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Abstract
This paper presents the basis of a new mechanical model named QuadWire dedicated to efficient
simulations of bead-based additive manufacturing processes in which elongated beads undergoing
significant cooling and eigenstrain are assembled to form 3D parts. The key contribution is to use a
multi-particular approach containing 4 particles per material point to develop an extended 1D model
capable of capturing complex 3D mechanical states, while significantly reducing computation time
with respect to conventional approaches. Indeed, 3D models usually require at least 3 to 4 elements
across the bead section, which results in fine discretization along the tangential direction to avoid
conditioning issues, and therefore very fine mesh of the entire 3D part. In the QuadWire model, the
bead height and thickness are internal dimensions, enabling a significantly coarser mesh along the
tangential direction. Thus, although the QuadWire has 12 degrees of freedom per material point
instead of 3 for classical models, the total number of degrees of freedom is reduced by several orders
of magnitude for large parts. The proposed model is classically developed within the framework of
the principle of virtual power and standard generalized hyperelastic media (i.e., finite strain theory),
which necessitates a thermodynamic analysis. Furthermore, the proposed approach includes native
and manageable kinematic constraints between successive beads so that the stress state properly
evolves during fabrication. Finite element analysis is used for numerical implementation under
infinitesimal strain assumption for the sake of simplicity, and the QuadWire stiffness parameters
are optimized so that the mechanical response fit conventional 3D approaches. To validate and
demonstrate the capabilities of the proposed strategy, the evolution of displacements and stresses
in fused deposition modeling of polylactide is simulated.
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1. Introduction

Additive Manufacturing (AM) encompasses the iterative fabrication of components by sequen-
tially depositing various feedstock materials (e.g., polymers, metals, ceramics, and biomaterials)
provided in the form of filaments, wires, powders, or liquids. These materials are shaped through
processes including melting, binding, photo-polymerization, and extrusion. Some processes deal
with complete layers at a time (e.g., vat photo-polymerization, sheet lamination, binder jetting,
and material jetting), but the majority of processes rely on the deposition of successive beads.
These bead-based additive manufacturing (BBAM) techniques encompass metal AM (e.g., Laser
Powder Bed Fusion (LPBF) and Direct Energy Deposition (DED)), Stereolithography (SLA) and
Fused Deposition Modeling (FDM) for polymers, as well as extrusion of concrete (3DCP) and clay.
BBAM thus primarily involves the stacking of 1D elongated beads, placed adjacently, to ultimately
form a complete 3D part with complex geometry.

To investigate the influence of process parameters on residual stresses and distortions, de-
sign of experiments methods are standard practice but are both costly and time-consuming [1].
Numerical simulations of various processes have therefore been developed over the past decade.
Various physical phenomena arising during AM of different feedstock materials result in signifi-
cant volume variation and/or deviatoric strain, leading to significant stresses and distortions. Thus,
a considerable amount of studies has focused on modeling temperature kinetics [2], solid state
phase transformations in metals [3], polymerization shrinkage in polymers [4], concrete shrinkage
due to hydration or clay shrinkage due to water evaporation [5] that act as the most significant
mechanical loads to consider. Indeed, such imposed strains, usually referred to as eigenstrains,
appear as successive beads are kinematically constrained to one another during the fabrication
process and are therefore responsible for kinematic incompatibilities resulting in progressive stress
evolution. Thus, during fabrication, the accumulation of stress can lead to cracks, buckling, and
other fabrication defects. Efficient simulations of the evolution of stresses during processes would
therefore enable easier optimizations of process parameters and scanning strategies for each part
geometry in order to reduce residual stresses and improve product quality.

