
HAL Id: hal-04609756
https://hal.science/hal-04609756v2

Preprint submitted on 14 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Generators of measure-valued jump diffusions and
convergence rate of diffusive mean-field models

Xavier Erny

To cite this version:
Xavier Erny. Generators of measure-valued jump diffusions and convergence rate of diffusive mean-
field models. 2024. �hal-04609756v2�

https://hal.science/hal-04609756v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr
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convergence rate of diffusive mean-field models.
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Abstract: The paper has two objectives: proving that the rate of convergence in distribution
for mean-field models in CLT regime is N−1/2, and obtaining explicit expressions for the
infinitesimal generators of two types of measure-valued Markov processes (conditional law of
McKean-Vlasov processes, and empirical measures of McKean-Vlasov systems). The proof of
the convergence of mean-field system requires the second result about the generators, and both
results need to study a notion of differentiability of measure-variable functions known as linear
differentiability. Due to the particular framework that is studied, many technical difficulties
arise compared to the existing literature. Two of the main problems are the following ones:
the CLT regime implies that the limit measure-valued processes are not deterministic, and the
empirical measure processes related to McKean-Vlasov equations with jumps are necessarily
discontinuous. Both properties make the expressions of the generators more complicated than
what is usually considered.
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Introduction

The notion of particle systems is widely studied in many frameworks due to the diversity of their
applications: biology (e.g. neural networks Fournier and Löcherbach (2016), genomics Reynaud-
Bouret and Schbath (2010), ecological networks Billiard et al. (2022)), finance (e.g. order books
Lu and Abergel (2018), high frequency data Bauwens and Hautsch (2009)), sociology (e.g. social
networks Mitchell and Cates (2009)), physics (e.g. kinetic theory Vedenyapin, Sinitsyn and Dulov
(2011)). A particular case of interest concerns mean-field particle systems, meaning systems in which
the particles interact with all the others in a similar way. The reason behind this interest is that,
the interactions and the dynamics of such systems can be somehow characterized by their empirical
measures. The advantage of studying the empirical measure rather than the particle system itself is
that, if the dynamics of the particles are characterized by R-valued processes, then the values taken
by the empirical measure belong to the set of probability measures on R, which does not depend
on the number of particles of the system. In this paper, we study large scale limit behavior, as the
number of particles goes to infinity, so it is preferable to work on spaces that are independent of
the size of the systems. In particular, the study of mean-field particle systems is closely related to
the notion of measure-valued processes.

The study of measure-valued Markov processes goes back at least to Fleming and Viot (1979) to
model population genetics. In the seminal course Dawson (1993), Donald Dawson has introduced
a notion of differentiation for measure-variable functions, in order to characterize infinitesimal
generators and martingale problems in the context of measure-valued Markov processes. A variant
of the notion of the derivative introduced by Donald Dawson, has been defined by René Carmona
and François Delarue (see e.g. section 5.4.1 of Carmona and Delarue (2018)) and is referred to as the
linear derivative, and another rather different notion (at first sight) by Pierre-Louis Lions in a course
given at Collège de France (see, for example, the lecture notes of Pierre Cardaliaguet Cardaliaguet
(2013)). Since then, this topic still draws interest: for instance, recently, Guo, Pham and Wei (2023)
and Cox et al. (2021) have established Ito’s formulas for measure-valued semimartingales in different
frameworks, and the authors of Crisan and McMurray (2018) have proved some regularity properties
for stochastic flows of McKean-Vlasov processes. For the more specific question of convergence in
distribution of emprical measures of particle systems, we can cite Theorem 2.9 of Chassagneux,
Szpruch and Tse (2022) and Theorem 6.1 of Mischler, Mouhot and Wennberg (2015) that both
obtain a convergence speed of 1/N in a LLN regime, and Theorem 4.13 of Jourdain and Tse (2021)
that proves the convergence of the fluctuation in a LLN regime. In this paper, we mostly use a
notion of linear derivative and state precisely the definition at Section 2.1.

In this paper, there are two main contributions compared to the existing literature, and one
minor. They are all closely related.

The first main contribution convergence speed for large-scale limits of mean-field McKean-Vlasov
particle systems with jumps in CLT regime. The previously cited papers (i.e. Chassagneux, Szpruch
and Tse (2022), Mischler, Mouhot and Wennberg (2015) and Jourdain and Tse (2021)) only consider
these systems in LLN regime, i.e. when the interaction strength of the N -particle systems is N−1,
and without jumps. These two particularities entail different difficulties:
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� In the CLT regime (i.e. when the interaction strength between particles is of order N−1/2),
the limit of the empirical measures is, in general, a random distribution (more precisely, it
is the conditional distribution of a limit particle given the common noise of the system). In
particular, the limit measure-valued processes are not deterministic, and the related generator
are more complex. This problem also exist in Theorem 4.13 of Jourdain and Tse (2021) where
fluctuation of the LLN regime are proved to converge. And the fluctuation for the LLN
regime is somehow similar as the CLT regime studied in this paper. However, Theorem 4.13
of Jourdain and Tse (2021) does not provide a rate of convergence for the fluctuation, and
it only deals with a McKean-Vlasov equation which depends on the empirical measure of
the system through the variables of the coefficients, but not directly on the expression of the
coefficients. Our technics (and additional works) may be used to obtain an explicit rate of
convergence for more general models

� Secondly, the presence of the jump term in our models make our empirical measure processes
not continuous. So our proofs do not only consider stochastic calculus for measure-valued pro-
cesses, but also for non-continuous processes. Once again, this property makes the expression
of the infinitesimal generators more complex.

In addition, few results exist for the convergence in Central Limit Theorem regime (e.g. Erny,
Löcherbach and Loukianova (2021), and, in the more general framework of martingale measures,
Erny, Löcherbach and Loukianova (2022a)), and, as far as we know, the only rate of convergence
for this kind of model has been obtained in Erny, Löcherbach and Loukianova (2023) for a strong
convergence using coupling techniques based on the approximation theorem of Komlós, Major and
Tusnády (1976). This convergence speed is very slow: (lnN)1/5/N1/10. Once again, we prove that
the convergence speed in distribution is the expected one, in N−1/2 (see Theorem 1.4), and this
result is even knew in simple frameworks, like the one of Corollary 1.1. Let us also mention that
our technics can be used to prove that the rate of convergence for the LLN regime with common
noise is still N−1 (i.e. the same as the one obtained in the aforementioned papers without common
noise).

The second main contribution is the study of some Markovian properties of measure-valued pro-
cesses, and in particular, we obtain the explicit expressions of generators for two kinds of processes:
the conditional laws of solutions of (conditional) McKean-Vlasov equations, and the empirical mea-
sures of McKean-Vlasov particle systems. These generators have already been used more or less
explicitly in the aforementioned papers: Chassagneux, Szpruch and Tse (2022), Mischler, Mouhot
and Wennberg (2015) and Jourdain and Tse (2021). More precisely, the generators (in the mar-
tingale problem sense) of the limit systems appear explicitly, and the generators of the empirical
measures is somehow characterized in the proofs of these papers, but their expressions are not explic-
itly given. In this paper, we give (explicit) expressions which are more general than in these papers
for the reasons given before: our limit equations being conditional McKean-Vlasov equations (due
to the CLT regime), the limit measure-valued processes are not deterministic (whereas the limit
processes in Chassagneux, Szpruch and Tse (2022) and Mischler, Mouhot and Wennberg (2015)
are deterministic), and because we consider McKean-Vlasov equations with jumps, our empirical
measure processes are not continuous. Let us also mention that, since Guo, Pham and Wei (2023)
and Cox et al. (2021) have established Ito’s formula for measure-valued processes, it is possible
to use their result to obtain an expression for the corresponding infinitesimal generator with some
differences compared to our paper:

� both papers do not consider empirical measure processes,
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� the equations of Cox et al. (2021) are of a different type and the dynamics sufficiently differs
for the expressions of the generators to have a different form,

� in Guo, Pham and Wei (2023), the authors only consider deterministic processes (but these
processes are general semimartingales that are not assumed to be solutions of equations).

Besides, in most of these papers, the measure-valued processes are studied as semimartingales,
but not as Markov processes. Consequently, we need to prove some additional technical results in
our paper.

So, to the best of our knowledge, obtaining Ito’s formula or generator for a measure-valued
processes with such general jumps is new. The expressions of these generators are given at Theo-
rems 1.5 for the conditional laws of McKean-Vlasov processes, and 1.7 for the empirical measures
of McKean-Vlasov particle systems.

Let us remark that, in general, infinitesimal generators are differential operators acting on func-
tions whose domain is the space of values of the Markov processes. In particular the study of
measure-valued Markov processes is related to the analysis of measure-variable functions. Conse-
quently, this paper also deals with this last topic, which is the minor contribution of this paper.
The properties that we prove and use are not completely new, but due to some particularities of
our framework, we need to adapt the proofs and to state some new technical results. For exam-
ple, the notion of mixed derivatives and Taylor’s formula for measure-variable functions have been
established by Chassagneux, Szpruch and Tse (2022), the notion of measure-variable polynomials
is studied by Cuchiero, Larsson and Svaluto-Ferro (2019), and the regularity of the flows of the
solutions of McKean-Vlasov equations has been proved in Chassagneux, Crisan and Delarue (2022)
(however since we work on conditional McKean-Vlasov equations it is not clear that the proof of
this last result can be used directly, so we state and prove the result in Lemma 3.6).

Organization of the paper. The next section introduces the notation that are used throughout
the paper. Section 1 is dedicated to the statement of the main results: Section 1.1 for the result about
the convergence speed in distribution for diffusive mean-field particle systems, and Section 1.2 for
the expressions of the generators of the measure-valued Markov processes. The goal of Section 2 is
to study some analytical properties of measure-variable functions. In particular, Taylor-Lagrange’s
inequality, a notion of measure-variable polynomials, and also establishing some technical lemmas.
Section 3 aims to prove the results of Section 1.2 and to study some Markovian properties of measure-
valued processes: establishing Trotter-Kato’s formula and studying the regularity of semigroups
(which is required to use Trotter-Kato’s formula jointly with Taylor-Lagrange’s inequality in the
proof of the results of Section 1.1). The proofs of the results stated at Section 1.1 are given at
Section 4. Finally, the Appendix gathers some technical results and technical proofs in order to
ease the reading of the paper.

Notation and convention

In the notation below, (E, d) is always a Polish space (or just a set if the notation does not need a
particular structure on E).

� For x = (x1, ..., xn) ∈ Rn, we denote ||x||1 the classical L1-norm:

||x||1 =

n∑
k=1

|xk|.
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� P(E) is the set of probability measures on E, endowed with the topology of Prohorov metric
(i.e. the topology of the weak convergence).

� If X is an E-valued random variable, L(X) ∈ P(E) denote its law.
� For p ≥ 1, Pp(E) is the set of probability measures on E with a finite p-th order moment,
and P∞(E) is the intersection of every Pp(E) over all p ≥ 1. Each Pp is endowed with the
p-th order Wasserstein metric.

� For p ≥ 1 and m,µ ∈ Pp(E), the p-th order Wasserstein metric between m and µ is defined
as the best Lp-coupling between m and µ:

Wp(m,µ) = inf
L(X)=m,L(Y )=µ

E [d(X,Y )p]
1/p

.

� For m,µ ∈ P1(E), DKR(m,µ) denotes the Kantorovich-Rubinstein metric between m and µ:

DKR(m,µ) = sup
f∈Lip1

∫
E

f(x) d (m− µ) (x),

where Lip1 denotes the set of Lipschitz continuous functions f : E → R such that, for
all x, y ∈ E, |f(x)− f(y)| ≤ d(x, y). By the Kantorovich-Rubinstein duality (e.g. Remark 6.5
of Villani (2009)), DKR =W1. In the paper, we mostly use the characterization of DKR and
its notation rather than W1.

� Note that each Pp(R) is Polish by Theorem 6.18 of Villani (2009). ForM1,M2 ∈ P1(P1(R)), we
denote specifically by DKR(M1,M2) the Kantorovich-Rubinstein metric betweenM1 andM2.

� A function f : P1(R) × Rn → R is said to be Lipschitz continuous if it is Lipschitz contin-
uous w.r.t. both variables together: there exists C > 0 such that, for all m1,m2 ∈ P1(R)
and x1, x2 ∈ Rn,

|f(m1, x1)− f(m2, x2)| ≤ C (||x1 − x2||1 +DKR(m1,m2)) .

� A function f : P1(R) × Rn → R is said to be sublinear if: there exists C > 0 such that, for
all m ∈ P1(R) and x ∈ Rn,

|f(m,x)| ≤ C

(
1 + ||x||1 +

∫
R
|y|dm(y)

)
.

� C(E) is the set of continuous functions f : E → R.
� For k ∈ N∪ {∞} and n ∈ N∗, Ck(Rn) denotes the space of functions f : Rn → R of class Ck.
� For f ∈ Ck(Rn) and α a multi-index belonging to Nn, the size of α is

|α| =
n∑

i=1

αi,

and, if |α| ≤ k, ∂αf denotes the derivative of f w.r.t. α.
� When no doubt is possible (and to make some expressions more readable), we use usual
notation for partial derivatives, for example, if g ∈ C3(R2), for all x, y ∈ R,

∂3xxyg(y, x) = ∂(1,2)g(y, x) and
(
∂2y1y2

g(y1, y2)
)
|y1=y2=x

= ∂(1,1)g(x, x),

and the same notation replacing the derived variables by their indices:

∂3xxyg(y, x) = ∂32,2,1g(y, x) = ∂(1,2)g(y, x).
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� For a function f : P1(R)× R → R and m ∈ P1(R), x ∈ R, we use the notation

∂(0,1)f(m,x) = ∂xf(m,x) and ∂(0,2)f(m,x) = ∂2xxf(m,x),

but, in this context where f depends on variables of different nature (i.e. belonging to P1(R)
and R) the index of the measure-variable is always zero. For technical reasons, the meaning
would not be clear otherwise in general (see Corollary 2.25 for a statement where it makes
sense). However, to state one of our assumptions, we need to introduce a notion of mixed
derivatives at Definition 2.11 related to this remark.

� Ck
b (Rn) is the subspace of Ck(Rn) containing the functions f such that: for all multi-index α

of size non-greater than k,
sup
x∈Rn

|∂αf(x)| <∞.

� Ck
c (Rn) is the subspace of Ck

b (Rn) containing the compactly supported functions.
� For f ∈ Ck

b (Rn), we denote

||f ||k =
∑
|α|≤k

sup
x∈Rn

|∂αf(x)|.

� A tuple x ∈ En is always indexed from 1 to n: x = (x1, ..., xn),
� For x ∈ En and 1 ≤ k ≤ n, x\k denotes the tuple x without the index k:

x\k = (x1, ..., xk−1, xk+1, ..., xn) ∈ En−1,

and, for y ∈ E, (x\ky) denotes the tuple x where xk is replaced by y:

x\ky = (x1, ..., xk−1, y, xk+1, ..., xn) ∈ En.

In addition, for k ̸= l, and y1, y2 ∈ E, we use the notation x\(k,l) for x without the indices k
and l, and (x\(k,l)(y1, y2)) for the tuple x where xk is replaced by y1 and xl by y2.
For example, this notation is used in the following context: if f ∈ C0

b (R3), m ∈ P(R) and y ∈
R,

3∑
k=1

∫
R2

f(x\ky)dm⊗2(x\k) =
∫
R2

f(y, x2, x3)dm
⊗2(x2, x3)

+

∫
R2

f(x1, y, x3)dm
⊗2(x1, x3) +

∫
R2

f(x1, x2, y)dm
⊗2(x1, x2).

� For n ∈ N∗ and F : P1(R)× Rn → R and x ∈ Rn, we denote by Fx the following function

Fx : m ∈ P1(R) 7−→ Fx(m) = F (m,x).

� For m ∈ P(R) and λ ∈ R, we denote by S(m,λ) the probability measure m shifted by λ:

S(m,λ) : A ∈ B(R) 7−→ m ({x− λ : x ∈ A}) .

� We use C to denote any arbitrary positive constant. The value of C can change from line to
line inside an equation. In addition, if C depends on non-model parameters θ, we denote it
by Cθ.
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1. Main results

The next two subsections state our main results: an explicit rate of convergence for diffusive mean-
field models, and explicit expressions for the generators of two classes of measure-valued Markov
processes.

1.1. Convergence speed of diffusive mean-field model

The results of this section concern diffusive mean-field particle systems. Meaning, particle systems
where the interacting strength is of order N−1/2 with N the number of particles. For this kind of
model to converge as the number of particles tends to infinity, the interactions between particles
need to be centered. So, the dynamics depends on a probability measure called ν, that satisfies∫

R
u dν(u) = 0 and

∫
R
|u|3dν(u) <∞.

Before stating the main result under a general form (cf Theorem 1.4), let us begin by introducing
a particular case (cf Corollary 1.1) that does not require the technical assumptions about the
regularity of measure-variable functions. Let us notice that, even the result of Corollary 1.1 is new.

Let the particle system (Y N,k) be defined as: for N ∈ N∗ and 1 ≤ k ≤ N ,

dY N,k
t = b̃

(
Y N,k
t

)
dt+ σ̃

(
Y N,k
t

)
dBk

t +
1√
N

N∑
l=1

∫
R+×R

u · 1{z≤f̃(XN,l
t− )}dπ

l(t, z, u), (1)

where Bk (k ≥ 1) are standard Brownian motions, πl (l ≥ 1) are Poisson measures with intensity dt·
dz ·dν(u) and, the variables Y N,k

0 (1 ≤ k ≤ N) are i.i.d. with finite p-th order moment for all p ∈ N∗.
The Brownian motions, Poisson measures and initial conditions are assumed to be independent.

And let Ȳ be solution of

dȲt = b̃
(
Ȳt
)
dt+ σ̃

(
Ȳt
)
dBt +

(∫
R
u2dν(u)

)1/2√
E
[
f̃(Ȳt)

∣∣∣Wt

]
dWt, (2)

with B,W independent standard Brownian motions, W the filtration ofW , and Ȳ0 having the same
law as the variables Y N,k

0 . The Brownian motions B,W are assumed to be independent of Ȳ0.

Corollary 1.1. Assume that the functions b̃, σ̃ and f̃ are C5 and that their derivatives of orders
from one to five are bounded. In addition, we assume that f̃ is bounded and lower-bounded by some
positive constants. We also assume that ν is centered with a finite third order moment. Then, for
any φ ∈ C4

b (R), for all T > 0, there exists CT,φ > 0 such that, for all N ∈ N∗,

sup
t≤T

∣∣∣E [φ(Y N,1
t

)]
− E

[
φ
(
Ȳt
)]∣∣∣ ≤ CT (||φ||∞ + ||φ′||∞ + ||φ′′||∞ + ||φ′′′||∞)N−1/2.

