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ABSTRACT

With the increase of interest upon rotation invariance and equivariance for Convolu-
tional Neural Network (CNN), a fair amount of papers have been published on the
subject and the literature keeps increasing. This paper aims to fill the lack of morpho-
logical approaches on the matter. We propose a set of group equivariant layers using
morphological operators, several model configurations are tested and compared with
a convolutional equivalent network. The results show that the proposed morpholog-
ical networks are capable of classifying rotated images even when trained only with
upright samples.

Keywords Mathematical Morphology - Deep Learning - Equivariant Network

1 Introduction

In the intense interest towards deep learning in the computer vision community and the plethora of
papers coming with it, one particular contribution remains the cornerstone of most proposed methods:
the convolutional layer. Through this contribution in [1f], LeCun ef al. have shown that using transla-
tion equivariant transformations offers great improvements to neural networks for image processing and
analysis. This powerful property allows to process in the same way (or at least predictively) an object
in an image independently of its position. Yet, other types of fluctuation may arise in the pose of an ob-
ject in an image: orientations or scales, for example, may also change between two images or between
two parts of a same image. Equivariance or invariance to certain transformations can also be beneficial
to process objects presenting symmetries. A popular method generalizing regular convolution to group
convolution have shown interesting capacities [2]]. Even though a theory of Group Morphology has been
proposed before the deep learning era [3] and the idea of using group equivariant morphological opera-
tors in deep learning has been suggested by Angulo [4]], there have not been any morphological version
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of the Group Equivariant Convolutional Network (GECN) [2]. We propose in this paper to combine
the theory of Group Morphology with GECN to fill this gap. The paper is organized in the following
way. Section[2lrecalls definitions and mathematical results of the fields of group action and mathemat-
ical morphology. Section [l reviews the most related work concerning group morphology and group
equivariant neural networks. Then section [ introduces the contribution of the paper: sixteen group
equivariant layers based on mathematical morphology operators. Section [3| describes the preliminary
results obtained with the proposed layers on the Fashion-MNIST dataset. Finally section |6 concludes
the paper and gives future perspectives.

2 Mathematical Preliminaries

2.1 Group Action

This section begins by giving a general definition of the notion of equivariance and in-variance. We pro-
vide definitions inspired by the ones in [3]] and slightly modified. We will consider that a transformation
is a bijective map between a set and itself. In this case, we say that the transformation acts on the set.
For any set X, we will denote by 7 (X), the set of all transformations acting on X. In the following,
F(X,R) will denote the space of maps from X to R.

Definition 1 (Equivariant and Invariant Mapping to a Transformation) Given a set X and a trans-
formation 1 € T (X) acting on it (m : X — X), w can also act on F(X,R) through an induced
transformation I1 : F(X,R) — F(X,R) defined as follows :

Vf e F(X,R),Vz € X, II(f) (z) == f (= * ().

Given two sets X, Y, amap ® : F(X,R) — F(Y,R), two transformations = € T (X) and ¢ €
T (Y) acting respectively on X and'Y and their induced transformations 11 € T (F(X,R)) and ¥ €
T (F(Y,R)):

* ® is said to be (11, ¥ )-equivariant if and only if
Vf e F(X,R), ®(I(f)) = ¥ (2(f)).

When the context is clear and without doubts on the nature of ¥, we can abusively say that ®
is II-equivariant.

* @ is said to be Il-invariant if and only if it is (11, id 7 (v r))-equivariant:
Vf e F(X,R), ®II(f)) = (f)

When considering specific kinds of transformations, e.g. rotations or translations, one can sometimes
benefit from a group structure if the transformations behave accordingly. The scope of this paper is
limited to such situations.