However, the numerical simulation of mechanics in BBAM raises a major difficulty if parametric
studies or optimization loops on the entire process are considered. Indeed, extensive computation
costs are usually reported in the literature, as very large amounts of degrees of freedom (DoF)
are necessary to model the 3D part at bead-scale using conventional approaches. Indeed, 3D
finite element analysis (FEA) usually requires at least 3 to 4 elements across the bead section,
resulting in fine discretization along the tangential direction to avoid conditioning issues, and
therefore very fine mesh of the entire 3D part. For instance, among many other examples high-
fidelity thermo-mechanical simulations have been developed for LPBF [6] and for DED [7] with
restrictive computational cost. Therefore, even though some attempts to optimize scanning paths
have been published (see. e.g., [8] including constraints on the maximum temperature, [9] including
constraints on thermal stress, or [10] directly minimizing residual stresses and final deformation),
optimization strategies remain limited due to high computation cost.

A key strategy to reduce computation time relies on decoupling mechanics from the compu-
tation of eigenstrains. Indeed, determining eigenstrains requires to solve the heat equation, phase
transitions, and other physical phenomena with very fine time and space discretization, whereas
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the computation of stresses and displacements can be carried out with much coarser time dis-
cretization at the part scale [11]. This decoupling enables to use specific and fast approaches for
the eigenstrain computation relying on simplifying assumptions according to the studied process
and material e.g., fast thermal and phase transition analysis has been proposed for DED (see. [2]
for thermal analysis, and [3] for diffusional phase transition). The present work relies on this
strategy, as temperature kinetics and other eigenstrains are assumed to be known from previous
computations.

Nevertheless, the computation of mechanics alone (i.e., provided that eigenstrains are already
known) is computationally costly as it necessitates to simulate the entire part since the overall
geometry and boundary conditions play a major role. Of course, various attempts have been
proposed to reduce computation time. Some approaches rely on meshing techniques [12], which
include adaptive mesh refinement and parallelization [13], higher order discretization [14], and
mortar approaches to deal with layer-wise non-matching meshes [15]. Fully 3D FEA can also be
replaced by 2D FEA (see. [11] for a 2D computation validated by digital image correlation, and
[16] for a 2D computation validated by X-ray synchrotron measurements), which is faster due to
less DoF but only applies to thin-walled structures. Comprehensive 3D simulations have been
used as basis to develop model reduction strategies within the framework of inherent strain method
(ISM) which has emerged as a popular approach to attempt replacing fully 3D and computationally
intensive numerical simulations, which take into account the detailed matter deposition history, by
fast linear part-scale elastic simulations. The key feature of such approaches lies in the estimation,
from a reference comprehensive computation, of a so-called inherent strain field, which is used as
a mechanical loading in a simple part-scale elastic simulation to mimic the mechanical response
of the reference computation [17]. Related methods include so-called applied plastic strains [18],
mechanical layer equivalent method [19], or modified inherent strain method [20]. However,
determining the appropriate inherent strain or shrinkage load to accurately capture the mechanical
response of the fabricated component still requires that new reference computations be carried
out for each set of tested process parameters. To avoid such issues, various techniques have been
employed to determine inherent strains, including multiscale modeling [19], empirical methods
[21]. Other attempts based on ISM include solution base reduction with proper generalized
decomposition (PGD) approaches [22]. However, the reliability of ISM is not always guaranteed,
so the inherent strain rate method (ISRM) is proposed as an alternative approach to offer improved
accuracy, though significantly mitigating computation time reduction [23].

Nevertheless, previous model reduction strategies remain limited. In this paper, beads are
modeled as extended 1D components, rather than employing conventional methods, which holds
substantial potential for computation cost reduction while ensuring sufficiently detailed mechanical
fields and satisfying accuracy. To achieve this goal, we adopt a multi-particular approach (see e.g.,
[24] for porous mechanics, and [25] for multilayer composites) to derive a new mechanical 1D
model called QuadWire (where “quad” refers to 4 and “wire” to a 1D model). More precisely, 4
particles are assigned to each material point resulting in 4 displacement fields, hence 12 DoF per
material point instead of 3 for conventional 3D models. Hence, within the framework of FEA,
the bead height and thickness are internal dimensions of the proposed approach so that the mesh
along the tangential direction can be much coarser than in 3D. Thus, although the extended model
has more DoF per node than classical 3D models, the total number of DoF is reduced by several
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orders of magnitude for large parts. Furthermore, this extended kinetics enables to define several
generalized forces enabling to capture complex stress distributions arising in AM. In addition,
unlike other classical 1D models such as the well-known Timoshenko beam theory, the model
enables to easily assemble different beads together by imposing kinematics relations between them
(see. figure 1) in order to obtain fully 3D printed parts.