Now, let us state our general diffusive model. For any N ∈ N∗, we introduce XN,k (1 ≤ k ≤ N)
as solutions to

dXN,k
t =b

(
µN
t , X

N,k
t

)
dt+ σ

(
µN
t , X

N,k
t

)
dBk

t (3)
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+
1√
N

N∑
l=1

∫
R+×R

u · h
(
µN
t−, X

N,l
t−

)
1{z≤f(µN

t−,XN,l
t− )}dπ

l(t, z, u),

where Bk (k ≥ 1) are standard Brownian motions of dimension one, πl (l ≥ 1) are Poisson measures

on R2
+ × R with intensity dt · dz · dν(u), and XN,k

0 (1 ≤ k ≤ N) are i.i.d. such that Bk (k ≥ 1), πl

(l ≥ 1) and XN,k
0 (1 ≤ k ≤ N) are mutually independent, and

µN
t =

1

N

N∑
k=1

δXN,k
t

.

The main result of this section states the rate of convergence in distribution of the N -particle
system (3) to the limit process X̄ solution to the following SDE:

dX̄t =b
(
µ̄t, X̄t

)
dt+ σ

(
µ̄t, X̄t

)
dBt (4)

+

(∫
R
u2dν(u)

)1/2(∫
R
h(µ̄t, x)

2f(µ̄t, x)dµ̄t(x)

)1/2

dWt,

where B,W are standard Brownian motions of dimension one, X̄0 is real-valued random variable
distributed as X̄N,k

0 such that B,W, X̄0 are independent, and

µ̄t = L
(
X̄t|Wt

)
,

with W the filtration of W .

Remark 1.2. The convergence in distribution of µN to µ̄ has already been proved in Erny, Löcherbach
and Loukianova (2022a) in a more general framework (cf Theorem 2.6 for the general case, and
Example 1 for a model closer to the one of this section). But the technics used in the proofs did not
allow to obtain an explicit convergence speed.

For the previous equations to be well-posed, we assume the following.

Assumption 1. For any m1,m2 ∈ P1(R), and x1, x2 ∈ R,

|b(m1, x1)− b(m2, x2)|+ |σ(m1, x1)− σ(m2, x2)|+ |ς(m1, x1)− ς(m2, x2)|
≤ C (|x1 − x2|+DKR(m1,m2)) ,

and∫ +∞

0

∣∣h(m1, x1)1{z≤f(m1,x1)} − h(m2, x2)1{z≤f(m2,x2)}
∣∣ dz ≤ C (|x1 − x2|+DKR(m1,m2)) .

In addition, we also suppose that, for any p ∈ N∗, there exists some Cp > 0 such that, for
all m ∈ P1(R), x ∈ R,

|(x+ h(m,x))
p − xp| f(m,x) ≤ Cp

(
1 + |x|p +

∫
R
|y|pdm(y)

)
.

Remark 1.3. The last condition of Assumption 1 is guaranteed if, for example, one of the two
following properties hold:
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� the function h is sublinear and the function f is bounded,
� or the function h is bounded and the function f is sublinear.

We also make the following hypothesis concerning the initial conditions.

Assumption 2. For every N ∈ N∗, the variables XN,k
0 (1 ≤ k ≤ N) are i.i.d.

All the initial conditions X̄0 and XN,k
0 (N ∈ N∗ and 1 ≤ k ≤ N) have a finite fourth order

moment, uniformly bounded w.r.t. N :

E
[∣∣X̄0

∣∣4] <∞ and sup
N∈N∗

E
[∣∣∣XN,1

0

∣∣∣4] <∞.

Under Assumptions 1 and 2, it is known that the SDEs (3) and (4) are well-posed (see e.g.
Theorem 2.1 of Graham (1992)) in the following sense: there exist unique strong solutions (XN,k)k
and X̄ of the respective SDEs that satisfy, for all T > 0, 1 ≤ k ≤ N,

E
[
sup
t≤T

∣∣X̄t

∣∣4] <∞ and sup
N∈N∗

E
[
sup
t≤T

∣∣∣XN,k
t

∣∣∣4] <∞. (5)

Note that, a priori, uniqueness only holds for processes that satisfy the above controls, which
are not a priori estimates. The controls (5) can be guaranteed on the solutions that are built via
Banach-Picard schemes for example (see the Step 1 of the proof of Lemma 3.6 at Appendix B for
the SDE (4)).

Our first main result requires an additional technical assumption. This assumption relies on the
notion of differentiability of measure-variable functions as it is defined in Section 2.1.

Assumption 3. the functions b, σ and m 7→ (
∫
R h(m,x)

2f(m,x)dm(x))1/2 admit fifth order mixed
derivatives (in the sense of Definition 2.11) and all their mixed derivatives of orders from one to
five are bounded. In addition, if g : P1(R) × R → R is any of the previous functions, then, there
exists C > 0 such that for all x ∈ R, the function gx belongs to C2

b (P1(R)) (the set is introduced in
Definition 2.8), and

sup
m∈P1(R)
y1,y2∈R

∣∣∂2y1y2
δ2(gx)(m, y1, y2)

∣∣ ≤ C(1 + |x|).

Theorem 1.4. Grant Assumptions 1, 2 and 3. Assume that the probability measure ν is centered
with a finite third moment. Then, for all T > 0 and n ∈ N∗, there exists CT > 0 such that, for
all 0 < t1 < ... < tn ≤ T , for any measure-variable polynomials G1, ..., Gn of order four (in the
sense of Definition 2.30), and for each N ∈ N∗,

sup
t≤T

∣∣E [G1

(
µN
t1

)
...Gn

(
µN
tn

)]
− E [G1 (µ̄t1) ...Gn (µ̄tn)]

∣∣ ≤ CT ||G1||3...||Gn||3
1√
N
,

where ||G||3 is a bound of the mixed derivatives of G up to order three (defined at Definition 2.14).

The formal results of this section treat the case of the diffusive mean-field limits (i.e. when the in-
teraction strength is of order N−1/2) to obtain rates of convergence in distribution of order N−1/2.
Let us notice that the proofs can also be applied to show that the rates of convergence in dis-
tribution of linear mean-field limits (i.e. when the interaction strength between the particles is of
order N−1) are of order N−1. As mentioned in the introduction, this result has already been proved
in Theorem 2.9 of Chassagneux, Szpruch and Tse (2022) and Theorem 6.1 of Mischler, Mouhot and
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Wennberg (2015) in the context of the true propagation of chaos, where the empirical measures
of the particle systems converge to a deterministic distribution. The technics used in our proofs
allow to consider mean-field particle systems with common noise (similarly as the ones considered
in Carmona, Delarue and Lacker (2016) for example) and to prove the convergence of the empirical
measures in distribution at speed N−1 to a conditional distribution. In addition, our results permit
to deal with jump interaction terms in the particle systems, what makes the empirical measure
processes not continuous.

1.2. Infinitesimal generators for measure-valued Markov processes

The aim of this section is to introduce the expression of the infinitesimal generators of two kinds
of measure-valued Markov processes: the conditional laws of diffusions, as (µ̄t)t≥0 in (4) (see The-
orem 1.5), and the empirical measures of particle systems, as (µN

t )t≥0 in (3) (see Theorem 1.7).
The notion of generator that we use is defined in a martingale problem sense (see Definition 3.1
for precise definition). We prove that the domains of the infinitesimal generators contain the set of
measure-variable polynomials of order two (we refer to Section 2.4 for the definition and the study
of these functions), which is denoted P2.

In this section, we work in a bit more general framework, where we consider X̄ defined as the
solution of

dX̄t =b
(
µ̄t, X̄t

)
dt+ σ

(
µ̄t, X̄t

)
dBt + ς

(
µ̄t, X̄t

)
dWt (6)

+ h
(
µ̄t−, X̄t−

) ∫
R+

1{z≤f(µ̄t−,X̄t−)}dπ(t, z),

where B,W are standard Brownian motions of dimension one, π a Poisson measure on R2
+ with

Lebesgue intensity such that B,W and π are mutually independent, and

µ̄t = L
(
X̄t | Wt

)
,

with Wt = σ(Ws : s ≤ t) the filtration of the Brownian motion W at time t.

Theorem 1.5. Grant Assumption 1. The process (µ̄t)t is a P2(R)-valued Markov process. The
domain DG(µ̄) contains the set P2, and the generator Ā of µ̄ satisfies: for any G ∈ P2 and m ∈
P2(R),

ĀG(m) =

∫
R
L̄(δG(m, •))(m,x)dm(x) (7)

+
1

2

∫
R2

(
∂2xyδ

2G(m,x, y)
)
ς(m,x)ς(m, y)dm⊗2(x, y),

where L̄ is the operator defined as: for g ∈ C2(R), x ∈ R,m ∈ P1(R),

L̄g(m,x) =b(m,x)g′(x) +
1

2

(
σ(m,x)2 + ς(m,x)2

)
g′′(x)

+ f(m,x) [g (x+ h(m,x))− g(x)] .

The proof of Theorem 1.5 is given at Section 3.2.
It can be noticed that the operator L̄ is the generator of the process X̄ in the “martingale

problem” sense. The process X̄ itself being a non-Markov semimartingale we prefer not to call L̄ a
generator to avoid confusion.
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Remark 1.6. The expression of the generator Ā is a reminiscent of classical expressions for gen-
erators of R-valued Markov processes. Indeed, the drift terms of the generator corresponds to the
first order derivative of the test-function G (where it can be noted that, the Brownian and jump
terms of the R-valued process X̄ creates some drift terms for the measure-valued process µ̄ since
they are “averaged” by µ̄). Besides, the Brownian motion W being still a noise source for µ̄, it cre-
ates a Brownian term even in the dynamics of µ̄ which corresponds to the second order derivative
of G. The expression at (7) is compact because the first term is written as an operator acting on
the first order derivative of the test-function. This term would be harder to write with the notion
of Lions-derivative instead of the linear derivative that we use. However, one can note that the
second term would be a bit more compact with Lions-derivative instead of the linear derivative (by
Corollary 2.25).

As for the previous result, we consider a framework that is a bit more general compared to the
previous section. For N ∈ N∗, let XN,k (1 ≤ k ≤ N) be solutions to the following SDEs:

dXN,k
t =b

(
µN
t , X

N,k
t

)
dt+ σ

(
µN
t , X

N,k
t

)
dBk

t + ς
(
µN
t , X

N,k
t

)
dWt (8)

+

N∑
l=1

∫
R+×R

h
(
µN
t−, X

N,l
t− , u

)
· 1{z≤f(µN

t−,XN,l
t− )}dπ

l(t, z, u),

whereB1, ..., BN ,W are standard Brownian motions, π1, ..., πN are Poisson measures on R+×R+×R
with intensity dt · dz · dν(u) (with ν a probability measure on R), such that they are all mutually
independent, and

µN
t =

1

N

N∑
l=1

δXN,l
t
.

Theorem 1.7. Assume that the functions b, σ, ς are Lipschitz continuous, and that there exists C >
0 such that for all x1, x2 ∈ R, and m1,m2 ∈ P1(R),∫

R

∫
R

∣∣h(m1, x1, u)1{z≤f(m1,x1)} − h(m2, x2, u)1{z≤f(m2,x2)}
∣∣ dz dν(u)
≤ C (|x1 − x2|+DKR(m1,m2)) .

Then, the process (µN
t )t is a P2(R)-valued Markov Process. The domain DG(µ

N ) contains the
set P2, and the generator AN of µN satisfies: for any G ∈ P2, and m ∈ P2(R),

ANG(m) =

∫
R

(
b(m,x)∂xδG(m,x) +

1

2

[
σ(m,x)2 + ς(m,x)2

]
∂2xxδG(m,x)

)
dm(x)

+N

∫
R

∫
R
f(m,x) [G(S(m,h(m,x, u)))−G(m)] dν(u)dm(x)

+
1

2

∫
R2

∂2xyδ
2G(m,x, y)ς(m,x)ς(m, y)dm⊗2(x, y)

+
1

2N

∫
R

(
∂2y1y2

δ2G(m, y1, y2)
)
|y1=y2=x

σ(m,x)2dm(x),

where we recall that S is a shift operator defined as: for m ∈ P(R), λ ∈ R,

S(m,λ) : A ∈ B(R) 7−→ m ({x− λ : x ∈ A}) .
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The proof of Theorem 1.7 is given at Section 3.4.

Remark 1.8. The same phenomenon as the one described at Remark 1.6 can be observed for µN :
the expression for AN can be interpreted in a similar way as the expression of R-valued processes.
The terms of the generator that depend on the first order derivatives corresponds to drift term in
the dynamics of µN , the terms that depend on the second order derivatives to Brownian terms (here
all Brownian motions Bk,W give Brownian dynamics for µN , since the law µN , being an empirical
measure instead of a (conditional) law, does not make disappear the Brownian dynamics of Bk,
on the contrary of the situation with µ̄ for the Brownian motion B). Compared to the generator
of µ̄, there is an additional term corresponding to the jump term of the measure-valued process µN

(whereas the process µ̄ is continuous in time) that depends on the shift operator S and on the
increasing of the test-function G.

2. Analysis of functions defined on spaces of probability measures

2.1. Definitions and some elementary properties

The following notion of differentiability is a generalization of the one introduced in Dawson (1993),
and often referred to as the linear derivative.

Definition 2.1. For m0 ∈ P1(R), a function F : P1(R) −→ R is said to be differentiable at m0 if
there exists a measurable sublinear function Hm0 : R → R such that, for all m ∈ P1(R),

F (m)− F (m0) =

∫
R
Hm0(x) d(m−m0)(x) + εm0(m), (9)

where εm0(m)/DKR(m,m0) vanishes as m converges to m0 for the metric DKR. The function Hm0

is called a version of the derivative of F at m0. We define the canonical derivative of F at m0 as
the only version of the derivative that satisfies∫

R
Hm0

(x) dm0(x) = 0,

and denote it by, for all x ∈ R,
δF (m0, x) = Hm0

(x).

In the rest of the paper, we may omit ”canonical” and “linear” and just mention ”the derivative”.
For most of the properties that are studied in this paper, the canonical version of the derivative is not
particularly needed, but it allows the definitions to be unquestionably well-posed, particularly for
the notion of many times differentiable. Note that, the set Cn

b (P1(R)) (see Definition 2.8) depends on
the version of the derivative, and so Assumption 3 also depends on our choice of canonical derivative.
However, for example, the expressions of the infinitesimal generators given at Theorems 1.5 and 1.7
do not depend on this choice.

This particular choice of canonical derivative is motivated by the fact that it allows to recover
“natural properties” (see Lemma 2.4), and it is close to the notion of derivative that is used in
Dawson (1993). Let us remark that it is also the convention that was used by François Delarue
in his course at the Summer School “Mean Field Models” organized by Centre Henri Lebesgue at
Rennes in 2023.
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Remark 2.2. It is easy to see that the versions of the derivative of F are never unique when they
exist: if some function Hm0 : R → R satisfies (9), then any function of the form x 7→ Hm0(x) +
G(m0) also satisfies (9). It can be noted (cf Lemma 2.3 below) that this notion of derivative is
still unique for the following equivalence relation : two functions H1, H2 : P1(R) × R → R are
equivalent if for all m,x, H1(m,x)−H2(m,x) is independent of x. Hence the canonical derivative
of a differentiable function always exists and is unique.

The following result allows to guarantee the uniqueness of the canonical derivative of differen-
tiable functions.

Lemma 2.3. Let m0 ∈ P1(R) and h1, h2 : R → R be measurable and sublinear. Assume that, for
all m ∈ P1(R), ∫

R
h1(x) d(m−m0)(x) =

∫
R
h2(x) d(m−m0)(x) + εm0(m),

where εm0
(m)/DKR(m,m0) vanishes as m converges to m0. Then, for all x, y ∈ R,

h1(x)− h2(x) = h1(y)− h2(y).

In particular, if a function F : P1(R) → R is differentiable at some m ∈ P1(R), then its canonical
derivative at m exists and is unique.

Lemma 2.3 being not particularly useful for the understanding of the paper, we postpone its
proof to Appendix C.

Let us also state an elementary lemma guaranteeing expected properties for a differential oper-
ator. This lemma is implicitly used in the computation throughout the paper. For this lemma, the
choice of the canonical derivative is important.

Lemma 2.4.

(a) Let F : P1(R) → R be a constant function. Then F is differentiable at any m ∈ P1(R), and
its canonical derivative is the zero function.

(b) Let F,G : P1(R) → R be differentiable at m0 ∈ P1(R), and α ∈ R. Then, the function αF +G
is differentiable at m0, and, for all x ∈ R,

δ(αF +G)(m0, x) = αδF (m0, x) + δG(m0, x).

(c) Let F,G : P1(R) → R be differentiable at m0 ∈ P1(R) and Lipschitz continuous. Then, the
product function FG is differentiable at m0, with, for all x ∈ R,

δ(FG)(m0, x) = F (m0)δG(m0, x) +G(m0)δF (m0, x).

Proof. To prove Item (a), it is sufficient to notice that (9) is trivially satisfied if Hm0 is the zero
function, by considering εm0

to be the zero function. Item (b) is a straightforward consequence of
the linearity of the integral operator. To prove Item (c), let us write, for all m ∈ P1(R),

F (m)G(m)− F (m0)G(m0) =F (m)G(m)− F (m0)G(m)

+ F (m0)G(m)− F (m0)G(m0)

=F (m0) (G(m)−G(m0)) +G(m0) (F (m)− F (m0)) (10)

+ (F (m)− F (m0)) (G(m)−G(m0)) .
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Besides, since F and G are assumed to be Lipschitz continuous, we have

|(F (m)− F (m0)) (G(m)−G(m0))| ≤ CDKR(m,m0)
2.

So, developing (10) using the differentiability of F and G proves the result.

Let us notice that the derivability in the sense of Definition 2.1 is close to the one used in Cox
et al. (2021) (as derivative), and in Guo, Pham and Wei (2023) and Carmona and Delarue (2018)
(as linear derivative). It is however different than the derivative introduced by Pierre-Louis Lions,
even if it is closely related (see Propositions 5.44, 5.48 and 5.51 of Carmona and Delarue (2018)).

Depending on the properties that are studied, each notion of differentiability can be more or less
appropriate to state and prove the results. For the sake of clarity, in all the paper, only one notion
of differentiability is used explicitly. We choose to use Definition 2.1 instead of Lions’ derivative
because it appears to be more appropriate to express the infinitesimal generators of measure-valued
Markov processes, to retrieve properties of real-valued Markov processes (see Remarks 1.6 and 1.8).
However, to define the notion of mixed derivatives (that is used in Assumption 3, and in the proof of
Lemma 3.6), the Lions-derivative is particularly useful as a notation. Instead of stating the original
and rather technical definition, we just give the expression of the Lions-derivative using the (linear)
derivative. As in Guo, Pham and Wei (2023), we use the notation δ for the (linear) derivative, and
∂ for the Lions-derivative.

Definition 2.5 (Lions-derivative). Let F : P1(R) → R and m ∈ P1(R). The function F is said to
be L-differentiable at m if:

� F is differentiable at m (in the sense of Definition 2.1),
� and x ∈ R 7→ δF (m,x) is differentiable on R.