Definition 2 (Group Actions) Given a set X and a group (G, -), G is acting on X if it exists a subgroup
To (X) of (T (X),0), where o is map composition, and a homomorphic mapping
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T:(G,") = (Tg (X),0)
g—1Ty -

Such transformations Ty are called G-actions. It can be noted that if a group G acts on X, then G acts
on F(X,R) through the induced transformations from Tg (X ) with the induced G-actions defined as:

Vfe F(X,R),Vz € X, Ty (f)(x) = f (T*1 (2)) = f (T, (:c))

g

Definition 3 (Group Equivariant and Group Invariant Mapping) Given a group G acting on two
sets X and Y with G-actions Tg (X) = {T,X € T(X) | g€ Gl andTg (V) ={T) € T(Y)|g € G}.
Let us consider the induced G-actions on F(X,R) and F(Y,R), denoted as T,  and T} forall g € G.
Given a mapping ® : F(X,R) — F(Y,R),

* & js said to be G-equivariant (or equivariant to the action of G) if forall g € G, ® is (']1‘5(7 T;/)-
equivariant.

* & is said to be G-invariant (or invariant to the action of G) if for all g € G, ¥ is 'H‘g{-invariant.

Definition 4 (Transitivity and Homogeneous Space) Given a set X and group G, G is said to act
transitively on X if for all x,y € X it exists a group element g € G such that y = Ty (). In this
case, X is said to be a homogeneous space of G. The existence of the group element g is not necessarily
unique. If a point x,, is chosen to be the origin of the space X, the set of group elements mapping the
origin to itself is called the stabilizer of x, and will be written ¥, | and by an abuse of notation, ¥ will
be used.

Remark 1 The stabilizer of the origin X is a subgroup of G. For every element y € X, if X is a
homogeneous space of G, there is at least one g € G such that y = Ty (x,). It can be shown that every
other group element mapping x, to y is an element of the left-coset g% = {gh € G | h € X}. The set of
all the left-cosets, called the left quotient-space G /Y., is then isomorphic to X.

Example 1 Considering X = R? and the group of 2-dimensional translations and rotations G =
R2 x [—m, 7. G acts on X with the following group action:

V(7,0) € G,Vx € R? | T(, ) (2) = Rox + T,
where Ry is a rotation matrix. The stabilizer ¥ = {(0,0) € G | § € [—n, 7]} when setting z, = (0,0).

In practice, to obtain group equivariance, a commonly used strategy is to lift the input image to the
desired group, apply an operator or a filter defined on the group and project it back on the original space.
Foramap f : X — R, the lifting of f to G is defined as follow:

Vg € G, [F79(9) = f (Ty (w0)) M
One possibility proposed in [3], in the case of discrete groups, for the projection of amap f : G — R is
the following one

Ve € X, 3g, € G suchthatz = T, (x,), then fg_x (z) = ﬁ Z fh), 2)
h€g. X

where # gives the cardinality of a set.
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2.2 Basis of Mathematical Morphology

This section aims to recall the theoretical foundation of Mathematical Morphology (MM) in order to
enhance the self-contained nature of the paper. The subsequent content is strongly inspired by [6] and
interested readers are invited to consult this reference for a more detailed overview of MM. Originally
defined using set theory to process and analyse binary images, the main idea of MM was to use probes,
defined as sets and called Structuring Elements, to describe and modify binary shapes. Two operators
called Dilation and Erosion based on the Minkowski addition and subtraction are essential to this end.
Given an Euclidean space £ and two subsets X and B of £, where X plays the role of the image/shape
to study and B is the structuring element, the dilation and erosion of X using B are defined by the
following equations

0B (X) =X & B =Ugex By = UpeXp. 3)

EB(X) Z:X@B:{y€g|ByGX}:ﬁbeBX,b. 4)
For any B C £ and any = € &, the notation B, denotes the set {x +b € £ | b € B}.
MM has then been generalized to other mathematical objects of various natures (e.g. bounded functions

on Euclidean spaces [7] or Riemannian manifolds [8], graphs [9]], etc) under a common framework of
complete lattices defined as follow,

Definition 5 (Complete Lattice) A complete lattice is defined to be a set L equipped with a partial
ordering < satisfying the following properties: for any family of elements (X;);,.; € L1, it exists a
supremum \/ ;. ; X; and an infimum \;_; X; such that:

eViel, Nig; Xi < Xi <V,er Xi

sVY EL (VieLY <X;) = (Y < Ay Xi)

Two important elements arise from this definition: the supremum and the infimum of the entire complete
lattice. They will be denoted L~ for the infimum of £ and T for the supremum of L.