A few comments should be added to compare the proposed model to the existing literature
and justify the proposed approach. 1) One could think that within the framework of linear FEA, a
QuadWire element is equivalent to a single 3D hexahedron element for a classical Cauchy model as
both contain 24 DoF. But as already mentioned, unlike the conventional 3D model, the QuadWire
model can be discretized without size constraint along its tangential direction as there are no
conditioning issues. In addition, as shown in the following, the elastic behavior of the QuadWire
model involves several stiffness tensors, which are sufficiently rich to satisfyingly capture the
complex behavior of real beads, whereas a single hexahedron element poorly reproduces such
a behavior. 2) Even though the QuadWire model is a first gradient theory with respect to the
curvilinear abscissa of the bead, it corresponds to a third order gradient theory with respect to 3D
representation. The main differences with classical higher order theories [26] is that (i) the gradient
is defined as a proper derivative along the continuous curvilinear abscissa, and as discrete finite
differences across the bead cross-section, and (ii) only a few components of higher order gradients
naturally arises in the model derivation. 3) One could think that the number of particles is arbitrary.
But in fact, the number of particles is a compromise between the level of detail and the number of
DoF. Indeed, 4 particles enable us to impose 4 kinematic relations with neighboring beads (i.e.,
above, below, left and right) in order to bind the beads together and therefore consider fully 3D
bodies. A higher number of particles would be possible but would involve more DoF. 4) Higher
order continuum models, multi-particular models, and also enriched models in which each material
point is defined as a material element that can be oriented or even deformed (e.g, Cosserat models,
or deformable-section beam theory) are highly connected. As shown in the following, the proposed
4-particles model is similar to a 3D 3rd order model (with a single hexahedron elements over the
bead width and height). But as already mentioned, 1D models present the advantage to allow
using significantly coarser meshes along the tangential direction without conditioning issues. In
addition, a general 3rd order 3D model would involve a very large number of generalized strain
components as there are 3 components for the displacement field hence 9 for the 1st gradient, 27
for the 2nd gradient and 81 for the 3rd order gradient, leading to extensive behavior identification.
On the opposite, only a few components of the 2nd and 3rd order gradients naturally arise in the
derivation of the 4-particles model, which greatly facilitates the identification of the behavior and is
sufficient to capture the complex behavior of the beads. The 4-particles strategy therefore appears
to be a simple way of imposing minimal geometrical constraints to the model (in line with the need
to easily connect each bead to its 4 neighbors i.e., top, bottom, left and right), and then applying
a systematic method without assuming which components of the successive gradients should be
neglected.

The paper is organized as follows. Theoretical foundations of the QuadWire model are detailed
in Section 2. In particular, kinematics are defined and the power of internal forces and the
consistency conditions are exploited to define generalized stresses. The virtual power principle is
used as a weak form of the balance equation with boundary conditions. Thermodynamics analysis
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is broached in Section 3 in order to derive the thermodynamics balance equation based on free
energy and dissipated power. The material behavior is then derived within the framework of
generalized standard media (GSM) [27, 28]. Even though many materials used in AM involve
non-linear behavior, a thermo-hyperelastic behavior is derived in Section 4 within the framework of
finite strain theory. In addition, numerical implementation has been performed under infinitesimal
strain assumption for the sake of conciseness. Nevertheless, subsequent contributions will focus
on specific non-linear behaviors according to different materials. An optimization procedure is
then detailed in Section 5 in order to identify stiffness tensors to correctly capture the mechanical
response of the actual bead. Moreover, a complete simulation in FDM of polylactide (PLA) is
carried out to demonstrate the model capabilities in Section 6. Conclusive remarks are provided
in Section 7.