In this case, the Lions-derivative of F at m is the function ∂F (m, •) defined as

∂F (m, •) : x ∈ R 7−→ ∂F (m,x) = ∂xδF (m,x).

As mentioned earlier, the notion of derivative we use (cf Definition 2.1) is related to the definition
given at (Dawson 1993, p. 19) in the following sense (which is a straightforward consequence of
Lemma 2.15 with m0 = m and m1 = δx).

Remark 2.6. Let F : P1(R) → R be differentiable at m ∈ P1(R), then, for all x ∈ R,

F ((1− η)m+ ηδx)− F (m)

η

converges, as η > 0 goes to zero, to the canonical derivative δF (m,x) of F . In other words

δF (m,x) = (∂ηF ((1− η)m+ ηδx))|η=0 .

One can note that the previous remark gives a useful way of characterizing the expression of the
derivative of a given function, once it is known it is differentiable.

In the following, it is required to differentiate many times some functions. To define this notion,
we use the following notation: if G : P1(R)× Rk → R (with k ∈ N∗), then, for all x1, ..., xk ∈ R

G(x1,...,xk) : m ∈ P1(R) 7−→ G(m,x1, ..., xk).
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Definition 2.7. A function F : P1(R) → R is said to be n-times differentiable if:

� F is (n− 1)-times differentiable,
� for all x ∈ Rn−1, the function (δn−1F )x is differentiable.

In that case we define inductively the canonical n-th derivative of F at m by: for all x =
(x1, ..., xn) ∈ Rn,

δnF (m,x1, ..., xn) = δ
(
(δn−1F )x\n

)
(m,xn).

The differentiability w.r.t. the measure-variable is not the only regularity that will be needed
to prove our results. We also need regularity w.r.t. the real variables appearing when a function
defined on P1(R) is differentiated.

Definition 2.8. We define Cn,k(P1(R)) (with n ∈ N∗ and k ∈ N ∪ {∞}) the set of functions F :
P1(R) → R such that F is n-times differentiable on P1(R) and, for every 1 ≤ j ≤ n, the function

(m,x) ∈ P1(R)× Rj 7→ δjF (m,x)

is Ck w.r.t. x for fixed m, and is continuous w.r.t. m for fixed x.
In addition, we denote Cn

b (P1(R)) the subspace of Cn,n(P1(R)) composed of the (non-necessarily
bounded) functions F such that, for all 1 ≤ k ≤ n and 1 ≤ j ≤ k,

sup
m∈P1(R),x∈Rk

∣∣∣∣ ∂k

∂x1...∂xk
δkF (m,x)

∣∣∣∣ <∞ and sup
m∈P1(R),x∈Rk

∣∣∂xj
δkF (m,x)

∣∣ <∞.

Remark 2.9. The set Cn
b (P1(R)) depends on the choice of the version of the derivatives because of

the second boundedness conditions (i.e. boundedness of ∂xj
δF k(m,x)). These conditions imply that,

for any µ1, ..., µk ∈ P1(R), the family of functions (x 7→ δF k(m,x))m∈P1(R) is uniformly integrable

w.r.t.
⊗k

i=1 µi.

One can easily note that C1
b (P1(R)) is included in the set of functions F : P1(R) → R that are

Lipschitz continuous functions w.r.t. DKR (cf Proposition 2.21 below).
In the following, the notion of many times L-differentiability is also used. The definition is

essentially the same as Definition 2.7 for the Lions-derivative instead of the (linear) derivative.

Definition 2.10. A function F : P1(R) → R is said to be n-times L-differentiable if:

� F is (n− 1)-times L-differentiable,
� for all x ∈ Rn−1, the function (∂n−1F )x is L-differentiable.

In that case we define inductively the n-th Lions-derivative of F at m by: for all x = (x1, ..., xn) ∈
Rn,

∂nF (m,x1, ..., xn) = ∂
(
(∂n−1F )x\n

)
(m,xn).

Let us now introduce the notion of mixed derivatives for functions defined on P1(R) × Rd for
any d ∈ N. The mixed derivatives are defined as sets of functions.

Definition 2.11 (Mixed derivatives). Let d ∈ N and F : P1(R)× Rd → R. We say that F admits
mixed derivatives if, for all x = (x1, ..., xd) ∈ Rd:

� for any 1 ≤ k ≤ d and m ∈ P1(R), y ∈ R 7→ F (m,x\ky) is differentiable on R,
� and the function Fx is L−differentiable on P1(R).
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In that case, the mixed derivatives of F at m form the following set of d+ 1 functions:{
(m,x) ∈ P1(R)× Rd 7−→ ∂xk

F (m,x) : 1 ≤ k ≤ d
}

∪
{
(m,x, y) ∈ P1(R)× Rd × R 7−→ ∂(Fx)(m, y)

}
,

where ∂(Fx) above denotes the Lions-derivative of Fx (cf Definition 2.5).
In addition, we define inductively the n-th order mixed derivatives of F as the union of the

mixed derivatives of all the functions belonging to the set corresponding to the (n − 1)-th order
mixed derivatives of F (assuming all these mixed derivatives exist).

Example 2.12. Let b : P1(R)× R → R. Then, the (first order) mixed derivatives of b are the two
following functions:

(m,x) ∈ P1(R)× R 7−→ ∂xb(m,x),

(m,x, y) ∈ P1(R)× R2 7−→ ∂(bx)(m, y).

The second order mixed derivatives of b are the five following functions

(m,x) ∈ P1(R)× R 7−→ ∂2xxb(m,x),

(m,x, y) ∈ P1(R)× R2 7−→ ∂x∂(bx)(m, y),

(m,x, y) ∈ P1(R)× R2 7−→ ∂y∂(bx)(m, y),

(m,x, y) ∈ P1(R)× R2 7−→ ∂ (∂xbx) (m, y),

(m,x, y, z) ∈ P1(R)× R3 7−→ ∂2(bx)(m, y, z).

The only way the notion of mixed derivatives is used is to write Assumption 3 in a compact
way, stating that all the mixed derivatives up to order five of some functions are bounded. This
kind of assumption is required to prove the regularity of the semigroups of the measure-valued
Markov processes that we study in this paper (i.e. Proposition 3.7, and more precisely, the proof of
Lemma 3.6).

Let us write now a remark that is a direct consequence of Proposition 2.21, explaining the reason
behind the boundedness hypothesis of the mixed order derivatives.

Remark 2.13. Let F be a function admitting n-th order mixed derivatives (with n ≥ 2) such that
all its n-th order mixed derivatives are bounded. Then all the (n − 1)-th order mixed derivatives
of F are Lipschitz continuous: for any G : P1(R) × Rd belonging to the set of the (n − 1)-th order
mixed derivatives, there exists L > 0 such that, for all m,µ ∈ P1(R) and x, y ∈ Rd,

|G(m,x)−G(µ, y)| ≤ C (DKR(m,µ) + ||x− y||1) .

Let us end this section with a notation.

Definition 2.14. Let n ∈ N∗ and F : P1(R) → R bounded and belonging to Cn
b (P1(R)). Let us

assume that all the mixed derivatives of F of order up to n exist and are bounded. Then we denote
||F ||n a bound of all the k-th order mixed derivatives, for all 0 ≤ k ≤ n.
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2.2. Chain rules

In this section, we state and prove some elementary results about ”chain rules” for the differentiation
of measure-variable functions. We want to prove the differentiability of functions of the following
form:

G ◦ h : R h−→ P1(R)
G−→ R.

The general form that one could naturally expect for the derivative of this kind of function is
the following: for t ∈ R,

(G ◦ h)′(t) =
∫
R
δG(h(t), x) d(h′(t))(x), (11)

where the sense of the derivative of h : R → P1(R) has to be defined. In the first particular case,
we consider, for two measures m0,m1 ∈ P1(R) the following function

h : t ∈ [0, 1] 7−→ (1− t)m0 + tm1,

where the derivative of h has to be understood as the quantity (h(t) − h(t0))/(t − t0) which is
constant and equal to m1 −m0.

Lemma 2.15. Let G : P1(R) → R be differentiable, m0,m1 ∈ P1(R), and

f : t ∈ [0, 1] 7−→ G((1− t)m0 + tm1).

Then f is differentiable, and, for all t ∈ [0, 1],

f ′(t) =

∫
R
δG((1− t)m0 + tm1, x) d(m1 −m0)(x).

Proof. We have, for any t, t0 ∈ [0, 1],

f(t)− f(t0)

= (t− t0)

∫
R
δG((1− t0)m0 + t0m1, x)d(m1 −m0)(x) + ε((1− t)m0 + tm1), (12)

with ε(µ)/DKR(µ, (1− t0)m0 + t0m1) vanishing as µ converges to (1− t0)m0 + t0m1. Noticing that

DKR((1− t)m0 + tm1, (1− t0)m0 + t0m1) ≤ 2|t− t0|,

the proof of the lemma follows from (12) dividing it by (t− t0) and then letting t goes to t0.

Remark 2.16. We have the following consequence of Lemma 2.15 and of the fundamental theorem
of calculus: for any function G belonging to C1

b (P1(R)), for all m0,m1 ∈ P1(R),

G(m1)−G(m0) =

∫ 1

0

∫
R
δG((1− t)m0 + tm1, x)d(m1 −m0)(x).

The above property is used as the definition of the linear derivative by Carmona and Delarue
(2018) (cf Section 4.1), Guo, Pham and Wei (2023) and Cox et al. (2021). In addition, by Propo-
sition 5.44 of Carmona and Delarue (2018), under some generic assumptions, this property can
characterize the linear derivative as it is defined at Definition 2.1 when the analysis of measure-
variable functions is studied on P2(R).
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Now we prove a similar result for functions that are many times differentiable with bounded
derivatives. In particular, the following result is not strictly stronger than the previous one.

Lemma 2.17. Let n ∈ N∗, G ∈ Cn
b (P1(R)), m0,m1 ∈ P1(R), and

f : t ∈ [0, 1] 7−→ G((1− t)m0 + tm1).

Then f is Cn, and, for all t ∈ [0, 1],

f (n)(t) =

∫
Rn

δnG((1− t)m0 + tm1, x) d(m1 −m0)
⊗n(x).

Proof. We prove the statement by induction on n. For n = 1, Lemma 2.15 implies that f is
differentiable. The fact that f is C1 follows by the dominated convergence theorem since G ∈
C1

b (P1(R)).
For the general case (i.e. n ≥ 2), let us assume that f is Cn−1 with, for all t ∈ [0, 1],

f (n−1)(t) =

∫
Rn−1

δn−1G((1− t)m0 + tm1, x)d(m1 −m0)
⊗n−1(x).

Note that, since G ∈ Cn
b (P1(R)), the function

(t, x) ∈ [0, 1]× Rn−1 7−→ δn−1G((1− t)m0 + tm1, x)

is sublinear w.r.t. ||x||1 (hence integrable w.r.t. m1 and m0) and differentiable w.r.t. t (thanks to
Lemma 2.15) with derivative

(t, x) 7−→
∫
R
δ
((
δn−1G

)
x

)
((1− t)m0 + tm1, y)d(m1 −m0)(y),

which is also sublinear w.r.t. ||x||1 (with a constant which is uniform w.r.t. t ∈ [0, 1] since G ∈
Cn

b (P1(R)). Then, by differentiation under the integral sign, for all t ∈ [0, 1],

f (n)(t) =

∫
Rn−1

∫
R
δ
((
δn−1G

)
x

)
((1− t)m0 + tm1, y)d(m1 −m0)(y)d(m1 −m0)

⊗n−1(x).

Once again, the continuity of f (n) is a consequence of the dominated convergence theorem and of
the assumption that G belongs to Cn

b (P1(R)).

Another particular case of interest for the chain rule (11) is the one of the function

h : λ ∈ R 7−→ S(m,λ),

for some fixed m ∈ P1(R), with S a shift operator defined as:

S(m,λ) : A ∈ B(R) 7−→ m({x− λ : x ∈ A}).

In that case, the derivative of h could be seen as a reminiscent of the derivative in the sense of
Schwartz’ distribution, since it requires to differentiate the integrand instead of the measure in (11)
(it is actually the opposite of one would expect from the derivative in the distribution sense).
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Lemma 2.18. Let m ∈ P1(R), G : P1(R) → R be differentiable such that, for any µ ∈ P1(R),
x 7→ δG(µ, x) is differentiable. Then the function

f : λ ∈ R 7−→ G(S(m,λ))

is differentiable and, for all λ ∈ R,

f ′(λ) =

∫
R
(∂yδG(S(m,λ), x+ y))|y=λ dm(x).

Proof. We have for any t ∈ R,

f(λ)− f(λ0) =

∫
R
δG(S(m,λ0), x)d(S(m,λ)− S(m,λ0))(x) + ε(S(m,λ)),

with ε(µ)/DKR(µ,S(m,λ0)) vanishing as µ converges to S(m,λ0) for DKR. Since, writing m0 :=
S(m,λ0),

DKR(S(m,λ),S(m,λ0)) = DKR(S(m0, λ− λ0),m0) = |λ− λ0|,
we know that ε(S(m,λ))/|λ−λ0| vanishes as λ converges to λ0. And, by the Dominated Convergence
Theorem,

1

λ− λ0

∫
R
δG(S(m,λ0), x)d(S(m,λ)− S(m,λ0))(x)

=

∫
R

δG(S(m,λ0), x+ λ)− δG(S(m,λ0), x+ λ0)

λ− λ0
dm(x)

−→
λ→λ0

∫
R
(∂yδG(S(m,λ0), x+ y))|y=λ0

dm(x),

which ends the proof.

The last case for which we want (11) is when the function h is of the form

h : x ∈ R 7−→ L (Y (x)|T ) .

with (Y (x))x a family of random variables and T some sigma-field.

Lemma 2.19. Let G ∈ C1
b (P1(R)), T some sigma-field and Y (x) (x ∈ R) be real-valued random

variables such that, almost surely,
x 7−→ Y (x)

belongs to C1(R), and assume that for all compact set K ⊂ R,

E
[
sup
x∈K

|∂xY (x)|
]
<∞. (13)

Then, almost surely, the function

f : x ∈ R 7−→ G (L[Y (x)|T ])

belongs to C1(R) and, for all x ∈ R,

f ′(x) = E
[
(∂xY (x)) · (∂yδG (L[Y (x)|T ], y))|y=Y (x)

∣∣∣ T ] .
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Proof. For the sake of notation, let us denote, for all x ∈ R,

mx = L(Y (x)|T ).

For the rest of the proof, let us fix some x0 ∈ R and some compact set K containing an open
neighborhood of x0. Then, for x ∈ K,

f(x)− f(x0) =G(mx)−G(mx0
) =

∫
R
δG(mx0

, y)d (mx −mx0
) (y) + εx0

(mx)

=E [δG(mx0
, Y (x))− δG(mx0

, Y (x0))| T ] + εx0
(mx),

with εx0(µ)/DKR(µ,mx0) vanishing as µ converges to mx0 . Consequently, for all x ∈ K\{x0},

f(x)− f(x0)

x− x0
= E

[
δG(mx0 , Y (x))− δG(mx0 , Y (x0))

x− x0

∣∣∣∣ T ]+ εx0(mx)

x− x0
.

Since, for all x ∈ K,

DKR(mx,mx0) ≤ E [ |Y (x)− Y (x0)|| T ] ≤ |x− x0| · E
[
sup
x̃∈K

|∂x̃Y (x̃)|
∣∣∣∣ T ] ,

we know, by (13), that εx0
(mx)/|x− x0| vanishes almost surely as x goes to x0.

Then, using (13) and the hypothesis that G belongs to C1
b (P1(R)), the dominated convergence

theorem concludes the proof.

Remark 2.20. With the notation of Lemma 2.19, the expression of f ′ can be substantially simplified
using the Lions-derivative instead of the (linear) derivative: for all x ∈ R,

f ′(x) = E [ (∂xY (x)) · ∂G (L[Y (x)|T ], Y (x))| T ] .

2.3. Taylor’s formulas and some corollaries

The results of this section are mainly consequences of Taylor’s theorems applied to the function f
of Lemma 2.15 from the previous section. Let us give the statement for the Mean Value Theorem
for measure-variable functions. The proof consisting in applying directly the Mean Value Theorem
for the real-variable function f of Lemma 2.15, we omit it.

Proposition 2.21 (Mean Value Theorem). Let G : P1(R) → R be differentiable. Then, for
any m0,m1 ∈ P1(R), there exists some t ∈]0, 1[ such that

G(m1)−G(m0) =

∫
R
δG((1− t)m0 + tm1, x)d(m1 −m0)(x).

In particular, every function G belonging to C1
b (P1(R)) is Lipschitz continuous: for all m0,m1 ∈

P1(R),
|G(m1)−G(m0)| ≤ DKR(m0,m1) · sup

m∈P1(R),x∈R
|∂xδG(m,x)| .

Let us now generalize the previous result by stating a version of Taylor’s formula with integral
remainder for measure-variable functions (which is already stated and proved in Lemma 2.2 of
Chassagneux, Szpruch and Tse (2022)).
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Theorem 2.22 (Taylor’s formula with integral remainder). Let n ∈ N∗ and G ∈ Cn+1
b (P1(R)).

Then, for any m0,m1 ∈ P1(R),

G(m1)−
n∑

k=0

1

k!

∫
Rk

δkG(m0, x) d(m1 −m0)
⊗k(x)

=
1

n!

∫ 1

0

(1− t)n
∫
Rn+1

δn+1G((1− t)m0 + tm1, x) d(m1 −m0)
⊗n+1(x) dt.

Proof. By Lemma 2.17, the function

f : t ∈ [0, 1] 7−→ G((1− t)m0 + tm1)

belongs to Cn+1([0, 1]), and for all 0 ≤ k ≤ n+ 1 and t ∈ [0, 1],

f (k)(t) =

∫
Rk

δkG((1− t)m0 + tm1, x)d(m1 −m0)
⊗k(x).

Then, by the (standard) Taylor’s formula with remainder term,

f(1)−
n∑

k=0

f (k)(0)

k!
=

1

n!

∫ 1

0

f (n+1)(t)(1− t)ndt.

This last equality is exactly the statement of the theorem.

In order to prove a version of the Taylor-Lagrange’s inequality for measure-variable functions,
the following lemma about Kantorovich-Rubinstein metric is required.

Lemma 2.23. Let n ∈ N∗ and g ∈ Cn
b (Rn). Then, for any m0,m1 ∈ P1(R),∣∣∣∣∫

Rn

g(x)d(m1 −m0)
⊗n(x)

∣∣∣∣ ≤ DKR(m0,m1)
n · sup

x1,...,xn∈R

∣∣∣∣ ∂n

∂x1...∂xn
g(x1, ..., xn)

∣∣∣∣ . (14)

Proof. We prove the result by induction on n. For n = 1, it is a mere consequence of the definition
of DKR, and of the fact that, any g ∈ C1

b (R) is Lipschitz continuous with Lipschitz constant
non-greater than ||g′||∞.