Remark 2 Using the reverse partial ordering >, if (L, <) is a complete lattice, then (L, >) is a com-
plete lattice were the supremum (resp. infimum) of (L, >) is the infimum (resp. supremum) of (L, <).
The two lattices are said to be dual lattices. This notion of duality is recurrent in MM.

Under the framework of complete lattices, erosions and dilations are defined to be the mappings com-
mutating with supremums and infimums.

Definition 6 (Erosion and Dilation) Given a complete lattice (L, <), amap § : L — L is called a
dilation if for any family of elements (X;),c; € L%, 6 (\;e; Xi) = V;e1 6 (Xi). In the same manner,
amap e : L — L is called an erosion if for any family of elements (X;);.; € Ll e (/\ Xl-) =
Nier € (Xa).

Following the notations of [6], the set of maps £* between a complete lattice and itself will be denoted
0.

iel
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Remark 3 The notions of dilation and erosion are dual and it can be shown (Proposition 2.3 of [6]])
that the set of dilations and the set of erosions are both complete lattices with the following partial
ordering: Given ¥, ® € O

U<P «—= VXel, U(X)<P(X).
Definition 7 (Adjunction) Given two mappings 0,¢ € O, the pair (g,0) is said to be an adjunction if
VX, YL, §(X)<Y < X <e(Y).

Proposition 1 Proposition 2.5 of [6] Given d,e € O, (g,) being an adjunction implies that ¢ is a
dilation and ¢ is an erosion.

Definition 8 For any ¥ € O, the two dual mappings V*® and U, can be defined in the following way:
VY el

U (V)= \V{ZeL|U(Z)<Y}and Wa (Y) = N{Z € L|Y < U (Z)}.

Remark 4 Heijmans and Ronse showed in Proposition 2.6 of [I6] that for any adjunction (g,8) € O?,
the following relations between € and 6 holds:

e=40%andd = ,. 5)
This remark goes even further with the following theorem

Theorem 1 (Theorem 2.7 of [6]]) The set of adjunctions forms a dual isomorphism between the com-
plete lattice of erosions and the complete lattice of dilations. Meaning that for every dilation § (resp.
erosion €), it exists a unique erosion ¢ (resp. dilation 8) such that (g,8) is an adjunction and thus
respects ().

The concepts of dilations, erosions and more generally the concept of adjunction can be generalized
to mappings between two distinct complete lattices £; and L. In this case, it is possible to have an
adjunction (g,d) suchthat§ : £1 — Lo and e : Lo — L.

Definition 9 (Sup-Generating family) Given a complete lattice L and a subset I C L, 1 is said to be
sup-generating if every element X € L can be associated with a subset of 1, written 1 (X), defined as
1(X)={z €l|x < X} andsatisfying X = \/ 1 (X). In other words, every element of the complete
lattice can be expressed as the supremum of a collection of elements of l.

When studying gray level images, it comes naturally to consider the image as functions to real numbers,
maybe bounded [10], on a Euclidean space. More generally, a gray level image can be seen as a map
between a set (or a Euclidean space) £ and a complete lattice £. The space F (&, L) of such maps is
again a complete lattice where the partial ordering, the infimum and the supremum are defined using the

partial ordering, the infimum and the supremum of £: Considering any collection (f;),.; € F(&, E)I
*Vf,geF(EL), f<g < VaeE, f(z)<g(x)
* Yz e, (\/ie[ fi) () = Ve fi (x) and (/\iel fi) (@) = Nieg fi (2)



Group Equivariant Networks Using Morphological Operators

We will consider two sets £; and & and a complete lattice £, the notion of generating family can be
useful to describe erosions and dilations on the complete lattices F (€1, £) and F (&, £) by looking at
the dilations (or erosions) of the elements of the generating family. More precisely, we will consider
a dilation ¢ : F (&1, L) — F(&2, L) and for the complete lattice F (&1, L) we will consider the sup-
generating family Ir(g, ) = {fo,t € F(E1, L) |z € &1, t € L]} with

t, ify==x

Yy € &, fx,t(y)_{J_ﬁ ify #a’

as for any F' € F(&1,L), F = \/me‘€1 Jz,F(z)- In a similar way that a sup generating family can be
used to describe an element of the complete lattice, a dilation can be described by its effect on the sup
generating family. The set of mappings d, . : £ — L are defined using the elements of [z(¢, ) and §:

Ve e &, Yye &, VEeLl, §y,(t)=06(fze)(y)

Using the assumption that ¢ is a dilation, it can be shown that ¢, . is a dilation for all x € &1, y € &s.
The dilations d,, , define the dilation 6 which gives the following proposition.