2. QuadWire model theoretical foundations

Throughout the paper, tensors are denoted by bold symbols, while matrices are denoted by
capital non-bold letters. In the following developments, since rate-independent behavior and
quasi-static analysis are considered, time is omitted for the sake of clarity. However, a general
formulation is derived through the principle of virtual power, involving generalized strain rates,
and hence time derivatives. The time derivative of a function g is classically denoted by ġ, while
the derivation with respect to the curvilinear abscissa s of a function g(s) is denoted by g′(s).

2.1. Transformation gradient
The QuadWire model is derived within the general framework of finite strain theory. A

unique deformed configuration denoted by C is classically defined. But strictly speaking, multi-
particular models necessitate multiple reference configurations because several particles coincide
at each material point of the deformed configuration, although they were at different locations
before deformation. This is of course a major drawback because as many transformation mapping
functions should be defined as there are particles. To avoid this issue, the model is derived under
the assumption that the relative motion between particles is small, while the average response of
the QuadWire is derived at finite strain. This means that the bead may be severely deformed as a
line, while undergoing infinitesimal deformation of its cross-section. Therefore a single reference
configuration C0 is defined as well as a single transformation mapping function. In addition, the
bead thickness and height denoted by δn and δb defined in the reference configuration are also used
in the deformed configuration.

The manifolds C0 and C immersed in R3 supporting the QuadWire model in the reference
and deformed configurations respectively may be defined as the images of smooth mappings
s0 ∈ [0, l0] 7→ X(s0) ∈ C0 and s ∈ [0, l] 7→ x(s) ∈ C where s0 and s are the curvilinear abscissas
and where l0 (m) and l (m) are the bead lengths in the reference and deformed configurations. The
transformation mapping function is denoted by s0 ∈ [0, l0] 7→ Φ(s0) = x(s) ∈ C. Hence, the
tangent unit vectors in the reference and deformed configurations are denoted by t0(s0) and t(s)
and read:

t0(s0) = dX(s0)
ds0

and t(s) = x′(s) (1)
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where the curvilinear abscissas s0 and s are chosen so that the tangent vector has a unit norm. One
can define a 2nd order rotation tensor O0(s0) ∈ SO(3) such as:

t0(s0) = O0(s0).i
n0(s0) = O0(s0).j
b0(s0) = O0(s0).k

(2)

where i, j,k is a fixed direct orthonormal coordinate system of R3 and t0(s0),n0(s0), b0(s0) is
a local direct orthonormal coordinate system in the reference configuration. Given that there is
no uniqueness of such a base, the direction b0 is aligned with the build direction (i.e., usually the
vertical direction). The initial curvature of the domain is defined as an anti-symmetric second
order tensor denoted by ω0(s) = dO0(s0)

ds0
.O0

⊤(s0) ∈ T 2
A such that:

dt0(s0)
ds0

= ω0(s0).t0(s0)
dn0(s0)

ds0
= ω0(s0).n0(s0)

db0(s0)
ds0

= ω0(s0).b0(s0) (3)

where T 2
A is the space of second order anti-symmetric tensors.

In addition to the transformation mapping Φ, an orientation mapping is defined as a rotation
2nd order tensor and denoted by s0 ∈ [0, l0] 7→ R(s0) ∈ SO(3) such as:

t(s) = R(s0).t0(s0) and n(s) = R(s0).n0(s0) and b(s) = R(s0).b0(s0) (4)

and where t(s),n(s), b(s) is a local direct orthonormal coordinate system in the deformed con-
figuration. Consider the rotation 2nd order tensor O(s) = R(s0).O0(s0) ∈ SO(3) and the
anti-symmetric 2nd order tensor ω(s) = O′(s).O⊤(s) ∈ T 2

A , hence:

t′(s) = ω(s).t(s) n′(s) = ω(s).n(s) b′(s) = ω(s).b(s) (5)

Consider the gradient vector G(s0) and its norm J(s0) defined by:

G(s0) = dΦ(s0)
ds0

and J(s0) =
√

G(s0).G(s0) (6)

A simple differentiation gives:
ds = J(s0) ds0 (7)