Then, let n ∈ N∗ and assume that (14) holds true for any g ∈ Cn
b (Rn). Let h ∈ Cn+1

b (Rn+1), and

g : x ∈ Rn 7−→
∫
R
h(x, y)d(m1 −m0)(y),

which belongs to Cn+1
b (Rn). So∣∣∣∣∫

Rn+1

h(x)d(m1 −m0)
⊗n+1(x)

∣∣∣∣ = ∣∣∣∣∫
Rn

g(x)d(m1 −m0)
⊗n(x)

∣∣∣∣
≤DKR(m0,m1)

n · sup
x1,...,xn∈R

∣∣∣∣ ∂n

∂x1...∂xn
g(x1, ..., xn)

∣∣∣∣ .
And, thanks to the case n = 1, we know that
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∂x1...∂xn
g(x1, ..., xn)

∣∣∣∣ = ∣∣∣∣∫
R

∂n

∂x1...∂xn
h(x, y)d(m1 −m0(y))

∣∣∣∣
≤ DKR(m0,m1) · sup

x1,...,xn,y∈R

∣∣∣∣ ∂n+1

∂x1...∂xn∂y
h(x1, ..., xn, y)

∣∣∣∣ .
Combining the two previous inequalities proves the statement of the lemma.

As a straightforward consequence of Theorem 2.22 and Lemma 2.23 we obtain the following
result.

Theorem 2.24 (Taylor-Lagrange’s inequality). Let n ∈ N∗ and G ∈ Cn+1
b (P1(R)). Then, for

any m0,m1 ∈ P1(R),∣∣∣∣∣G(m1)−
n∑

k=0

1

k!

∫
Rk

δkG(m0, x)d(m1 −m0)
⊗k(x)

∣∣∣∣∣
≤ 1

(n+ 1)!
DKR(m0,m1)

n+1 · sup
x∈Rn+1,m∈P1(R)

∣∣∣∣ ∂n+1

∂x1...∂xn+1
δn+1G(m,x)

∣∣∣∣ .
Another consequence of Theorem 2.22 is that, in some sense, it is possible to interchange the

derivative w.r.t. the measure-variable and the partial derivative w.r.t. the real-variable, when it
makes sense. For the sake of readability, the result is only stated for second order derivatives, but
can be generalized inductively.

Corollary 2.25. Let G ∈ C3
b (P1(R)). Then, for all m ∈ P1(R), and x, y ∈ R,

∂xδ ((δG)x) (m, y) = δ (∂x(δG)x) (m, y),

or, with the Lions-derivative notation,

∂2xyδ
2G(m,x, y) = ∂2G(m,x, y).

Proof. The proof consists in showing that the function

(m,x, y) ∈ P1(R)× R× R 7−→ ∂xδ ((δG)x) (m, y)

is the derivative of the function

(m,x) ∈ P1(R)× R 7−→ ∂xδG(m,x)

in the sense of Definition 2.1. Let us fix in all the proof, some m,m0 ∈ P1(R).
Firstly, by differentiation under the integral sign (which is permitted since G ∈ C3

b (P1(R))), we
have, for any x ∈ R,

∂x

∫
R
δ2G(m,x, y) d(m−m0)(y) =

∫
R
∂xδ

2G(m,x, y) d(m−m0)(y),

such that,

∂xδG(m,x)− ∂xδG(m0, x)−
∫
R
∂xδ

2G(m,x, y) d(m−m0)(y)
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= ∂x

(
δG(m,x)− δG(m0, x)−

∫
R
δ2G(m,x, y) d(m−m0)(y)

)
= ∂x

∫ 1

0

(1− t)

∫
R2

δ3G((1− t)m0 + tm, x, y1, y2) d(m−m0)
⊗2(y1, y2)dt

=

∫ 1

0

(1− t)

∫
R2

∂xδ
3G((1− t)m0 + tm, x, y1, y2) d(m−m0)

⊗2(y1, y2)dt,

where we have used the Taylor’s formula with integral remainder (cf Theorem 2.22) to obtain the
before last equality, and we have once again differentiated under the integral sign to obtain the last
one. Then, by Lemma 2.23 and recalling that G ∈ C3

b (P1(R)), we obtain∣∣∣∣∂xδG(m,x)− ∂xδG(m0, x)−
∫
R
∂xδ

2G(m,x, y) d(m−m0)(y)

∣∣∣∣
≤ DKR(m,m0)

2 · sup
µ∈P1(R),y∈R3

∣∣∣∣ ∂3

∂y1∂y2∂y3
δ3G(µ, y)

∣∣∣∣ ,
which proves the result.

Let us end this section with two applications of Taylor-Lagrange’s inequality (i.e. Theorem 2.24)
that permits to differentiate some particular functions.

Corollary 2.26. Let H : P1(R)× R → R and

F : m ∈ P1(R) 7−→
∫
R
H(m,x)dm(x).

Assume that:

(i) for any x ∈ R, the function Hx belongs to C2
b (P1(R)), and there exists C > 0 such that, for

all x ∈ R,
sup

m∈P1(R)
y1,y2∈R

∣∣∂2y1y2
δ2(Hx)(m, y1, y2)

∣∣ ≤ C(1 + |x|),

(ii) for any m ∈ P1(R) and x ∈ R, the function y 7→ H(m, y) is C1 on R, and ∂xHx belongs
to C1,1(P1(R)), and

sup
m∈P1(R)
x,y∈R

|∂yδ (∂xHx) (m, y)| <∞.

Then, F is differentiable on P1(R), with: for all m ∈ P1(R) and x ∈ R,

δF (m,x) = H(m,x) +

∫
R
δHy(m,x)dm(y)− F (m).

Proof. Let m,m0 ∈ P1(R) be fixed in all the proof.

F (m)− F (m0) =

∫
R
H(m,x)d(m−m0)(x) +

∫
R
(H(m,x)−H(m0, x)) dm0(x)

=

∫
R
H(m0, x)d(m−m0)(x) +

∫
R
(H(m,x)−H(m0, x)) dm0(x)
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+

∫
R
(H(m,x)−H(m0, x)) d(m−m0)(x).

Consequently,∣∣∣∣F (m)− F (m0)−
∫
R

(
H(m0, x)−

∫
R
δHy(m0, x)dm0(y)

)
d(m−m0)(x)

∣∣∣∣
≤
∫
R

∣∣∣∣Hx(m)−Hx(m0)−
∫
R
δHx(m0, y)d(m−m0)(y)

∣∣∣∣ dm0(x) (15)

+

∣∣∣∣∫
R
(H(m,x)−H(m0, x)) d(m−m0)(x)

∣∣∣∣ . (16)

Then, by the hypothesis (i) of the corollary and Theorem 2.24, the integrand of (15) is bounded
by

C(1 + |x|)DKR(m,m0)
2

for any x ∈ R (with C > 0 independent of x,m,m0), whence the quantity at (15) is bounded by

C

(
1 +

∫
R
|x|dm0(x)

)
DKR(m,m0)

2

which is negligible compared to DKR(m,m0) when m converges to m0 (for a fixed m0).
In addition, the term (16) is non-greater than

DKR(m,m0) · sup
x∈R

|∂x (H(m,x)−H(m0, x))| .

And, by the Mean Value Theorem (i.e. Proposition 2.21) and the hypothesis (ii) of the corollary,
for all x ∈ R,

|∂x (H(m,x)−H(m0, x))| = |∂xHx(m)− ∂xHx(m0)|
≤DKR(m,m0) · sup

m∈P1(R)
x,y∈R

|∂yδ (∂xHx) (m, y)| ,

which entails that the term at (16) is bounded by

CDKR(m,m0)
2

for some constant C > 0 independent of m,m0.
So we have proved that F is differentiable on P1(R), and that the following function is one

version of its derivative:

(m,x) ∈ P1(R)× R 7−→ H(m,x) +

∫
R
δHy(m,x)dm(y).

It is then sufficient to subtract F (m) to the quantity above to obtain the canonical derivative
of F .

The next result is similar as the previous one for a larger class of functions.
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Corollary 2.27. Let H : P1(R)× R2 → R and

F : m ∈ P1(R) 7−→
∫
R2

H(m,x)dm⊗2(x).

Assume that:

(i) for any x ∈ R2, the function Hx belongs to C2
b (P1(R)), and there exists C > 0 such that, for

all x1, x2 ∈ R,

sup
m∈P1(R)
y1,y2∈R

∣∣∂2y1y2
δ2(Hx)(m, y1, y2)

∣∣ ≤ C(1 + |x1|+ |x2|+ |x1x2|),

(ii) for any m ∈ P1(R) and x1, x2 ∈ R, the functions x 7→ H(m,x) is C1 on R2, and both ∂x1Hx

and ∂x2
Hx belong to C1,1(P1(R)), with

sup
m∈P1(R)
x1,x2,y∈R

|∂yδ (∂x1Hx) (m, y)|+ |∂yδ (∂x2Hx) (m, y)| <∞,

(iii) for all m ∈ P1(R), the function x 7→ H(m,x) belongs to C2
b (R2).

Then, F is differentiable on P1(R), with: for all m ∈ P1(R) and y ∈ R,

δF (m, y) =

∫
R2

δ(Hx)(m, y)dm
⊗2(x) +

∫
R
H(m,x1, y)dm(x1)

+

∫
R
H(m, y, x2)dm(x2)− 2F (m).

The proof of this result uses the following Lemma whose proof is given at Appendix C.

Lemma 2.28. Let d ∈ N∗ and m1, ...,md, µ1, ..., µd ∈ P1(R). Then,

DKR

(
d⊗

k=1

mk,

d⊗
k=1

µk

)
≤

d∑
k=1

DKR(mk, µk).

Proof of Corollary 2.27. Let us fix some m,m0 ∈ P1(R) in the proof.

F (m)− F (m0) =

∫
R2

H(m,x)d
(
m⊗2 −m⊗2

0

)
(x)

+

∫
R2

(H(m,x)−H(m0, x)) dm
⊗2
0 (x)

=

∫
R2

H(m0, x1, x2)dm(x1)d(m−m0)(x2)

+

∫
R2

H(m0, x1, x2)d(m−m0)(x1)dm0(x2)

+

∫
R2

(H(m,x)−H(m0, x)) dm
⊗2
0 (x)
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+

∫
R2

(H(m,x)−H(m0, x)) d
(
m⊗2 −m⊗2

0

)
(x).

Then, ∣∣∣∣F (m)− F (m0)−
∫
R

∫
R2

δ(Hx)(m0, y)dm
⊗2
0 (x)d(m−m0)(y)

−
∫
R

(∫
R
H(m0, x1, y)dm0(x1) +

∫
R
H(m0, y, x2)dm0(x2)

)
d(m−m0)(y)

∣∣∣∣
≤
∣∣∣∣∫

R2

H(m0, x1, x2)d(m−m0)
⊗2(x1, x2)

∣∣∣∣ (17)

+

∣∣∣∣∫
R2

(
H(m,x)−H(m0, x)−

∫
R
δ(Hx)(m0, y)d(m−m0)(y)

)
dm⊗2

0 (x)

∣∣∣∣ (18)

+

∣∣∣∣∫
R2

(H(m,x)−H(m0, x)) d
(
m⊗2 −m⊗2

0

)
(x)

∣∣∣∣ . (19)

By Lemma 2.23 and thanks to the hypothesis (iii) of the corollary, the term at (17) is bounded
by

DKR(m,m0)
2 sup
µ∈P1(R),x1,x2∈R

∣∣∂2x1x2
H(µ, x)

∣∣ .
According to Taylor-Lagrange’s inequality (i.e. Theorem 2.24) and using Hypothesis (i), we know

that the term at (18) is non-greater than

C ·DKR(m,m0)
2

(
1 +

(∫
R
|x|dm0(x)

)2
)
,

for some C > 0 independent of (m,m0).
For the last term (i.e. (19)), by definition of Kantorovich-Rubinstein’s metric, is bounded by

DKR

(
m⊗2,m⊗2

0

)
· sup
x1,x2∈R

|∂x1
Hx(m)− ∂x1

Hx(m0)|+ |∂x2
Hx(m)− ∂x2

Hx(m0)| .

As in the end of the proof of the previous corollary, we have

sup
x1,x2∈R

|∂x1Hx(m)− ∂x1Hx(m0)|+ |∂x2Hx(m)− ∂x2Hx(m0)| ≤ C ·DKR(m,m0).

On the other hand, by Lemma 2.28, we have that

DKR

(
m⊗2,m⊗2

0

)
≤ 2DKR(m,m0).

So the term at (19) is bounded by C ·DKR(m,m0)
2. This proves finally that the function F is

differentiable on P1(R) and that the function

(m, y) ∈ P1(R)× R 7−→
∫
R2

δ(Hx)(m, y)dm
⊗2(x) +

∫
R
H(m,x1, y)dm(x1)

+

∫
R
H(m, y, x2)dm(x2)

is one version of the derivative of F . It is then sufficient to subtract 2F (m) to the quantity above
to obtain the canonical derivative of F .
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Remark 2.29. Note that, an idea to prove Corollary 2.27 could have been to write

F (m) =

∫
R2

H(m,x)dm⊗2(x) =

∫
R
G(m,x2)dm(x2),

with

G(m,x2) =

∫
R
H(m,x1, x2)dm(x1),

and to apply twice Corollary 2.26. The problem is that it would require more technical and stronger
assumptions to be true than the assumptions of Corollary 2.27.

2.4. Measure-variable polynomials

A set of functions of interest is the following one{
F : m ∈ P1(R) 7−→

∫
R
g(x)dm(x) : g smooth enough

}
.

Indeed the computation (and the stochastic calculus properties) on this kind of functions defined
on P1(R) rely directly on the computation for functions defined on R. Since this set of functions is
not a separating class for P1(R), we need to introduce the richer class of functions composed of the
polynomials (similar functions are also used in Dawson (1993), Cuchiero, Larsson and Svaluto-Ferro
(2019) and Guo, Pham and Wei (2023)).

Definition 2.30 (Polynomials). For p ∈ N∪{∞}, let Pp be the set of polynomials of order p, i.e.
the functions F of the form

F : m ∈ P1(R) 7−→
∫
Rn

h(x)dm⊗n(x),

with n ∈ N and h ∈ Cp
b (Rn).

There exists another useful class of measure-variable functions called the cylinder functions (see
e.g. Cox et al. (2021) and Guo, Pham and Wei (2023)) that can be defined as the set{

F : m ∈ P1(R) 7−→ g

(∫
R
h1(x)dm(x), ...,

∫
R
hn(x)dm(x)

)
: g, h1, ..., hn smooth

}
.

Note that the terminology used by Guo, Pham and Wei (2023) slightly differs from the one of
this paper (in Guo, Pham and Wei (2023), the functions g, h1, ..., hn, h above are required to be
polynomials). Consequently, in this paper the cylinder functions and the polynomials form two
different sets of functions. In this paper, the class of polynomials satisfies an important property:
if (Pt)t is the semigroup of a particular measure-valued Markov process, then, for any G ∈ P4

and t ≥ 0, PtG belongs to P4 (see Proposition 3.7 for a formal statement). The previous property
does not seem to be true for other classes of measure-variable functions like the cylinder functions.

As mentioned above, the following proposition states that the set of the polynomials is a sepa-
rating class for P1(R).
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Proposition 2.31. Let p ≥ 1 and µ1, µ2 be Pp(R)-valued random variables. If for all F ∈ P∞,

E [F (µ1)] = E [F (µ2)] ,

then µ1 and µ2 have the same law.

The proof of this statement being quite both classical and technical, it is postponed to the end
of Appendix A.

The next result concerns the regularity of the polynomials.

Proposition 2.32. For all p ≥ 2, the set Pp is included in both C∞,p(P1(R)) and Cp
b (P1(R)). The

mixed derivatives of any G ∈ Pp up to order p exist and are bounded. In addition, for any n ∈ N∗,
for all φ ∈ Cp

b (Rn), defining G ∈ Pp as

G : m ∈ P1(R) 7−→
∫
Rn

φ(x)dm⊗n(x),

we have, for all m ∈ P1(R) and y ∈ R,

δG(m, y) =

n∑
k=1

∫
Rn−1

φ(x\ky)dm⊗n−1(x\k)− n ·G(m),

and, for all m ∈ P1(R) and y1, y2 ∈ R,

δ2G(m, y1, y2) =

n∑
k=1

n∑
l=1
l ̸=k

∫
Rn−2

φ(x\(k,l)(y1, y2))dm⊗n−2(x\(k,l)) + C1(m, y1) + C2(m, y2),

with C1(m, y1) (resp. C2(m, y2)) independent of y2 (resp. y1).

Before proving Proposition 2.32, let us remark that it is possible to have explicit and smooth
expressions for the quantities denoted by C1(m, y1) and C2(m, y2): with the notation of Proposi-
tion 2.32,

C1(m, y1) =− (n− 1)

∫
Rn−1

φ(x\ky1)dm⊗n−1(x\k),

C2(m, y2) =− n · δG(m, y2).

We have omitted these expressions in the statement of the proposition since we do not use them
in the proofs of the paper. It can still be of interest to note that the functions (m, y) 7→ C1(m, y)
and (m, y) 7→ C2(m, y) are polynomials of order p w.r.t. m, and Cp

b (R) w.r.t. y.

Remark 2.33. As a consequence of Proposition 2.32, it can be noticed that all the polynomials
are continuous on the space P1(R), and so, also on each space Pp(R), since p-th order Wasserstein
metric is finer than DKR (for any p ≥ 1).

Proof of Proposition 2.32. Let us fix p ≥ 2 in all the proof. We prove, by induction on n ∈ N∗ that,
for any φ ∈ Cp

b (Rn), and G defined as

G : m ∈ P1(R) 7−→
∫
Rn

φ(x)dm⊗n(x), (20)
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the function G is differentiable on P1(R) such that: for all m ∈ P1(R) and y ∈ R,

δG(m, y) =

n∑
k=1

∫
Rn−1

φ(x\ky)dm⊗n−1(x\k) + C(m). (21)

Let us begin with the case n = 1. So, let us consider some φ ∈ Cp
b (R) and define

G : m ∈ P1(R) 7−→
∫
R
φ(x)dm(x).

Since, for any m,m0 ∈ P1(R),

G(m)−G(m0) =

∫
R
φ(x)d(m−m0)(x),

we know that, the function (m,x) 7→ φ(x) is one version of the derivative of F . Its canonical
derivative therefore satisfies: for all m ∈ P1(R), x ∈ R,

δG(m,x) = φ(x)−G(m).

Now, let us fix some n ∈ N∗, and assume that (21) holds true for any function G of the form (20)
(for any choice of φ ∈ Cp

b (Rn)). Let φ ∈ Cp
b (Rn+1) and

G : m ∈ P1(R) 7−→
∫
Rn+1

φ(x)dm⊗n+1(x).

Let us introduce

H : (m, y) ∈ P1(R)× R 7−→
∫
Rn

φ(x, y)dm⊗n(x),

such that, for all m ∈ P1(R),

G(m) =

∫
R
H(m, y)dm(y).