Proposition 2 (Proposition 2.10 of [6]]) Given two sets £, E2 and a complete lattice L. The map § :
F(&1, L) — F(Es, L) is a dilation if and only if for every x € & and y € &, there exists a dilation
Oy 2 L — L such that for all F € F (&1, L) and for all y € &, it holds

0 (F) (4) = Ve, Oy (F (2))-
The adjoint erosion € : F(Ea, L) — F(E1, L) is such that, for all F' € F(Ey, L) and for all x € &;:

e (F)(2) = Ayee, €2y (F (9)),
with every €, ,, being the adjoint of ,, . for L.

To make the transition to group morphology, Heijmans and Ronse [6] pointed out that by taking £&; =
& = RY, £ = R and by imposing &, , = 6,0 to respect translation equivariance, then, using a
structuring function GG, one can choose to consider

Vh € REVE € R, §y0(t) =t + G(h). (6)

3 Related Work

3.1 Group Morphology

Under the name of invariance, equivariance to translation has always been a concern in MM. As MM
is usually applied to image analysis and processing using "small" structuring elements running spatially
through the entire image of study, it is natural to be concerned with translation equivariance. Some
authors extended MM to general groups [3]] or gave fairly general results applicable to any group when
studying translations equivariance [6]. This subsection focuses on the main results of these two ref-
erences. The first and intuitive approach was to generalize the Minkowski addition and subtraction.
Roerdink [3] proposed such a generalization for groups that are not necessarily Abelian. Given a group
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G and two of its subsets H and G, Roerdink defined the left-equivariant erosion and left-equivariant
dilation on the complete lattice P (G) as follows:

51 (G) == G &g H = UpegGh = UgeggH, @)
e (G)=Gof H=weuGh ' ={g€G|gH C G}. (8)
The right-equivariant dilation and erosion are defined in the same manner:
SR (G) == H &g G = UperhG = UyecHg, 9)
ef(G) =GOl H=nheuh'G={geG|HgCG}. (10)

In practice, a binary image is defined on a Euclidean space £. In this case, the considered complete
lattice is the set of subsets of £, written P (£) with the inclusion as partial ordering. If the space & is a
homogeneous space of G, then, Roerdink [3] proposed the following lifting ¢ and projections w, ws; in
order to apply the erosions and dilations defined by (@), (8) or @), (10).

VX €P(E), 9(X) = {g€ G| T, (x,) € X}, 11
VG € G, @ (G) = {T, (x,) | g € G} and wx (G) := {T} (z,) | g € G, (12)

where x, is a chosen origin for £. Using these maps, Roerdink characterized the adjunctions on P (£)
using (@), (8). They are called left G-adjunctions and they take the following form:

5% (G) =@ (¥ (G) ®g ¥ (H)) and %, (G) == wx (¥ (G) &5 ¥ (H)). (13)

The name left G-adjunction comes from the fact that given such an adjunction (5%, 519_1), the dilation

5% and the erosion a% are left G-equivariant. A similar definition can be given for right G-adjunctions

using @) and (I0). When the image of study is not boolean, it was proposed to use a sup-generative
family as an intermediate step. The principal requirement is that the group G acts transitively on the
sup-generative family, allowing to use the lifting and projections defined by the equations (I1)), (I2) and
therefore the G-adjunction (%, 6%).

3.2 Group Equivariant Networks

Conceptually there are two different approaches to the construction of invariant and equivariant models
[L1]: symmetrization based one and the intrinsic one. In the first case, one starts with an non-invariant
model and symmetrizing it by a group averaging. In the second case, the intrinsic approach consists of
imposing prior structural constraints on the model that guarantee its invariance.