2.2. Kinetics
As mentioned in the introduction, a 4-particular model is derived, which means that 4 kinematic

fields are assigned to each material point x(s) belonging to the domain C as depicted in figure 1.
Thus, the space of generalized kinematically admissible motions reads:

V =
{−→v : s 7→ (v1(s),v2(s),v3(s),v4(s)) ∈ R12,

∀k ∈ {1, 2, 3, 4} , ∀sk ∈ Ck, vk(sk) = v0
k(sk)

} (8)
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where v0
k are the imposed motions on known subsets Ck ⊂ C (where 1 ≤ k ≤ 4). Thus, the space

of virtual motions reads:

V∗ =
{−→v ∗ : s 7→ (v∗

1(s),v∗
2(s),v∗

3(s),v∗
4(s)) ∈ R12,

∀k ∈ {1, 2, 3, 4} ∀sk ∈ Ck, vk(sk) = 0}
(9)

each element of V∗ contains 4 functions (v∗
1,v

∗
2,v

∗
3,v

∗
4) corresponding to the 4 particles. The main

difference between the sets of generalized and virtual motions V and V∗ is that kinematic boundary
conditions are replaced by zero boundary conditions for the virtual motions in V∗, as is usual for
test functions which vanish on the boundary.

Rigid body motions involve a single anti-symmetric tensor for the 4 particles, which therefore
move at different speeds but with the same rotation rate around the same point. This emphasizes
the role of internal dimensions (i.e., bead thickness δn and height δb). The space of rigid body
motions therefore reads:

V∗
R =

{−→v ∗ ∈ V∗, ∃ v∗
R ∈ R3, ∃ ω∗ ∈ T 2

A , ∀k ∈ {1, 2, 3, 4} , v∗
k(s) = v∗

R + ω∗.xk(s)
}

(10)

where the following local positions of the 4 particles denoted by (x1(s),x2(s),x3(s),x4(s)) have
been considered: 

x1(s) = x(s) + δn

2 n(s) + δb

2 b(s)

x2(s) = x(s) + δn

2 n(s) − δb

2 b(s)

x3(s) = x(s) − δn

2 n(s) + δb

2 b(s)

x4(s) = x(s) − δn

2 n(s) − δb

2 b(s)

(11)

where δn and δb are defined in figure 1 as internal dimensions of the QuadWire model corresponding
to the bead width and height respectively. Hence, the position x(s) of each material point reads as
the average position of the 4 particles:

x(s) = x1(s) + x2(s) + x3(s) + x4(s)
4 (12)

2.3. Generalized forces
Generalized forces are defined in the deformed configuration by introducing the virtual power

of internal forces, which is defined as a linear form of −→v ∗ = (v∗
1,v

∗
2,v

∗
3,v

∗
4) ∈ V∗. The QuadWire

model is derived at the first gradient with respect to s, thus:

PVI(−→v ∗) =
∫ l

0

4∑
k=1

(fk(s).v∗
k(s) − F k(s).v∗

k
′(s)) ds (13)
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Figure 1: Left: QuadWire model with 4 particles indexed from 1 to 4. Right: kinematic relations between different
beads. For instance, two different beads denoted by QuadWire A and QuadWire B are bonded in two different ways.
When beads are next to each other, particles 1 and 2 of QuadWire A are respectively bonded with particles 3 and 4 of
QuadWire B, and when beads are on top of each other, particles 2 and 4 of QuadWire A are respectively bonded with
particles 1 and 3 of QuadWire B.

where linear coefficients have been introduced as internal forces per unit length fk (N.m−1) and
internal forces F k (N) and where v∗

k
′(s) refers to the derivative of v∗

k(s) with respect to s. Note
that the minus sign affecting the second term in the integral is purely conventional.