Now, we prove that G is differentiable using Corollary 2.26. Firstly, by induction hypothesis,
applied twice successively, for all y ∈ R, the function Hy is twice differentiable on P1(R), with: for
all m ∈ P1(R), z1, z2 ∈ R,

δ2Hy(m, z1, z2) =

n∑
k=1

n∑
l=1
l ̸=k

∫
Rn−2

φ(x\(k,l)(z1, z2), y)dm⊗n−2(x\(k,l))

+ Cy(m, z1) + Cy(m, z2).

Then,

∂2z1z2δ
2Hy(m, z1, z2) =

n∑
k=1

n∑
l=1
l ̸=k

∫
Rn−2

∂2klφ(x\(k,l)(z1, z2), y)dm⊗n−2(x\(k,l)),

which is bounded uniformly w.r.t. (y, z1, z2,m) (recalling that φ ∈ Cp
b (Rn+1) with p ≥ 2). Hence,

the function H satisfies Condition (i) of Corollary 2.26.
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Besides, by differentiation under the integral sign, we have, for all m ∈ P1(R), y ∈ R,

∂yHy(m) =

∫
Rn

∂nφ(x, y)dm
⊗n(x).

And, by induction hypothesis and differentiating again under the integral sign, for all m ∈ P1(R)
and y, z ∈ R,

∂zδ (∂yHy) (m, z) =

n∑
k=1

∫
Rn−1

∂2knφ (x\kz, y) dm⊗n−1(x),

which is bounded uniformly w.r.t. (y, z,m). So H also satisfies Condition (ii) of Corollary 2.26.
Then, by Corollary 2.26, the function G is differentiable, and for all m ∈ P1(R), y ∈ R,

δG(m, y) = H(m, y) +

∫
R
δHz(m, y)dm(z)−G(m)

=

∫
Rn

φ(x, y)dm⊗n(x) +

n∑
k=1

∫
R

∫
Rn−1

φ(x\ky, z)dm⊗n−1(x\k)dm(z) + C(m)

=

∫
Rn

φ(x, y)dm⊗n(x) +

n∑
k=1

∫
Rn

φ(x\ky)dm⊗n(x\k) + C(m),

which is exactly (21).
Now, one can note that, thanks to (21), for any G ∈ Pp (for p ≥ 2), for any x ∈ R, the function

(δG)x still belongs to Pp and the function ∂x(δG)x belongs to Pp−1. This implies that Pp is
included in C∞,0(P1(R)). All the other statements of the proposition are a direct consequence of this
result and the fact that, by definition, any G ∈ Pp can be written as in (20) with φ ∈ Cp

b (Rn).

Remark 2.34. Similarly as it was noted in Remark 2.29, it is possible to differentiate measure-
variable functions that include all the functions of the forms given at Corollaries 2.26, 2.27 and
Proposition 2.32, considering

G : m ∈ P1(R) 7−→
∫
Rd

H(m,x)dm⊗d(x).

However, such a result would need particularly technical and strong hypothesis that what is actu-
ally needed in this paper.

3. Markov theory of measure-valued processes

The aim of this section is to study the Markov properties of two kind of measure-valued Markov
processes: the conditional laws of McKean-Vlasov processes (cf Theorem 1.5) and the empirical
measures of some McKean-Vlasov particle systems (cf Theorem 1.7). Before proving the results of
Section 1.2, we need to introduce some definitions and some useful lemmas.



X. Erny/Measure-valued jump diffusions and diffusive mean-field limits 31

3.1. General results

Let us begin by introducing the notion of semigroups and generators that we use in the paper. This
section is written for E-valued Markov processes, and is applied for E = Pp(R). It is assumed in all
the section that E is a Polish space (the fact that Pp(R) is Polish is guaranteed by Theorem 6.18 of
Villani (2009)). The notion of semigroup is the usual one, and the notion of infinitesimal generator
has to be understood in a sense of martingale problem. Notice that these are the definitions used in
Meyn and Tweedie (1993), and also in Erny, Löcherbach and Loukianova (2022b) only in the case
E = R. The results of this section generalize the ones of Appendix A and B of Erny, Löcherbach
and Loukianova (2022b).

Definition 3.1. Let E be a Polish space, and (Xt)t be some time homogeneous E-valued Markov
process w.r.t. some filtration (Ft)t. Let DS(X) denote the domain of the semigroup of X:

DS(X) = {g : E → R measurable : ∀t > 0,Ex [|g(Xt)|] <∞} .

The semigroup (Pt)t of (Xt)t is a family of operators defined by: for any g ∈ DS(X), for all t ≥ 0,

Ptg : x ∈ E 7−→ Ex [g(Xt)] ,

with Ex the expectation related to the probability measure Px under which X0 = x.
Let DG(X) denote the domain of the generator of X: g ∈ DG(X) if and only if g ∈ DS(X) and

there exists hg ∈ DS(X) such that, for all t ≥ 0,
Ex

[∫ t

0

|hg(Xs)|ds
]
<∞,

Ptg(x)− g(x)−
∫ t

0

Pshg(x)ds = 0.

In this case, the generator A of (Xt)t is the operator defined on DG(X) as Ag = hg.

Note that, thanks to Remark 2.33, any polynomial is continuous (hence measurable) w.r.t. the
topology of Pp(R), for all p ≥ 1. In this paper, these are the only functions that are considered in
the domains of the generators of the Markov processes.

Remark 3.2. In this paper, we give the expressions of the generators for two classes of measure-
valued Markov processes. In Theorem 1.5, we study the generator of processes defined as conditional
laws of solutions of McKean-Vlasov Ito-SDEs, conditionally on a Brownian motion. In Theorem 1.7,
we give a similar result for processes defined as empirical measures of particle systems whose dy-
namics are driven by McKean-Vlasov Ito-SDEs.

We can now state a criterion for a Pp(R)-valued process to be Markov. Since it is a direct
consequence of the fact that the polynomials form a separating class for Pp(R) (i.e. Proposition 2.31),
the proof is omitted.

Proposition 3.3. Let p ≥ 1 and (µt)t be a Pp(R)-valued process adapted to some filtration (Ft)t.
Assume that, for any polynomial F ∈ P∞, for all 0 ≤ s ≤ t,

E [F (µt)| Fs] = E [F (µt)|µs] .

Then (µt)t is a Markov process w.r.t. the filtration (Ft)t.
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The exhaustive study of Markov theory for measure-valued processes is beyond the scope of this
section. The aim is only to prove the following result stating a classical Trotter-Kato formula under
some ad hoc assumptions.

Proposition 3.4. Let (P̄t)t and (PN
t )t (resp. Ā and AN ) be the semigroups (resp. generators) of

two E-valued Markov processes (X̄t)t and (XN
t )t, let A be a subset of C(E) and x ∈ E. Assume

that:

1. for all g ∈ A and t ≥ 0, the function y ∈ E 7→ P̄tg(y) still belongs to A,
2. the set A is included in the domains of the generators Ā and AN ,
3. for any g ∈ A, the three functions

t 7→ P̄tĀg(x) , t 7→ PN
t A

Ng(x) and t 7→ PN
t Āg(x)

are continuous,
4. and, for all T ≥ 0, g ∈ A and t ∈ [0, T ],

sup
r≤T

∣∣PN
r Ā

(
P̄t − P̄s

)
g(x)

∣∣+ sup
r≤T

∣∣PN
r A

N
(
P̄t − P̄s

)
g(x)

∣∣ −→
s→t

0.

Then, for all t ≥ 0, g ∈ A,

(
P̄tg − PN

t g
)
(x) =

∫ t

0

PN
t−s

(
Ā−AN

)
P̄sg(x)ds. (22)

The proof of Proposition 3.4 requires the following result. Its classical, so its proof is omitted
(see e.g. Remark A.2 and Proposition A.3 of Erny, Löcherbach and Loukianova (2022b)).

Lemma 3.5. Let (Xt)t be some E-valued Markov process with semigroup (Pt)t and generator A
(in the sense of Definition 3.1). For any g ∈ DG(X) and x ∈ E, if the function t 7→ PtAg(x) is
continuous on R+, then, for all t ≥ 0,

∂t (Ptg(x)) = PtAg(x).

In addition, if for all t ≥ 0, Ptg ∈ DG(X), then

∂t (Ptg(x)) = APtg(x) = PtAg(x).

Proof of Proposition 3.4. Let us fix in all the proof some g ∈ A, t > 0 and define

Φ : s ∈ [0, t] 7−→ PN
t−sP̄sG(x).

By Lemma 3.5 and conditions 1-3 of Proposition 3.4, the function Φ is differentiable with, for
all s ∈ [0, t],

Φ′(s) =− ∂u
(
PN
u P̄sG(x)

)
|u=t−s

+ ∂v
(
PN
t−sP̄vG(x)

)
|v=s

=− PN
t−sA

N P̄sG(x) + PN
t−sP̄sĀG(x)

=PN
t−s

(
Ā−AN

)
P̄sG(x).
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The only property required to prove the result of Proposition 3.4 is that Φ′ is continuous on [0, t].
Indeed, it would imply (by the second fundamental theorem of calculus),

Φ(t)− Φ(0) =

∫ t

0

Φ′(s)ds, (23)

which is exactly (22).
To prove the continuity of Φ′, let us fix, for the remainder of the proof, some s ∈ [0, t] and some

sequence (sk)k converging to s. Then

|Φ′(s)− Φ′(sk)| ≤
∣∣PN

t−s

(
Ā−AN

)
P̄sG(x)− PN

t−sk

(
Ā−AN

)
P̄sG(x)

∣∣
+
∣∣PN

t−sk

(
Ā−AN

)
P̄sG(x)− PN

t−sk

(
Ā−AN

)
P̄skG(x)

∣∣
=: Ak +Bk. (24)

Since
Ak ≤

∣∣(PN
t−s − PN

t−sk

)
ĀP̄sg(x)

∣∣+ ∣∣(PN
t−s − PN

t−sk

)
AN P̄sg(x)

∣∣ ,
we know, by conditions 1-3 that Ak vanishes as k goes to infinity.

On the other hand,

Bk ≤
∣∣PN

t−sk
Ā
(
P̄s − P̄sk

)
g(x)

∣∣+ ∣∣PN
t−sk

AN
(
P̄s − P̄sk

)
g(x)

∣∣ ,
also vanishes as k goes to infinity by condition 4. Consequently (24) implies that Φ′ is continuous
on [0, t], implying that (23) holds true, which proves the proposition.

3.2. Proof of Theorem 1.5

In this section, we prove Theorem 1.5: the process (µ̄t)t≥0, that is defined as the conditional law of
the solution (X̄t)t≥0 of (6), is a Markov process, and the expression of its generator is given by (7).

This proof uses the same ideas as in Guo, Pham and Wei (2023) and Cox et al. (2021): using Ito’s
formula for Rn-valued processes, and then integrating the result. In both references, the authors
extend the expressions of their measure-valued Ito’s formulas to sufficiently smooth test-functions.
This is done by approximating smooth measure-variable functions with cylinder functions. It is
not clear that the approximation scheme of Cox et al. (2021) can be adapted to our framework,
whereas the one of Guo, Pham and Wei (2023) seems to be adaptable. This paper being sufficiently
long and technical, we prefer to omit the use of approximation schemes, and restrict the result of
Theorem 1.5 (and Theorem 1.7) for measure-variable polynomial test-functions.

Let

G : m ∈ P1(R) 7−→
∫
Rn

φ(x)dm⊗n(x),

with n ∈ N∗ and φ ∈ C2
b (Rn).

For a fixed m ∈ P2(R), let us introduce, for all 1 ≤ k ≤ n, the process X̄k solution to

X̄k
t =X̄k

0 +

∫ t

0

b(µ̄s, X̄
k
s )ds+

∫ t

0

σ(µ̄s, X̄
k
s )dB

k
s +

∫ t

0

ς(µ̄s, X̄
k
s )dWs (25)

+

∫
[0,t]×R+

h(µ̄s−, X̄
k
s−)1{z≤f(µ̄s−,X̄k

s−)}dπ
k(s, z),
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with X̄1
0 , ..., X̄

n
0 i.i.d. m-distributed, B1, ..., Bn,W independent Brownian motions, and π1, ..., πn

independent Poisson measures on R2
+ with Lebesque intensity, such that all these objects are mu-

tually independent. The random measure µ̄t is the conditional law of any of the process given the
filtration of W up to time t: µ̄t = L(X̄1

t |Wt). The interest of this construction is to guarantee the
following property: for all t ≥ 0,

conditionally on µ̄t, X̄k
t (1 ≤ k ≤ n) are i.i.d. µ̄t-distributed. (26)

Let us denote X̄t = (X̄1
t , ..., X̄

n
t ), and, for 1 ≤ k ≤ n, X̄k,c the continuous part of the semi-

martingale X̄k. By Ito’s formula, for all t ≥ r ≥ 0,

φ(X̄t) =φ(X̄r) +

n∑
k=1

∫ t

r

∂kφ(X̄s)dX̄
k,c
s +

1

2

n∑
k,l=1

∫ t

r

∂2klφ(X̄s)d
〈
X̄k,c, X̄ l,c

〉
s

+
∑

r<s≤t

(
φ(X̄t)− φ(X̄t−)

)
=φ(X̄r) +

n∑
k=1

∫ t

r

∂kφ(X̄s)b(µ̄s, X̄
k
s )ds+

1

2

n∑
k=1

∫ t

r

σ(µ̄s, X̄
k
s )

2∂2kkφ(X̄s)ds

+
1

2

n∑
k,l=1

∫ t

r

ς(µ̄s, X̄
k
s )ς(µ̄s, X̄

l
s)∂

2
klφ(X̄s)ds

+

n∑
k=1

∫ t

r

∂kφ(X̄s)σ(µ̄s, X̄
k
s )dB

k
s +

n∑
k=1

∫ t

r

∂kφ(X̄s)ς(µ̄s, X̄
k
s )dWs

+

n∑
k=1

∫
]r,t]×R+

1{z≤f(µ̄s−,X̄k
s−)}[
φ
(
X̄s− + h(µ̄s−, X̄

k
s−) · ek

)
− φ

(
X̄s−

)]
dπk(s, z),

with ek = (1{k=l})1≤l≤n ∈ Rn. Then, thanks to the calculation above, the property (26), and
Lemmas D.1 and D.2,

G(µ̄t) =G(µ̄r) +

n∑
k=1

∫ t

r

∫
Rn

∂kφ(x)b(µ̄s, xk)dµ̄
⊗n
s (x)ds

+
1

2

n∑
k=1

∫ t

r

∫
Rn

σ(µ̄s, xk)
2∂2kk(x)dµ̄

⊗n
s (x)ds

+
1

2

n∑
k,l=1

∫ t

r

∫
Rn

ς(µ̄s, xk)ς(µ̄s, xl)∂
2
klφ(x)dµ̄

⊗n
s (x)ds

+

n∑
k=1

∫ t

r

∫
Rn

∂kφ(x)ς(µ̄s, xk)dµ̄
⊗n
s (x)dWs

+

n∑
k=1

∫ t

r

∫
Rn

f(µ̄s, xk) [φ (x+ h(µ̄s, xk) · ek)− φ(x)] dµ̄⊗n
s (x)ds
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+

n∑
k=1

∫
]r,t]×R+

∫
Rn

1{z≤f(µ̄s−,xk)}

[φ (x+ h(µ̄s−, xk) · ek)− φ (x)] dµ̄⊗n
s− (x)dπ̃k(s, z),

with π̃k the compensated version of πk:

dπ̃k(t, z) = dπk(t, z)− dt · dz.

Then, using the computation above and Proposition 3.3, we know that the process (µ̄t)t is
a Markov process. In addition, by (5) and the fact that ς and f are sublinear, we know that the
stochastic integrals w.r.t.W and π̃k above are real martingales. So the function G belongs to DG(µ̄),
and

ĀG(m) =

n∑
k=1

∫
Rn

∂kφ(x)b(m,xk)dm
⊗n(x) +

1

2

n∑
k=1

∫
Rn

σ(m,xk)
2∂2kkφ(x)dm

⊗n(x) (27)

+
1

2

n∑
k,l=1

∫
Rn

ς(m,xk)ς(m,xl)∂
2
klφ(x)dm

⊗n(x)

+

n∑
k=1

∫
Rn

f(m,xk) [φ (x+ h(m,xk) · ek)− φ(x)] dm⊗n(x).

Then, by Proposition 2.32, for all x, y ∈ R,m ∈ P1(R),

δG(m,x) =

n∑
k=1

∫
Rn−1

φ (y\kx) dm⊗n−1(y\k) + C0(m), (28)

δ2G(m,x, y) =

n∑
k,l=1
k ̸=l

∫
Rn−2

φ(z\(k,l)(x, y))dm⊗n−2(z\(k,l)) + C1(m,x) + C2(m, y), (29)

with C2(m, y) independent of x, C1(m,x) independent of y, and C0(m) independent of both x
and y.

Consequently,

∂xδG(m,x) =
n∑

k=1

∫
Rn−1

∂kφ (z\kx) dm⊗n−1(z\k),∫
R
b(m,x)∂xδG(m,x)dm(x) =

n∑
k=1

∫
R

∫
Rn−1

b(m,x)∂kφ (y\kx) dm⊗n−1(y\k)dm(x)

=

n∑
k=1

∫
Rn

b(m, yk)∂kφ(y)dm
⊗n(y).

Using the same trick on the other terms of (27), we have∫
R
σ(m,x)2∂2xxδG(m,x)dm(x) =

n∑
k=1

∫
Rn

σ(m, yk)
2∂2kkφ(y)dm

⊗n(y),
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R
ς(m,x)2∂2xxδG(m,x)dm(x) =

n∑
k=1

∫
Rn

ς(m, yk)
2∂2kkφ(y)dm

⊗n(y),

∫
R2

ς(m,x)ς(m, y)∂2xyδ
2G(m,x, y)dm⊗2(x, y) =

n∑
k,l=1
k ̸=l

∫
Rn

ς(m, zk)ς(m, zl)∂
2
klφ(z)dm

⊗n(z).

As a consequence, it is possible to rewrite (27) exactly as (7).

3.3. Regularity of semigroups of conditional laws of diffusions

In this section, we only consider a particular case of the SDE (6) without the jump term:

dX̄t = b(µ̄t, X̄t)dt+ σ(µ̄t, X̄t)dBt + ς(µ̄t, X̄t)dWt, (30)

where B,W are still independent Brownian motions, and µ̄t = L(X̄t|Wt). In addition, for any x ∈ R,
let (X̄

(x)
t )t be the (only) strong solution of (30) with initial condition X̄

(x)
0 = x.

Lemma 3.6. Assume that the functions b, σ, ς admit fifth order mixed derivatives such that the
mixed derivatives of orders from one to five are bounded. Then, there exists some T > 0 such that,
for all 0 ≤ t ≤ T , the function

x ∈ R 7−→ X̄
(x)
t

belongs to C4
b (R).

