in which the 
spectra were acquired (humidity and temperature), result-
ing in heterogeneous data over time. The decision to use 
some or all of the wavelengths, particularly with regard to 
their heritability, may also have an impact on the accuracy 
of phenomic predictions models. In addition, PA overes-
timation can result from the fact that the same samples 
are used both for the acquisition of NIRS data and for the 
acquisition of the phenotypic data. Dallinger et al. (2023) 
also warn against PA overestimation due to the correlation 
between traits to be predicted and seed compounds as well 
against unintentional selection of seed compounds in the 
selected population on the basis of its PEPV. Finally, it is 
necessary to remain vigilant regarding the traits chosen 
for prediction.

In this study, both GP and PP methodologies predicted 
well germination traits in the CVwhole scenario (up to 0.59 for 
GBLUP on GP36 and 0.50 for HBLUP on T20). However, 
we showed an impact of the genomic structure on the PA of 
GP but not with PP models (Fig. 3). This genomic structure 
impact on genomic prediction models was also reported pre-
viously (Riedelsheimer et al. 2013; Schopp et al. 2017; Wer-
ner et al. 2020). The absence of impact of genomic structure 
on PP is in accordance with Zhu et al. (2021, 2022) and 
Weiß et al. (2022) studies. Therefore, HBLUP models should 
be preferred to predict complex traits for genetically diverse 
germplasm.
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Interest of phenomic prediction in breeding 
to incorporate genetic diversity in elite pools

Our results confirm that seed germination performance 
could be increased through genomic and/or phenomic pre-
diction, highlighting the interest in improving the genetic 
background. We showed that PP provided PEPV closer to 
BLUEs than GEBV. It would be necessary to confirm these 
results using independent phenotyping trials. According to 
the breeder equation (Lush 1943), the impact of PP could 
be interpreted according to the different terms of the equa-
tion: concerning the (i) the generation interval, no impact is 
expected as seed germination phenotype is acquired at the 
beginning of the cycle. Considering (ii) the intensity i, NIRS 
acquisition is simple, fast, and inexpensive, which would 
allow to screen a higher number of genotypes. Therefore, 
more resources could be allocated to construct the train-
ing population, which then could lead to a better PA and, 
therefore, to a better identification of the best promising 
individuals. This resources reallocation could subsequently 
also contribute to phenotype these promising individuals 
more reliably and in different environments. As a whole, 
PP is a mean to increase the selection intensity. However, a 
specific attention has to be paid to maintain genetic diversity 
within the breeding population to assure long-term genetic 
gain. This can be achieved, (i) by limiting or optimizing 
the selection intensity, (ii) by considering genetic diversity 
in the choice of parents to cross, using, for example, opti-
mal contribution selection (Cowling et al. 2017), or (iii) by 
integrating exotic material into elite genotypes (Simmonds 
1993). For this last point, we propose to use PP to efficiently 
identify genetic diversity to be valorized. Integrating this 
genetic diversity into elite germplasm would increase the 
frequency of favorable alleles in the population. Indeed, inte-
grating exotic diversity into elite germplasm is one of the 
most important challenges in field crops (Cowling 2013), 
especially in oilseed rape. Oilseed rape has a narrow genetic 
diversity and could take advantage of this gain of diversity 
to overcome biotic and abiotic stresses while maintaining 
or increasing yields. For this purpose, the creation of pre-
bridging and bridging populations (i.e., progeny obtain from 
elite x exotic crosses to be integrated into elite germplasm) 
have been proposed (Gorjanc et al. 2016; Allier et al. 2020; 
Sanchez et al. 2023). The construction of these (pre-)bridg-
ing populations could benefit from phenomic prediction. PP 
could help identifying material from a broad range of exotic 
resources for the creation and maintenance of pre-bridging 
and bridging populations.
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