In Deep Learning, both approaches can justify practices that are common to induce equivariance and
invariances. For instance, a) data augmentation techniques advocates to augment the available set of
training samples (z, f(x)) by new ones of the form (T, (), f(z)), then loss values of theses realizations
are average on batches during training [12]]. b) Invariance by regularization uses differences of f(z) and
many realization of f(Ty(x)) are computed to regularize the model during training [12} (13| [14]]. Both
approaches can be seen as exemplifications of the symmetrization-based approach. On the other hand,
the weight sharing mechanism specially used in convolutional networks [[15], and other approaches as
PDE based CNNs [16]], Elementary Symmetric Polynomials based CNNs [17], Moving Frame based
CNNs [[18], Deep Scattering CNNs [[19]], Steerable CNNs [20] and Group Convolutional networks [2} 5]
are manifestation of intrinsic approach. The method proposed in [2] will be recalled in more details as
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the contribution of the paper uses a similar approach. The main idea is to generalize the convolution to
any compact group. In the usual convolution, a filter runs through the entire input image to locally match
its pattern with the image, i.e, the filter is translated to every position in the domain of the image. When
considering other transformations forming a different group than the translations, Cohen and Welling
proposed to apply all the transformations of the group to the filter. For example, if the considered group
is composed of all the translations with also a finite number of rotations discretizing the circle (subgroup
of the circle). Then the proposition would be to transform the filter using all the possible translations
and all the rotations. In practice, two types of layers are proposed: group lifting layers and group
convolutional layers. The first one plays the role of (1) with in addition a learnable filtering part. To
be more precise, copies of the input image (or tensor) are created, which correspond to (I)) and rotated
copies of a learned two-dimensional filter are used to perform regular convolutions. This layer can be
summarized in one formula. Given a discrete group G, an input image f composed with N feature maps
and a kernel ¢, the lifting layer performs the following formula

vge g, (£+°796) (9) =3 @60 @), (14)

k=1z€cZ?

followed by a bias addition and an activation function. The output of this operation is a map whose
domain is the group G. The group layers, also followed by a bias addition and an activation function,
apply the group convolution in the following way

Yge g, (f+9¢ Zka k) (). (15)

k=1heg

4 Proposed Layers

This section aims to define group-equivariant morphological layers. These layers will be named after
classical morphological operators due to their evident parallels. Nevertheless, it is important to note
that no formal proofs are provided regarding their inherent properties. As an illustration, layers labeled
as dilation can be characterized by a formula closely resembling that of an established dilation opera-
tion. We introduce a total of sixteen layers, with eight of them serving as nonlinear counterparts to the
lifting layer outlined in (I4). The other half are nonlinear counterparts of the group convolutional layer
described by (I5). We denote by R = R U {—00, +00} the extended real number line and by R* the
real strictly positive numbers. The proposed layers are based on two types of adjunction on R. Given a
group G, each element i € G gives rise to an adjunction on R. Such an adjunction can be denoted by
(en, dp,). Following the work of Heijmans in [21]], we propose to use the following forms for e, and dj,

di (#) = A(h)t+ G () and e}, (1) = (¢ — G (h)) JA(h) (16)
where A(-) : G — R* and G(-) : G — R play the role of structuring functions. An easier alternative
(see (@) for G = R?) consists of using

di (t) =t+G(h) ande] (t) =t — G (h). (17)
From these adjunctions on R, we define the following operators on G. Given F' : G — R,
= \/ du (F(gh™")) and E(F) (9) := /\ en (F (gh)) (18)
heg heg
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where the pair (dg, e,) can be (I6) or (T7). We use (I8) to propose nonlinear equivariant layers. The
eight lifting layers can be described by the following formulas. Given a discrete group G, an input

image f : Z*> — RY composed of N feature maps and N adjunctions (e, dk. ) Ke[1,N] defined for
all x € Z? following either equation (I6) or (I7), then forall g € G
N
=> A err, @ (fr (@), (19)
k=1x€72
Z V di 1 @) (fr (@), (20)
k=1xz€Z?
Z \ d, —T, 1 ( < N enr 1 (@)-T, -1 (y) (J (iﬂ))) ; 21
k=1yecZ2 z€Z?
Z N err < V dir, @y, ) e (@ ))) ; (22)
k=1yecz? z€Z?

where ¢, 0, 0 and ¢ stand respectively for erosion, dilation, opening and closing. In the same manner, we
define nonlinear counterparts of (I3). Givenamap F': G — R:

N
eg (F)(9) :==>_ )\ exn (F(gh) (23)
k=1heg
g (F)(g) == Z \/ din (F (gh™)) (24)
k=1 heg
N
=3 Vot [ A e (5 <gh—1m>>) 2
k=1 heg meg
N
9:=Y /\ (\/ dim (F (ghm™ ))) (26)
k=1 meg

These layers are followed by a bias addmo and an activation function.