In addition, for all T > 0, p ∈ N∗, and 1 ≤ k ≤ 4,

sup
x∈R

E
[
sup
t≤T

∣∣∣∂kxkX̄
(x)
t

∣∣∣p] <∞.

The proof of the previous lemma uses classical technics (see e.g. the proof of Lemma 4.17 of
Chassagneux, Crisan and Delarue (2022)), but due to the particularity of our framework, we prefer
to write an explicit proof at Appendix B. Indeed, since we work on conditional McKean-Vlasov
equations, it is not clear that the proofs of the literature can directly be applied.

Proposition 3.7. Let P̄ be the semigroup of the process X̄ defined at (30). Under the assumption
of Lemma 3.6, for any G ∈ P4 and t ≥ 0,

(a) the function
m ∈ P1(R) 7−→ P̄tG(m)

belongs to P4,
(b) there exists Ct > 0 independent of G such that, for all 0 ≤ k ≤ 4,

sup
s≤t

||P̄sG||k ≤ Ct||G||k,

where || • ||k is introduced in Definition 2.14,
(c) for all m ∈ P1(R) and x, y ∈ R, the following functions are continuous

t ∈ R+ 7−→ P̄tG(m),
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t ∈ R+ 7−→ δ
(
P̄tG

)
(m,x),

t ∈ R+ 7−→ ∂xδ
(
P̄tG

)
(m,x),

t ∈ R+ 7−→ ∂2xxδ
(
P̄tG

)
(m,x),

t ∈ R+ 7−→ ∂2xyδ
2
(
P̄tG

)
(m,x, y).

Proof. Let G ∈ P4 satisfying for all m ∈ P1(R),

G(m) =

∫
Rn

φ(x)dm⊗n(x),

with n ∈ N∗ and φ ∈ C4
b (Rn).

Let us prove Item (a). For all t ≥ 0,

G(µ̄t) = E
[
φ(X̄1

t , ..., X̄
n
t )
∣∣Wt

]
,

where the processes X̄k (1 ≤ k ≤ n) are solutions to (30) w.r.t. the same W , but independent Bk

and X̄k
0 (similarly as in (25)). Since the variables X̄1

0 , ..., X̄
n
0 are i.i.d. µ̄0-distributed, we have, for

any m ∈ P1(R),

P̄tG(m) = Em [G(µ̄t)] =

∫
Rn

E
[
φ
(
X̄

1,(x1)
t , ..., X̄

n,(xn)
t

)]
dm⊗n(x) =

∫
Rn

ψt(x)dm
⊗n(x), (31)

with
ψt : x ∈ Rn 7−→ E

[
φ
(
X̄

1,(x1)
t , ..., X̄

n,(xn)
t

)]
,

and X̄k,(xk) the process X̄k starting from initial condition X̄
k,(xk)
0 = xk (1 ≤ k ≤ n). Then, by

Lemma 3.6 and by differentiation under the integral sign (using uniform integrability condition, like,
for example, in Lemma 6.1 of Eldredge (2018)), there exists some T > 0 such that, for all t ∈ [0, T ],
the function ψt belongs to C

4
b (Rn). This proves that, for all 0 ≤ t ≤ T , P̄tG belongs to P4.

Then, since the process (µ̄t)t is Markov, we have: for all t ∈ [T, 2T ], for all m ∈ P1(R),

P̄tG(m) = P̄t−T

(
P̄TG

)
(m).

Whence, since P̄TG ∈ P4 and t − T ∈ [0, T ], the above equality implies that, for all T ≤ t ≤ 2T ,
the function P̄tG also belongs to P4. Iterating this argument concludes the proof.

The proof of Item (b) follows from the fact that we have the explicit expression of P̄tG at (31) and
the control given at Lemma 3.6 (recalling Proposition 2.32). The proof of Item (c) relies on the same
arguments as for Item (b) with the additional use of the Dominated Convergence Theorem.

3.4. Proof of Theorem 1.7

In this section, we prove that the empirical measure (µN
t )t≥0 of the particle system defined at (8)

is a Markov process, with an explicit expression for its generator.
The fact that µN is a Markov process follows from Proposition 2.3.3 of Dawson (1993). It can

also be proved as in Theorem 1.5 using Proposition 3.3 and the following computation that are in
any case required to prove the remains of the statement of the theorem.
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So, as in the proof of Theorem 1.5, let G ∈ P2 such that: for all m ∈ P1(R),

G(m) =

∫
Rn

φ(x)dm⊗n(x),

with n ∈ N∗ and φ ∈ C2
b (Rn).

Then,

G
(
µN
t

)
=

1

Nn

N∑
k1,...,kn=1

φ
(
XN,k1

t , ..., XN,kn

t

)
.

For a given tuple k = (k1, ..., kn) ∈ J1, NKn, let us denote

XN,k
t =

(
XN,k1

t , ..., XN,kn

t

)
,

and XN,ki,c the continuous part of the semimartingale XN,ki .
By Ito’s formula, for all t ≥ r ≥ 0,

φ
(
XN,k

t

)
=φ

(
XN,k

r

)
+

n∑
i=1

∫ t

r

∂iφ
(
XN,k

s

)
dXN,ki,c

s

+
1

2

n∑
i,j=1

∫ t

r

∂2ijφ
(
XN,k

s

)
d
〈
XN,ki,c, XN,kj ,c

〉
s

+
∑

r<s≤t

(
φ
(
XN,k

s

)
− φ

(
XN,k

s−

))
=φ

(
XN,k

r

)
+

n∑
i=1

∫ t

r

∂iφ
(
XN,k

s

)
b
(
µN
s , X

N,ki
s

)
ds

+

n∑
i=1

∫ t

r

∂iφ
(
XN,k

s

)
σ
(
µN
s , X

N,ki
s

)
dBki

s

+

n∑
i=1

∫ t

r

∂iφ
(
XN,k

s

)
ς
(
µN
s , X

N,ki
s

)
dWs

+
1

2

n∑
i,j=1

∂2ijφ
(
XN,k

s

)
σ
(
µN
s , X

N,ki
s

)
σ
(
µN
s , X

N,kj
s

)
1{ki=kj}ds

+
1

2

n∑
i,j=1

∂2ijφ
(
XN,k

s

)
ς
(
µN
s , X

N,ki
s

)
ς
(
µN
s , X

N,kj
s

)
ds

+

N∑
l=1

∫
]r,t]×R+×R

1{z≤f(µN
s−,XN,l

s− )}[
φ
(
XN,k

s− + h
(
µN
s−, X

N,l
s− , u

)
· 1
)
− φ

(
XN,k

s−

)]
dπl(s, z, u),

with 1 = (1, 1, ..., 1) ∈ Rn. Consequently,

G(µN
t ) =

1

Nn

N∑
k1,...,kn=1

φ
(
XN,k

t

)
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=G(µN
r ) +MN,r

t +

n∑
i=1

∫ t

r

∫
Rn

∂iφ(x)b
(
µN
s , xi

)
d
(
µN
s

)⊗n
(x)ds

+
1

Nn

∑
k∈J1,NKn

1

2

n∑
i,j=1

(32)

∫ t

r

∂2ijφ
(
XN,k

s

)
σ
(
µN
s , X

N,ki
s

)
σ
(
µN
s , X

N,kj
s

)
1{ki=kj}ds

+
1

2

n∑
i,j=1

∫ t

r

∫
Rn

∂2ijφ(x)ς(µ
N
s , xi)ς(µ

N
s , xj)d

(
µN
s

)⊗n
(x)ds

+

N∑
l=1

∫ t

r

∫
R

∫
Rn

f
(
µN
s , X

N,l
s

)
(33)

[
φ
(
x+ h

(
µN
s , X

N,l
s , u

)
· 1
)
− φ (x)

]
d
(
µN
s

)⊗n
(x)dν(u)ds,

with (MN,r
t )t≥r some martingale (the fact that MN,r is not only a local martingale holds true

thanks to controls like (5) and the assumption that f, σ, ς are sublinear).
Then, noticing that, for any x1, ..., xN ∈ R and λ ∈ R,

S

(
1

N

N∑
k=1

δxk
, λ

)
=

1

N

N∑
k=1

δxk+λ,

it is possible to rewrite the expression at (33) as

N

∫ t

r

∫
R

∫
Rn

∫
R
f
(
µN
s , y

) [
φ
(
x+ h(µN

s , y, u) · 1
)
− φ(x)

]
dµN

s (y)d
(
µN
s

)⊗n
(x)dν(u)ds

= N

∫ t

r

∫
R

∫
R
f
(
µN
s , y

) [
G
(
S
(
µN
s , h(µ

N
s , y, u)

))
−G

(
µN
s

)]
dµN

s (y)dν(u)ds,

Besides, separating the terms i = j and i ̸= j in the double-sum of the expression at (32), this
expression can be rewritten as

1

2

∫ t

r

n∑
i=1

1

Nn

∑
k∈J1,NKn

∂2iiφ(X
N,k
s )σ

(
µN
s , X

N,ki
s

)2
ds

+
1

2

∫ t

r

n∑
i,j=1
i ̸=j

1

N
· 1

Nn−1

∑
k\j∈J1,NKn−1

∂2ijφ(X
N,(k\jki)
s )σ

(
µN
s , X

N,ki
s

)2
ds

=
1

2

∫ t

r

n∑
i=1

∫
Rn

∂2iiφ(x)σ
(
µN
s , xi

)2
d
(
µN
s

)⊗n
(x)ds

+
1

2N

∫ t

r

n∑
i,j=1
i ̸=j

∫
Rn−1

∂2ijφ(x\jxi)σ
(
µN
s , xi

)2
d
(
µN
s

)⊗n−1
(x\j)ds
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=
1

2

∫ t

r

∫
R
σ
(
µN
s , x

)2
∂2xxδG

(
µN
s , x

)
dµN

s (x)ds

+
1

2N

∫ t

r

∫
R
σ
(
µN
s , x

)2 (
∂2y1y2

δ2G
(
µN
s , y1, y2

))
|y1=y2=x

dµN
s (x)ds,

where the last equality uses (28) and (29), and is mostly a notation matter.
In particular, doing the same computation trick as the one done at the end of the proof of

Theorem 1.5, it is possible to write the dynamics of G(µN
t ) as follows

G(µN
t ) =G(µN

r ) +MN,r
t +

∫ t

r

∫
R
b
(
µN
s , x

)
∂xδG(m,x)dµ

N
s (x)ds

+
1

2

∫ t

r

∫
R
σ
(
µN
s , x

)2
∂2xxδG

(
µN
s , x

)
dµN

s (x)ds

+
1

2N

∫ t

r

∫
R
σ
(
µN
s , x

)2 (
∂2y1y2

δ2G
(
µN
s , y1, y2

))
|y1=y2=x

d
(
µN
s (x)

)⊗2
(x)ds

+
1

2

∫ t

r

∫
R2

ς(µN
s , x)ς(µ

N
s , y)∂

2
xyδ

2G(µN
s , x, y)d

(
µN
s

)⊗2
(x, y)ds

+N

∫ t

r

∫
R

∫
R
f
(
µN
s , y

) [
G
(
S
(
µN
s , h(µ

N
s , y, u)

))
−G

(
µN
s

)]
dµN

s (y)dν(u)ds,

with (MN,r
t )t a martingale that depends only on the process µN , on the Brownian motions W,Bk

(1 ≤ k ≤ N) and on the Poisson measures πl (1 ≤ l ≤ N) such that it adapted to the union
of the filtrations of these objects. The equality above being true for all G ∈ P2, Proposition 3.3
entails that the measure-valued process (µN

t )t is a Markov process (which was already guaranteed
by Proposition 2.3.3 of Dawson (1993)), but also that the domain of the generator of µN contains
the set P2, and that the expression of the generator on any G ∈ P2 is the one given in the
statement of Theorem 1.7.

4. Proof of the results of Section 1.1

4.1. Proof of Theorem 1.4

It is sufficient to prove the result for n = 1. Indeed, the general case can be deduced inductively
using the following Markovian properties of the processes: if (µt)t is an E-valued homogeneous
Markov process with semigroup (Pt)t, then for t1 < t2, and G1, G2 “smooth enough”,

E [G1(µt1)G2(µt2)] = E [G1(µt1)Pt2−t1G2(µt1)] .

So we only prove the result for n = 1. Let us recall that, for each N ∈ N∗, the processes XN,k

(1 ≤ k ≤ N) are defined as the (strong) solutions of (3), and X̄ as the (strong) solution of (4).
And, by definition, for all t ≥ 0,

µN
t =

1

N

N∑
k=1

δXN,k
t

and µ̄t = L
(
X̄t|Wt

)
.
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Let us denote

EN =

{
mw =

1

N

N∑
k=1

δwk
: w1, ..., wN ∈ R

}
⊆ P∞(R).

It is classical that for any t ≥ 0, there exists Ct > 0 such that for all p ∈ N∗, m ∈ Pp(R)
and w1, ..., wN ∈ R

Em

[
sup
s≤t

∣∣X̄s

∣∣p] ≤ Ct

(
1 +

∫
R
|x|pdm(x)

)
, (34)

1

N

N∑
k=1

Emw

[
sup
s≤t

∣∣XN,k
s

∣∣p] ≤ Ct

(
1 +

1

N

N∑
k=1

|wk|p
)
, (35)

where mw = N−1
∑N

k=1 wk, Em (resp. Emw
) denotes the expectation w.r.t. the probability measure

under which the Markov process µ̄ (resp. µN ) has m (resp. mw) as initial condition.
Step 1. The first step of the proof consists in showing that, for any fixedN ∈ N∗, the P1(R)-valued

Markov processes µN and µ̄ satisfy the following Trotter-Kato formula: for all G ∈ P4, m ∈ EN
and t ≥ 0, (

P̄t − PN
t

)
G(m) =

∫ t

0

PN
t−s

(
Ā−AN

)
P̄sG(m)ds,

with PN , P̄ (resp. AN , Ā) the semigroups (resp. generators) of µN , µ̄, in the sense of Definition 3.1.
To prove this, it is sufficient to check that µN , µ̄ satisfy the four conditions of Proposition 3.4.

Condition 1 holds true for A = P4 by Proposition 3.7. Besides, Condition 2 is a direct consequence
of Theorems 1.5 and 1.7.

Now, let us verify Condition 3 of Proposition 3.4. Let G ∈ P4, by Theorem 1.5, the generator Ā
of µ̄ satisfy: for all m ∈ P1(R),

ĀG(m) =

∫
R
I(m,x)dm(x) +

∫
R2

J(m,x, y)dm⊗2(x, y),

with

I(m,x) =b(m,x)∂xδG(m,x) +
1

2
σ(m,x)2∂2xxδG(m,x) (36)

+
1

2

(∫
R
u2 dν(u)

)(∫
R
h(m, z)2f(m, z) dm(z)

)
∂2xxδG(m,x),

J(m,x, y) =
1

2

(∫
R
u2 dν(u)

)(∫
R
h(m, z)2f(m, z) dm(z)

)
∂2xyδ

2G(m,x, y). (37)

In particular thanks to Proposition 2.32, we have the following control: there exists C > 0 such
that for all G ∈ P4 and m ∈ P2(R),∣∣ĀG(m)

∣∣ ≤ C

(
1 +

∫
R
|x|2dm(x)

)
||G||2. (38)

And, for all t0, t ≤ T,∣∣ĀG(µ̄t0)− ĀG(µ̄t)
∣∣ ≤ ∣∣∣∣∫

R
I(µ̄t0 , x)d (µ̄t0 − µ̄t) (x)

∣∣∣∣+ ∫
R
|I(µ̄t0 , x)− I(µ̄t, x)| dµ̄t(x)
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+

∣∣∣∣∫
R2

J(µ̄t0 , x, y)d
(
µ̄⊗2
t0 − µ̄⊗2

t

)
(x, y)

∣∣∣∣
+

∫
R2

|J(µ̄t0 , x, y)− J(µ̄t, x, y)| dµ̄⊗2
t (x, y)

≤E
[ ∣∣I(µ̄t0 , X̄t0)− I(µ̄t0 , X̄t)

∣∣∣∣WT

]
+ E

[ ∣∣I(µ̄t0 , X̄t)− I(µ̄t, X̄t)
∣∣∣∣WT

]
+ E

[ ∣∣J(µ̄t0 , X̄
1
t0 , X̄

2
t0)− J(µ̄t0 , X̄

1
t , X̄

2
t )
∣∣∣∣WT

]
+ E

[ ∣∣J(µ̄t0 , X̄
1
t , X̄

2
t )− J(µ̄t, X̄

1
t , X̄

2
t )
∣∣∣∣WT

]
,

with X̄1, X̄2 solutions to the SDE (4) w.r.t. the same Brownian motion W , but w.r.t. two inde-
pendent Brownian motions B1, B2 instead of B. Let us note that, the functions I, J are locally
Lipschitz continuous in the following sense: there exists CG > 0 such that, for all m1,m2 ∈ P2(R),
and x1, x2, y1, y2 ∈ R,

|I(m1, x1)− I(m2, x2)|+ |J(m1, x1, y1)− J(m2, x2, y2)|

≤ CG

(
1 + |x1|2 + |x2|2 + |y1|2 + |y2|2 +

∫
R
|z|2dm1(z) +

∫
R
|z|2dm2(z)

)
(|x1 − x2|+DKR(m1,m2)) .

In particular, by Cauchy-Schwarz’ inequality and Jensen’s inequality and (5), denoting Em the
expectation w.r.t. the probability measure under which µ̄0 = m,∣∣P̄t0ĀG(m)− P̄tĀG(m)

∣∣ ≤ Em

[∣∣ĀG(µ̄t0)− ĀG(µ̄t)
∣∣]

≤ CGEm

[(
1 + sup

s≤T
E
[
|X̄s|2

∣∣WT

])
E
[ ∣∣X̄t0 − X̄t

∣∣∣∣WT

]]
≤ CGEm

[∣∣X̄t0 − X̄t

∣∣2]1/2 .
Recalling that X̄ is solution to (4), it is classical (using for example Burkholder-Davis-Gundy’s

inequality with (5)) that the RHS of the above inequality vanishes as t goes to t0. This implies that,
for any m ∈ P2(R) and G ∈ P4, the function

t 7→ P̄tĀG(m)

is continuous.
The continuity of the function

t 7→ PN
t A

NG(m),

for m ∈ EN follows from the same reasoning provided Lemma 4.1 below to deal with the jump term
that depends on a shift operator S. Note that it is important to work with an initial condition
belonging to EN in order to interpret µN

t as the empirical measure of some N -particle system
satisfying the SDEs (3).

Lemma 4.1. Let m1,m2 ∈ P1(R) and h1, h2 ∈ R. Then

DKR (S(m1, h1),S(m2, h2)) ≤ DKR(m1,m2) + |h1 − h2|.
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Proof. Let φ : R → R be any Lipschitz continuous function with Lipschitz constant non-greater
than one. ∣∣∣∣∫

R
φ(x)d (S(m1, h1)) (x)−

∫
R
φ(x)d (S(m2, h2)) (x)

∣∣∣∣
=

∣∣∣∣∫
R
φ(x+ h1)dm1(x)−

∫
R
φ(x+ h2)dm2(x)

∣∣∣∣
≤
∣∣∣∣∫

R
φ(x+ h1)d(m1 −m2)(x)

∣∣∣∣+ ∫
R
|φ(x+ h1)− φ(x+ h2)| dm2(x)

≤ DKR(m1,m2) + |h1 − h2|.

Taking the supremum over all such functions φ proves the result.

Indeed, with the same computation, we obtain∣∣PN
t0 A

NG(m)− PN
t A

NG(m)
∣∣ ≤ Em

[∣∣ANG(µN
t0)−ANG(µN

t )
∣∣]

≤ CGEm

[(
1 + sup

s≤T

1

N

N∑
k=1

∣∣XN,k
s

∣∣2) 1

N

N∑
k=1

∣∣∣XN,k
t0 −XN,k

t

∣∣∣]

≤ CG

(
1

N

N∑
k=1

Em

[∣∣∣XN,k
t0 −XN,k

t

∣∣∣2])1/2

.

Once again, this proves that for any m ∈ EN and G ∈ P4, the function

t 7→ PN
t A

NG(m)

is continuous. The continuity of t 7→ PN
t ĀG(m) is guaranteed by the same arguments. So Condi-

tion 3 of Proposition 3.4 is verified.
To end the Step 1 of the proof, let us now check Condition 4. Let us fix in the rest of Step 1

some G ∈ P4, 0 ≤ t < T and some sequence (sn)n converging to t such that sn ≤ T for all n ∈ N.
For M > 0, let us introduce

KM = {m ∈ P1(R) : Supp(m) ⊆ [−M,M ]} .

For any M > 0, KM is a compact set of Pp(R), for all p ≥ 1 (see Remark 6.19 of Villani (2009)).
Let us denote, for every n ∈ N,

Gn = P̄tG− P̄snG.

Thanks to Proposition 3.7, we know that each Gn belongs to P4. Hence, by Proposition 2.32,
we can use Corollaries 2.26 and 2.27 (and Lemma 2.18 to differentiate the jump term from the
generator AN ) to compute ∂(ĀGn)(m,x) and ∂(A

Ngn)(m,x) (recalling the expressions of Ā and AN

given in Theorems 1.5 and 1.7) to prove that, for all M > 0,

sup
n∈N

m∈KM

|x|≤M

∣∣∂xδ (ĀGn

)
(m,x)

∣∣+ sup
n∈N

m∈KM

|x|≤M

∣∣∂xδ (ANGn

)
(m,x)

∣∣ ≤ CG

(
1 +M2

)
.

Note that the fact that the control above is uniform in n is guaranteed by Proposition 3.7.(b).
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Then, by the Mean Value Theorem for measure-variable functions (i.e. Proposition 2.21) and
since KM (M > 0) are convex sets, we know that the families of functions (ĀGn)n and (ANGn)n
are both uniformly equicontinuous on each compact set KM (for any M > 0). In addition, let us
recall that it is possible to write the generator Ā and AN in the following form: for any m ∈ P2(R),

ĀGn(m) =

∫
R
In(m,x)dm(x) +

∫
R2

Jn(m,x, y)dm
⊗2(x, y)

ANGn(m) =

∫
R
INn (m,x)dm(x) +

∫
R2

JN
n (m,x, y)dm⊗2(x, y),

with In, Jn, I
N
n and JN

n defined similarly as I, J in (36) and (37), for the function Gn instead of G.
And, by Proposition 3.7.(c), for any x, y ∈ R and m ∈ P2(R), the integrands above vanish as n

goes to infinity, and are bounded by

CG

(
1 + x2 + y2 +

∫
|z|2dm(z)

)
,

where CG > 0 does not depend on (m,x, y, n). Then, by the Dominated Convergence Theorem, for
any m ∈ KM (for any M > 0), both ĀGn(m) and ANGn(m) vanish as n goes to infinity. Since
these two sequences are uniformly equicontinuous on each compact set KM , this implies that, for
all M > 0,

sup
m∈KM

∣∣ĀGn(m)
∣∣+ sup

m∈KM

∣∣ANGn(m)
∣∣ −→
n→∞

0. (39)

Then, let us introduce, for M > 0 the following event

DM =

 sup
r≤T

1≤k≤N

∣∣XN,k
r

∣∣ ≤M

 ,

and Dc
M its complementary. We have, by Cauchy-Schwarz’ inequality and Markov’s inequality, for

any m ∈ EN ,

sup
r≤T

∣∣PN
r ĀGn(m)

∣∣ ≤Em

[
sup
r≤T

∣∣ĀGn(µ
N
r )
∣∣]

≤Em

[
sup
r≤T

∣∣ĀGn(µ
N
r )
∣∣1DM

]
+ Em

[
sup
r≤T

∣∣ĀGn(µ
N
r )1Dc

M

∣∣]
≤Em

[
sup
r≤T

∣∣ĀGn(µ
N
r )
∣∣1DM

]
+ CT,G,mM

−1/2,

where we have used the controls given at (35), (38) and Proposition 3.7.(b).
In particular, for any ε > 0 it is possible to fix some Mε > 0 (whose also depends on T,G,m,

but not on n) such that

sup
r≤T

∣∣PN
r ĀGn(m)

∣∣ ≤ Em

[
sup
r≤T

∣∣ĀGn(µ
N
r )
∣∣1DMε

]
+ ε.

Noticing that,
DMε

⊆
{
∀r ≤ T, µN

r ∈ KMε

}
,
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we know, by (39), that, almost surely,

sup
r≤T

∣∣ĀGn(µ
N
r )
∣∣1DMε

−→
n→∞

0,

and, by the Dominated Convergence Theorem (and (35), (38) and Proposition 3.7.(b)), this entails
that, for m ∈ EN ,

sup
r≤T

∣∣PN
r ĀGn(m)

∣∣ −→
n→∞

0.

With exactly the same reasoning, we also have

sup
r≤T

∣∣PN
r A

NGn(m)
∣∣ −→
n→∞

0.

So Condition 4 of Proposition 3.4 is satisfied.
Step 2. We have proved that for all G ∈ P4, m ∈ EN and t ≥ 0,

(
P̄t − PN

t

)
G(m) =

∫ t

0

PN
t−s

(
Ā−AN

)
P̄sG(m)ds.

This formula allows to obtain a convergence speed for the semigroups provided a convergence
speed of the generators. So, the goal of Step 2 is to prove the following assertion: for G ∈ P3

and m ∈ P4(R), ∣∣(AN − Ā
)
G(m)

∣∣ ≤ C||G||3
1√
N

(
1 +

∫
R
|x|4dm(x)

)
. (40)

To this end, let us admit the following lemma, whose proof consists in using three times the
Taylor-Lagrange’s inequality. This lemma allows to simplify computation in our proof.

Lemma 4.2. Let g ∈ C3
b (R2). Then, for all x, y, λ ∈ R,∣∣∣∣g(x+ λ, y + λ)− g(x+ λ, y)− g(x, y + λ) + g(x, y)− λ2

2
∂2xyg(x, y)

∣∣∣∣ ≤ |λ|3

2

∑
|α|=3

||∂αg||∞.

Let us denote ζ > 0 the standard deviation of the probability measure ν:

ζ =

(∫
R
u2dν(u)

)1/2.

Then, by Theorems 1.5 and 1.7, for all G ∈ P2 and m ∈ P2(R),

ĀG(m) =

∫
R

[
b(m,x)∂xδG(m,x) +

1

2
σ(m,x)2∂2xxδG(m,x)

]
dm(x)

+
1

2
ζ2
∫
R

(∫
R
h(m, y)2f(m, y)dm(y)

)
∂2xxδG(m,x)dm(x)

+
1

2
ζ2
∫
R2

(∫
R
h(m, z)2f(m, z)dm(z)

)
∂2xyδ

2G(m,x, y)dm⊗2(x, y),

ANG(m) =

∫
R

[
b(m,x)∂xδG(m,x) +

1

2
σ(m,x)2∂2xxδG(m,x)

]
dm(x)
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+
1

2N

∫
R
σ(m,x)2

(
∂2y1y2

δ2G(m, y1, y2)
)
|y1=y2=x

dm(x)

+N

∫
R

∫
R
f(m,x)

[
G

(
S
(
m,

u√
N
h(m,x)

))
−G(m)

]
dν(u)dm(x).

So (
AN − Ā

)
G(m) =

1

2N

∫
R
σ(m,x)2

(
∂2y1y2

δ2G(m, y1, y2)
)
|y1=y2=x

dm(x) (41)

+N

∫
R
f(m, z)

∫
R

[
G

(
S
(
m,

u√
N
h(m, z)

))
−G(m) (42)

− u2

2N
h(m, z)2

∫
R
∂2xxδG(m,x)dm(x)

− u2

2N
h(m, z)2

∫
R2

∂2xyδ
2G(m,x, y)dm⊗2(x, y)

]
dν(u)dm(z).

The absolute value of the term at (41) is bounded by

C
1

N
||G||2

(
1 +

∫
R
x2dm(x)

)
.

For the rest of the proof, let us introduce, for u, z ∈ R, the signed measure

mN
z,u = S

(
m,

u√
N
h(m, z)

)
−m. (43)

To control the term at (42), by using Theorem 2.24, we need to compute the integrals of the k-th
order derivative of G w.r.t. the power of mN

z,u to k, for k ∈ {1, 2}.∫
R

∫
R
δG(m,x)dmN

z,u(x)dν(u) =

∫
R

∫
R

[
δG

(
m,x+

u√
N
h(m, z)

)
− δG(m,x)

− u√
N
h(m, z)∂xδG(m,x)

]
dν(u)dm(x),

where the term at the second line above has been added artificially since ν is a centered measure.
In addition,∫

R

∫
R2

δ2G(m,x, y)d
(
mN

z,u

)⊗2
(x, y)dν(u)

=

∫
R

∫
R

∫
R

[
δ2G

(
m,x+

u√
N
h(m, z), y +

u√
N
h(m, z)

)
−δ2G

(
m,x+

u√
N
h(m, z), y

)
− δ2G

(
m,x, y

u√
N
h(m, z)

)
+ δ2G(m,x, y)

]
dν(u)dm(x)dm(y).
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Whence, the absolute value of the term within the brackets at (42) is non-greater than the sum
of the three following quantities:∣∣∣∣G(S (m, u√

N
h(m, z)

))
−G(m)−

∫
R
δG(m,x)dmN

z,u(x)dm(x) (44)

−1

2

∫
R2

δ2G(m,x, y)d
(
mN

z,u

)⊗2
(x, y)

∣∣∣∣ ,∫
R

∣∣∣∣δG(m,x+
u√
N
h(m, z)

)
− δG(m,x)− u√

N
h(m, z)∂xδG(m,x) (45)

− u2

2N
h(m, z)2∂2xxδG(m,x)

∣∣∣∣ dm(x),∫
R2

∣∣∣∣δ2G(m,x+
u√
N
h(m, z), y +

u√
N
h(m, z)

)
− δ2G

(
m,x+

u√
N
h(m, z), y

)
(46)

−δ2G
(
m,x, y

u√
N
h(m, z)

)
+ δ2G(m,x, y)− u2

2N
h(m, z)2∂2xyδ

2G(m,x, y)

∣∣∣∣ dm⊗2(x, y).

Each of the three terms above is bounded by

C||G||3
1

N
√
N

(
1 + |z|3 +

∫
R
|x|3dm(x)

)(
1 + |u|3

)
.

Indeed, for (44), it is a consequence of the Taylor-Lagrange’s inequality for measure-variable
functions (i.e. Theorem 2.24), and the fact that (by Lemma 2.18)

DKR

(
S
(
m,

u√
N
h(m, z)

)
,m

)
≤ |u|√

N
|h(m, z)|,

for (45), it comes from the Taylor-Lagrange’s inequality for real-variable functions, and the control
of (46) is obtained by Lemma 4.2.

Finally using this last bound to control (42) is sufficient to prove (40).
Step 3. From (40), we deduce a control between the semigroups of µN , µ̄. Let w1, ..., wN ∈ R,

and

mw =
1

N

N∑
k=1

wk.

Then, thanks to Steps 1 and 2,

∣∣(P̄t − PN
t

)
G(mw)

∣∣ ≤∫ t

0

Emw

[∣∣(Ā−AN
)
P̄sG(µ

N
t−s)

∣∣] ds
≤C 1√

N

∫ t

0

||P̄sG||3

(
1 +

1

N

N∑
k=1

Emw

[
|XN,k

t−s |4
])

ds

≤Ct
1√
N

||G||3

(
1 +

1

N

N∑
k=1

|wk|4
)
, (47)

where we have used Proposition 3.7.
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Step 4. Then end of the proof is now quite classical. For G ∈ P4,

∣∣E [G(µ̄t)]− E
[
G(µN

t )
]∣∣ ≤ ∣∣∣∣∣

∫
P1(R)

P̄tG(m) d
(
δµ̄0

− L
(
µN
0

))
(m)

∣∣∣∣∣
+

∫
P1(R)

∣∣(P̄t − PN
t

)
G(m)

∣∣ d (L (µN
0

))
(m)

≤Ct||G||1DKR

(
δµ̄0

,L
(
µN
0

))
+ Ct||G||3

1√
N
,

where the last line has been obtained using Proposition 3.7 (and the definition of the Kantorovich-
Rubinstein metric) for the first term of the sum, and (47) for the second one.

Finally, by Theorem 1 of Fournier and Guillin (2015) (or using Theorem 3.2 of Bobkov and
Ledoux (2019) and the discussion thereafter),

DKR

(
δµ̄0 ,L

(
µN
0

))
= E

[
DKR

(
µ̄0,

1

N

N∑
k=1

δXN,k
0

)]
≤ C N−1/2.

This ends the proof of Theorem 1.4.

4.2. Proof of Corollary 1.1

The proof of Corollary 1.1 consists in remarking that the SDEs (1) and (2) are particular cases
of (3) and (4) with: for m ∈ P1(R) and x ∈ R,

b(m,x) = b̃(x); σ(m,x) = σ̃(x); f(m,x) = f̃(x); h(m,x) = 1;

ς(m,x) =

(∫
R
u2dν(u)

)1/2(∫
R
f̃(y) dm(y)

)1/2

.

Then, the result of Corollary 1.1 comes from the fact that, for any φ ∈ C4
b (R), the function

G : m ∈ P1(R) 7−→
∫
R
φ(x)dm(x)

belongs to P4, and that

E [G(µ̄t)] = G(µ̄t) = E
[
φ(Ȳt)

]
and E

[
G(µN

t )
]
= E

[
1

N

N∑
k=1

φ(Y N,k
t )

]
= E

[
φ(Y N,1

t )
]
.

Appendix A: Separating class on spaces of probability measures

The goal of this section is to prove Proposition 2.31. It means that the set P∞ is a separating
class for Pp(R) (for any p ≥ 1). Before proving this statement, let us introduce some definitions and
useful results about separating classes. This section relies strongly on the content of Section 3.4 of
Ethier and Kurtz (2005).

In all this section, E denotes some Polish space, and P(E) the space of probability measures
on E endowed with Prohorov metric (i.e. the topology of the weak convergence).
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Definition A.1. Some set A of measurable functions f : E → R is said to separate E if, for
all x, y ∈ E,

(∀f ∈ A, f(x) = f(y)) =⇒ x = y.

A set A of measurable functions f : E → R is called a separating class for E if, for all m,µ ∈ P(E),(
∀f ∈ A,

∫
E

f(x)dm(x) =

∫
E

f(x)dµ(x)

)
=⇒ m = µ.

In other words, A is a separating class for E means that{
m ∈ P(E) 7−→

∫
E

f(x)dm(x) : f ∈ A
}

separates P(E). The interesting point of a separating class for E is that it allows to identify the
laws on E in the following sense (it is a mere rephrasing of the definition of a separating class).

Lemma A.2. If A is a separating class for E, and X,Y are two E-valued random variables such
that: for all f ∈ A,

E [f(X)] = E [f(Y )] .

Then X and Y have the same law.

The lemma below should be classical, but since we have not found a proof in the literature, we
provide one for self-completeness.

Lemma A.3. The set C∞
c (R) is a separating class for R.

Proof. Let m,µ ∈ P(R) such that, for all g ∈ C∞
c (R),∫

R
g(x)dm(x) =

∫
R
g(x)dµ(x). (48)

Let a < b. Let (gn)n be a C∞
c (R)−valued sequence such that{
(gn)n converges pointwise to 1]a,b[,
∀(x, n) ∈ R× N, 0 ≤ gn(x) ≤ 1.

Then, rewriting (48) with gn instead of g (for all n ∈ N∗), and using the Dominated Convergence
Theorem,

m(]a, b[) = µ(]a, b[).

The previous equality being true for any a < b, this proves that m = µ.

The proof that the polynomials form a separating class for Pp(R) relies on the following criterion.

Theorem A.4 (Theorem 3.4.5.(a) of Ethier and Kurtz (2005)). Any algebra that separates E is a
separating class for E.

Besides, since Pp(R) is Polish (see Theorem 6.18 of Villani (2009)), Theorem A.4 above can be
used with E = Pp(R). Now we can prove that the polynomials form a separating class of Pp(R).

Proof of Proposition 2.31. By Lemma A.3, the set{
m ∈ P(R) 7−→

∫
R
h(x)dm(x) : h ∈ C∞

c (R)
}

separates P(R), hence it also separates Pp(R). The set P∞ being an algebra containing the set
above, it is a separating class by Theorem A.4.
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Appendix B: Proof of Lemma 3.6

The proof of Lemma 3.6 uses the following classical lemma whose proof is omitted.

Lemma B.1. Let (fn)n be a sequence of C1(R) such that:

� (fn)n converges point-wisely to some function f ,
� (f ′n)n converges uniformly on every compact set to some function g.

Then, f ∈ C1(R) and f ′ = g.

Let us recall that, by definition, for all x ∈ R, t ≥ 0,

X̄
(x)
t = x+

∫ t

0

b
(
µ̄(x)
s , X̄(x)

s

)
ds+

∫ t

0

σ
(
µ̄(x)
s , X̄(x)

s

)
dBs +

∫ t

0

ς
(
µ̄(x)
s , X̄(x)

s

)
dWs,

where µ̄
(x)
s = L(X̄(x)

s |Ws).
In order to prove Lemma 3.6, we use the Banach-Picard iteration scheme related to the above

equation. Namely, for all x ∈ R, t ≥ 0, n ∈ N,

X̄
(x),[0]
t =x,

µ̄
(x),[0]
t =δx,

X̄
(x),[n+1]
t =x+

∫ t

0

b
(
µ̄(x),[n]
s , X̄(x),[n]

s

)
ds+

∫ t

0

σ
(
µ̄(x),[n]
s , X̄(x),[n]

s

)
dBs

+

∫ t

0

ς
(
µ̄(x),[n]
s , X̄(x),[n]

s

)
dWs,

µ̄
(x),[n+1]
t =L

(
X̄

(x),[n+1]
t |Wt

)
.