S Experiments

In practice, we used the group P4 defined to be the group of translations and rotations of 7 [2]. Sev-
eral configurationd] have been tested on a classification task using the Fashion-MNIST dataset. The
configurations use either the adjunctions defined by equations (18) or and use different types of
layers among those presented in section[dl We use the notation { in superscript to denote the use of the

'https://github.com/Penaud-Polge/Group_Equivariant_Morphological_Layers
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Table 1: Test accuracies in percentage of several configurations of P4 equivariant morphological net-
works depending on the rotations applied to the test dataset.

Networks Accy Accs Accx Accx Accy Acc sx

CNN 8713% | 38.41% | 23.30% | 7.28% | 34.76 % | 10.24%
CNNP4 [80.16% | 23.08% | 27.17 % | 80.16 % | 80.16 % | 80.16 %
¢l of 62.75% | 17.68% | 17.26% | 62.73% | 62.73% | 62.73 %
oL o] 64.90 % | 26.63% | 22.46 % | 64.90 % | 64.90 % | 64.90 %
el el 69.83% | 2554 % | 23.31% | 69.83% | 69.83 % | 69.83 %
of o] 7023 % | 3044 % | 27.70% | 70.23 % | 70.23 % | 70.23 %
< o 6271% | 22.71% | 1997 % | 62.71% | 62.71 % | 62.71 %
0 0% T1.64% | 23.67% | 23.89% | 711.64% | 71.64 % | 71.64 %
e o 7621% | 21.96% | 15.76% | 7621 % | 7621 % | 76.21 %
of of 57.66 % | 34.51% | 33.60% | 57.66 % | 57.66 % | 57.66 %

adjunctions of and * to denote the use of the adjunctions of (I6). The type of layer used will be
given by their names. Therefore, an architecture denoted “DTg Dl” stands for a two layer network where
the lifting is given by (20) and the group layer, i.e. the second one, is given by (24) and with adjunctions
(eq,dq) given by (I7). For every configuration, a dense layer is used after a global average pooling to
predict the class for each orientation. A max-pooling operation is then applied between the different
orientations to obtain invariance to rotations of 7. All the structuring functions were of size (3, 3) for
the lifting layers and of size (3, 3, 3) for the group layers. For all the configurations, the network has
been trained using only original (untransformed) images. On the other hand, rotated copies of the test
dataset have been used to determine if the networks were able to classify images having orientations
unseen during the training process. An equivalent network using group convolution and an equivalent
CNN have been used as references for comparison. The results obtained are presented in table[[l The
results show that all networks except the regular CNN were able to generalize to unseen orientations
of P4. All the networks are less efficient when evaluating at an orientation not contained in the group
P4. Results also highlight the fact that for dilation and erosion networks, using adjunctions defined
by equation (16) offers better performances. Using the opening and closing layers seems to lower the
performances. And finally, except ¢g; ¢ that tends to have performances closer to the convolutional ref-
erence, it seems that morphological layers, on this task, are less efficient. It is important to highlight that
CNNSs have benefited from extensive and in-depth studies by the research community regarding their
appropriate optimization, initialization, and other aspects. This is not the case for morphological coun-
terparts [22} 23]]. We hope that the presented results related to the morphological layers will improve
with future research on the subject.

6 Conclusion

This paper is a first approach to generalize morphological layers to group morphology. Multiple layers,
incorporating morphological operators, have been proposed and tested on the Fashion-MNIST dataset.
The networks exhibited almost perfect invariance to the chosen group but offered lower performances

10
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compared to their convolutional counterpart. The morphological operators employed in these layers
have not been theoretically described yet; therefore, providing a theoretical foundation is an essential
aspect of future work.
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