Step 1. In this first step, we prove the almost sure convergence of X̄
(x),[n]
t to X̄

(x)
t as n goes to

infinity, for any t belonging to some sufficiently small interval, and locally uniformly w.r.t. x.
For n ∈ N, p ∈ N∗, t ≥ 0 and M > 0,

u
[n],0
t (M,p) = E

[
sup

s≤t,|x|≤M

∣∣∣X̄(x),[n+1]
s − X̄(x),[n]

s

∣∣∣p] .
With classical computation (using Burkholder-Davis-Gundy’s inequality and the assumption that

b, σ, ς are Lipschitz continuous), we have that, for all T > 0, p ∈ N∗, n ∈ N,

u
[n+1],0
T (M,p) ≤ Cp

(
T p + T p/2

)
u
[n],0
T (M,p),

with Cp > 0 independent of T , M and n. In particular, let us fix some small enough Tp > 0 such
that, for all n ∈ N, p ∈ N,M > 0,

u
[n+1],0
Tp

(M,p) ≤ 1

2
u
[n],0
Tp

(M,p),

whence

u
[n],0
Tp

(M,p) ≤ Cp
1

2n
(1 +Mp) . (49)
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and

E

[
sup

s≤Tp,|x|≤M

∣∣∣X̄(x),[n+1]
s − X̄(x),[n]

s

∣∣∣] ≤ u
[n],0
Tp

(M,p)1/p ≤ Cp
1

2n/p
(1 +M) .

As a consequence, for all M > 0, p ∈ N∗,

E

[
sup

t≤Tp,|x|≤M

∣∣∣∣∣
+∞∑
n=0

(
X̄

(x),[n+1]
t − X̄

(x),[n]
t

)∣∣∣∣∣
]
<∞,

and, almost surely,

sup
t≤Tp,|x|≤M

∣∣∣∣∣
+∞∑
n=0

(
X̄

(x),[n+1]
t − X̄

(x),[n]
t

)∣∣∣∣∣ <∞.

This proves that, almost surely, for all t ∈ [0, Tp], X̄
(x),[n]
t converges as n goes to infinity to X̄

(x)
t

(recalling that X̄(x) is solution to (30)) locally uniformly w.r.t. x.
In addition, with similar technics and Fatou’s lemma, we can prove that, for all p ∈ N∗, M > 0,

T > 0,

E

[
sup

t≤T,|x|≤M

∣∣∣X̄(x)
t

∣∣∣p] <∞. (50)

Step 2. Now we study the regularity of the functions

x 7−→ X̄
(x),[n]
t .

Let us prove by induction on n ∈ N that there exists T > 0 (independent of n) such that, for

all t ∈ [0, T ] the function x 7→ X̄
(x),[n]
t C1 and that, for all M > 0,

E

[
sup

t≤T,|x|≤M

∣∣∣∂xX̄(x),[n]
t

∣∣∣] <∞ and sup
x∈R

E
[
sup
t≤T

∣∣∣∂xX̄(x),[n]
t

∣∣∣] <∞.

For n = 0,

∂xX̄
(x),[0]
t = 1.

Then fix some n ∈ N and assume that the induction hypothesis holds true for this n. Then,
by Lemma 2.19 (and Remark 2.20), and assuming that b, σ, ς admits bounded second order mixed
derivatives (what implies that the first order mixed derivatives are continuous w.r.t. all their vari-
ables, by Remark 2.13),

∂xX̄
(x),[n+1]
t =1 +

∫ t

0

(
∂xX̄

(x),[n]
s

)
∂(0,1)b

(
µ̄(x),[n]
s , X̄(x),[n]

s

)
ds (51)

+

∫ t

0

Ẽ
[(
∂xX̃

(x),[n]
s

)
∂
(
b
X̄

(x),[n]
s

)(
µ̄(x),[n]
s , X̃(x),[n]

s

)∣∣∣Ws

]
ds

+

∫ t

0

(
∂xX̄

(x),[n]
s

)
∂(0,1)σ

(
µ̄(x),[n]
s , X̄(x),[n]

s

)
dBs

+

∫ t

0

Ẽ
[(
∂xX̃

(x),[n]
s

)
∂
(
σ
X̄

(x),[n]
s

)(
µ̄(x),[n]
s , X̃(x),[n]

s

)∣∣∣Ws

]
dBs
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+

∫ t

0

(
∂xX̄

(x),[n]
s

)
∂(0,1)ς

(
µ̄(x),[n]
s , X̄(x),[n]

s

)
dWs

+

∫ t

0

Ẽ
[(
∂xX̃

(x),[n]
s

)
∂
(
ς
X̄

(x),[n]
s

)(
µ̄(x),[n]
s , X̃(x),[n]

s

)∣∣∣Ws

]
dWs,

where X̃ is defined in the same way as X̄ w.r.t. the same Brownian motionW , but w.r.t. a Brownian
motion B̃ independent of (B,W ), and Ẽ is the expectation w.r.t. the law of B̃. One can note that,

the expression above of ∂xX̄
(x),[n+1]
t is closely related to the ones of Proposition 3.1 of Crisan and

McMurray (2018) (we actually use their notation for Ẽ and X̃).
Let us remark an important point: the functions appearing as coefficients in the expression above

are exactly the first order mixed derivatives of the functions b, σ, ς.
And, with similar computation as in Step 1, we can prove that, for all p ∈ N∗, M > 0,

sup
n∈N

E

[
sup

t≤Tp,|x|≤M

∣∣∣∂xX̄(x),[n]
t

∣∣∣p] <∞ and sup
n∈N,x∈R

E

[
sup
t≤Tp

∣∣∣∂xX̄(x),[n]
t

∣∣∣] <∞, (52)

for some Tp > 0 independent of n,M .
Let

u
[n],1
t (M,p) = E

[
sup

s≤t,|x|≤M

∣∣∣∂xX̄(x),[n+1]
s − ∂xX̄

(x),[n]
s

∣∣∣p] .
To control the above quantity in a similar way as in Step 1, it is required to control two kind of

terms. In order to simplify the reading we only handle the drift terms (the Brownian terms can be
treated in the exact same way after using Burkholder-Davis-Gundy’s inequality). The first term is
of the following form: for |x| ≤M ,∣∣∣(∂xX̄(x),[n+1]

s

)
∂(0,1)b

(
µ̄(x),[n+1]
s , X̄(x),[n+1]

s

)
−
(
∂xX̄

(x),[n]
s

)
∂(0,1)b

(
µ̄(x),[n]
s , X̄(x),[n]

s

)∣∣∣
≤

(
sup

m∈P1(R),|y|≤M

|∂(0,1)b(m, y)|

)∣∣∣∂xX̄(x),[n+1]
s − ∂xX̄

(x),[n]
s

∣∣∣
+ C

∣∣∣∂xX(x),[n]
s

∣∣∣ (∣∣∣X̄(x),[n+1]
s − X̄(x),[n]

s

∣∣∣+DKR

(
µ̄(x),[n+1]
s , µ̄(x),[n]

s

))
.

In particular, thanks to (49), (52) and Cauchy-Schwarz’ inequality, for any p ∈ N∗, for t ≤ Tp
(where Tp has possibly been reduced compared to the previous one),

E
[(∫ t

0

∣∣∣(∂xX̄(x),[n+1]
s

)
∂(0,1)b

(
µ̄(x),[n+1]
s , X̄(x),[n+1]

s

)
−
(
∂xX̄

(x),[n]
s

)
∂(0,1)b

(
µ̄(x),[n]
s , X̄(x),[n]

s

)∣∣∣ ds)p]
≤ CM,pT

pu
[n],1
t (M,p) + CM,pT

p 1

2n/2
. (53)

The second term involves the following term(
∂xX̃

(x),[n]
s

)
∂
(
b
X̄

(x),[n]
s

)(
µ̄(x),[n]
s , X̃(x),[n]

s

)
,
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and can be handled exactly as (53), since the function (m,x, y) 7→ ∂yδ(bx)(m, y) is assumed to
be Lipschitz continuous and bounded (recalling that this function belongs to the set of first order
mixed derivatives of b). Whence, for T ≤ Tp,

u
[n+1],1
T (M,p) ≤ CM,p

(
T p + T p/2

)(
u
[n],1
T (M,p) +

1

2n/2

)
.

And, possibly by reducing Tp,

u
[n+1],1
T (M,p) ≤ 1

2
u
[n],1
T (M,p) +

1

21+n/2
.

Consequently, for T ≤ Tp,

u
[n],1
T (M,p) ≤ CM,p2

−n/2, (54)

and

E

[
sup

s≤Tp,|x|≤M

∣∣∣∂xX̄(x),[n+1]
s − ∂xX̄

(x),[n]
s

∣∣∣] ≤ u
[n],1
T (M,p)1/p ≤ CM,p2

−n/(2p).

The quantities above being the terms of a convergent series, we can conclude as in Step 1 that,

almost surely, for all t ∈ [0, Tp], ∂xX̄
(x),[n]
t converges as n goes to infinity to some function locally

uniformly w.r.t. x. Then, by Lemma B.1, we know that, almost surely, for all t ∈ [0, Tp], the function

x 7→ X̄
(x)
t is C1, and that its derivative is the limit of ∂xX̄

(x),[n]
t . In particular, by Fatou’s lemma

and (52),

E

[
sup

t≤T,|x|≤M

∣∣∣∂xX̄(x)
t

∣∣∣p] <∞ and sup
x∈R

E
[
sup
t≤T

∣∣∣∂xX̄(x)
t

∣∣∣p] <∞. (55)

Step 3. The proof that the function x 7→ X̄
(x)
t is C2 uses the same arguments as the ones used in

Step 2. In order to make it clear, we just write the terms of the dynamics of ∂2xxX̄
(x),[n+1]
t coming

from the two first lines of (51).

∂2xxX̄
(x),[n+1]
t =

∫ t

0

(
∂2xxX̄

(x),[n]
s

)
∂(0,1)b

(
µ̄(x),[n]
s , X̄(x),[n]

s

)
ds

+

∫ t

0

(
∂xX̄

(x),[n]
s

)2
∂(0,2)b

(
µ̄(x),[n]
s , X̄(x),[n]

s

)
ds

+

∫ t

0

(
∂xX̄

(x),[n]
s

)
Ẽ
[(
∂xX̃

(x),[n]
s

)
∂
((
∂(0,1)b

)
X̄

(x),[n]
s

)(
µ̄(x),[n]
s , X̃(x),[n]

)∣∣∣Ws

]
ds

+

∫ t

0

Ẽ
[(
∂2xxX̃

(x),[n]
s

)
∂
(
b
X̄

(x),[n]
s

)(
µ̄(x),[n]
s , X̃(x),[n]

s

)∣∣∣Ws

]
ds

+

∫ t

0

(
∂xX̄

(x),[n]
s

)
Ẽ

[(
∂xX̃

(x),[n]
s

)(
∂x̄∂ (bx̄)

(
µ̄(x),[n]
s , X̃(x),[n]

s

))∣∣∣x̄=X̄
(x),[n]
s

∣∣∣∣∣Ws

]
ds

+

∫ t

0

ĚẼ
[(
∂xX̃

(x),[n]
s

)(
∂xX̌

(x),[n]
s

)
∂2
(
b
X̄

(x),[n]
s

)(
µ̄(x),[n]
s , X̃(x),[n]

s , X̌(x),[n]
s

)∣∣∣Ws

]
ds

+ ...
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where the omitted terms (hidden in the ellipsis) are the same as the ones written replacing the
function b respectively by σ and ς, and ds by dBs and dWs. As previously, X̃ and X̌ are defined
as X̄ w.r.t. the same Brownian motion W , and w.r.t. respective Brownian motions B̃ and B̌ such
that W, B̂ and B̌ are independent. The expectations Ẽ and Ě are the expectation w.r.t. the laws
of B̃ and B̌.

Once again, it can be noted that the functions appearing in the expression of ∂2xxX̄
(x),[n+1]
t are

the mixed-derivatives of b, σ, ς up to order two. Hence the same reasoning as in Step 2 allows to

conclude. Finally, the proof that x 7→ X̄
(x)
t is C3 (resp. C4) is the same as previously remarking

that, calculating the expression of ∂3xxxX̄
(x),[n+1]
t (resp. ∂4xxxxX̄

(x),[n+1]
t ) makes appear the mixed-

derivatives of b, σ, ς up to order three (resp. four) . Since it is assumed that all the mixed-derivatives
up to order five are bounded, we know by, Remark 2.20, that the mixed-derivatives up to order four
are Lipschitz continuous. So the end of the proof follows the same arguments as Step 2, and similar
controls as (55) can be proved for the third and fourth derivatives.

Appendix C: Proofs of some technical lemmas on spaces of probability measures

Proof of Lemma 2.3. Let us consider m0 ∈ P1(R) and h1, h2 : R → R such that, for all m ∈ P1(R),∫
R
h1(x)d(m−m0)(x) =

∫
R
h2(x)d(m−m0)(x) + εm0(m),

where εm0
(m)/DKR(m,m0) vanishes as m converges to m0.

Let us define

Φ : m ∈ P1(R) 7−→
∫
R
(h1(x)− h2(x)) d(m−m0)(x).

So, by hypothesis, Φ(m)/DKR(m,m0) vanishes as m goes to m0.
Step 1. In a first time, we prove that Φ is the zero function. Let us fix m ∈ P1(R) and introduce,

for any n ∈ N∗,

µn =
n− 1

n
m0 +

1

n
m ∈ P1(R).

We have that, for all n ∈ N∗,

DKR(m0, µn) ≤
1

n
DKR(m0,m),

hence, µn converges to m0 as n goes to infinity.
On the other hand,

Φ(m) = nΦ(µn) = n
Φ(µn)

DKR(m0, µn)
DKR(m0, µn) ≤

Φ(µn)

DKR(m0, µn)
DKR(m0,m) −→

n→∞
0.

This proves that, for all m ∈ P1(R), Φ(m) = 0.
Step 2. To conclude the proof, it is then sufficient to notice that, thanks to Step 1, for any y ∈ R,

Φ(δy) = 0. Whence, for any y ∈ R,

h1(y)− h2(y) =

∫
R
(h1(x)− h2(x)) dm0(x).

In particular, the function h1 − h2 is constant, and the lemma is proved.



X. Erny/Measure-valued jump diffusions and diffusive mean-field limits 55

Proof of Lemma 2.28. For each 1 ≤ k ≤ d, there exists a probability space (Ωk,Fk,Pk) and two
random variables on this space Xk, Yk of respective laws mk, µk such that

DKR(mk, µk) = Ek [|Xk − Yk|] ,

with Ek the expectation w.r.t. Pk (the existence of these random variables is guaranteed by Theo-
rem 4.1 of Villani (2009)). Let us assume that all the probability spaces (Ωk,Fk,Pk) are disjoint,
and consider the product probability space of these spaces, denoted by (Ω,F ,P). In particular, the
variables Xk (resp. Yk) (1 ≤ k ≤ d) are independent, whence

L (X1, ..., Xd) =

d⊗
k=1

mk and L (Y1, ..., Yd) =

d⊗
k=1

µk.

Consequently,

DKR

(
d⊗

k=1

mk,

d⊗
k=1

µk

)
≤ E

[
d∑

k=1

|Xk − Yk|

]
=

d∑
k=1

Ek [|Xk − Yk|] =
d∑

k=1

DKR(mk, µk),

which proves the result.

Appendix D: Some technical lemmas about Ito’s integrals

Let (Xt)t≥0 be some càdlàg R-valued process that is locally L2: for all t ≥ 0,∫ t

0

E
[
X2

s

]
ds <∞. (56)

Let W,B be two standard Brownian motions of dimension one, and (Ft)t be a filtration such
that F , B and W are independent. Let us denote (Wt)t (resp. (Bt)t) the filtration of W (resp. B),
meaning

Wt = σ (Ws : s ≤ t) and Bt = σ (Bs : s ≤ t) ,

and define (Gt)t the union (in the filtration sense) of F , W and B: for all t ≥ 0,

Gt = Ft ∨Wt ∨ Bt.

Lemma D.1. Assume that X is G-adapted. Then, for all t ≥ 0,

E
[∫ t

0

XsdWs

∣∣∣∣Wt

]
=

∫ t

0

E [Xs|Ws] dWs.

Proof. Let us fix t ≥ 0. By definition of Ito’s integral,∫ t

0

XsdWs = lim
n→∞

n−1∑
k=0

Xsk

(
Wsk+1

−Wsk

)
in probability, where, for any 0 ≤ k ≤ n, sk = t · k/n.
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Then, thanks to (56), the (conditional) Vitali’s convergence theorem implies that, almost surely,

E
[∫ t

0

XsdWs

∣∣∣∣Wt

]
= lim

n→∞

n−1∑
k=0

E
[
Xsk

(
Wsk+1

−Wsk

)∣∣Wt

]
= lim

n→∞

n−1∑
k=0

E [Xsk |Wt]
(
Wsk+1

−Wsk

)
= lim

n→∞

n−1∑
k=0

E [Xsk |Wsk ]
(
Wsk+1

−Wsk

)
=

∫ t

0

E [Xs|Ws] dWs,

where the before last equality above comes from the fact that X is G-adapted and that Wt can
be written as the union (in the filtration sense) of Wsk and σ(Wr −Wsk : sk < r ≤ t) which are
independent (whence, Xsk is also necessarily independent of σ(Wr −Wsk : sk < r ≤ t)).

Lemma D.2. Assume that X is G-adapted. Then, for all t ≥ 0,

E
[∫ t

0

XsdWs

∣∣∣∣Bt

]
= 0.

Proof. With the same reasoning (and using the same notation) as in the beginning of the proof of
Lemma D.1, for all t ≥ 0,

E
[∫ t

0

XsdBs

∣∣∣∣Wt

]
= lim

n→∞

n−1∑
k=0

E
[
Xsk

(
Bsk+1

−Bsk

)∣∣Wt

]
. (57)

Let us recall that X is G-adapted and that B,W are independent. Let us consider any Wt-
measurable random variable Z. Then, both Z and Xsk are independent of Bsk+1

−Bsk . So,

E
[
Xsk

(
Bsk+1

−Bsk

)
Z
]
= E [XskZ]E

[
Bsk+1

−Bsk

]
= 0,

implying
E
[
Xsk

(
Bsk+1

−Bsk

)∣∣Wt

]
= 0.

Combining the equation above with (57) proves the result.
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Guo, X., Pham, H. and Wei, X. (2023). Itô’s formula for flows of measures on semimartingales.
Stochastic Processes and their Applications 159 350–390.

Jourdain, B. and Tse, A. (2021). Central limit theorem over non-linear functionals of empiri-
cal measures with applications to the mean-field fluctuation of interacting diffusions. Electronic
Journal of Probability 26 1–34. Publisher: Institute of Mathematical Statistics and Bernoulli
Society.
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