The consistency condition consists in ensuring that the space of rigid body motions V∗
R is the

kernel of virtual power of internal forces i.e., , ∀−→v ∗ ∈ V∗
R, PVI(−→v ∗) = 0, hence:

∀v∗
R ∈ R3,

∫ l

0

4∑
k=1

fk(s).v∗
R ds = 0

∀ω∗ ∈ T 2
A ,
∫ l

0

4∑
k=1

(fk(s).ω∗.xk(s) − F k(s).ω∗.x′
k(s)) ds = 0

(14)

From the first equation of (14) one obtains:

4∑
k=1

fk(s) = 0 (15)

One can note that the relation (15) is consistent with the definition of internal forces per unit length
from the particle i over the particle j (with (i, j) ∈ {1, 2, 3, 4}2) denoted by f i→j(s) such as:

∀k ∈ {1, 2, 3, 4} , fk(s) =
4∑

i=1
i ̸=k

f i→k(s)

∀(i, j) ∈ {1, 2, 3, 4}2 , f i→j(s) = −f j→i(s)
(16)

Indeed, (16) implies (15).

8



Following internal force vectors naturally arise when using the consistency condition (15):

f =
4∑

k=1
fk = 0

mn = δn

2 (f 1 + f 2 − f 3 − f 4)

mb = δb

2 (f 1 − f 2 + f 3 − f 4)

m× = δn δb

4 (f 1 − f 2 − f 3 + f 4)



F =
4∑

k=1
F k

Mn = δn

2 (F 1 + F 2 − F 3 − F 4)

M b = δb

2 (F 1 − F 2 + F 3 − F 4)

M× = δn δb

4 (F 1 − F 2 − F 3 + F 4)

(17)

where F (N) (resp. f (N.m−1)) is the resultant force (resp. resultant force per unit length)
applying to a material point. According to the definition (17), M× (N.m2) (and m× (N.m)) tends
to deform the bead cross-section as a saddle point for the t component, and as a trapezoid for the
n and b components (see figure 2.e). Bending moments (resp. bending moments per unit length)
correspond to the t component of Mn (N.m) and M b (N.m) (resp. mn (N) and mb (N)) (see first
column of figure 2.c and figure 2.d). Torsion (resp. torsion per unit length) corresponds to the b
component of Mn (resp. mn) and to the n component of M b (resp. mb) (see second column of
figure 2.d and third column of figure 2.c). Furthermore, in equation (17) the index n in mn and
Mn refers to right particles minus left particles, which aligns with n. Similarly, the index b refers
to top particles minus bottom particles, which aligns with b. Moreover, the index × refers to a
“cross” as one diagonal (i.e., particles 1 and 4) is subtracted to the other diagonal (i.e., particles 2
and 3).

The consistency condition (15) reads f = 0, while the second equation of (14) reads:

∀ω∗ ∈ T 2
A ,
∫ l

0
Σ⊤ : ω∗ ds = 0 (18)

where the following second order generalized stress tensor has been introduced by using (5):

Σ(s) = t(s) ⊗ F (s) − n(s) ⊗ mn(s) − b(s) ⊗ mb(s)
+ω(s). (n(s) ⊗ Mn(s) + b(s) ⊗ M b(s))

(19)

Equation (18) implies that the generalized stress Σ(s) must be symmetrical, as the orthogonal
space of anti-symmetric second-order tensors T 2

A is orthogonal to the space of symmetric second-
order tensors T 2

S . Since (19) is not intrinsically symmetric, the consistency condition imposes
relationships between internal forces F ,mn,mb,Mn,M b.

In the following, the generalized stresses naturally arise as (i) the symmetric tensor Σ (N),
which is analogous to the Cauchy stress tensor in conventional 3D models, (ii) a first order tensor
M× (N.m2), and (iii) an additional third order tensor denoted by M (N.m) defined as follows :

M(s) = t(s) ⊗ n(s) ⊗ Mn(s) + t(s) ⊗ b(s) ⊗ M b(s)
−1

2 (b(s) ⊗ n(s) + n(s) ⊗ b(s)) ⊗ m×(s) (20)

9



Figure 2: Interpretation of internal forces (similar interpretation also holds for internal forces per unit length). a)
components of forces defined at each particle, b) components of the resultant force F , c) mechanism for Mn, d)
mechanism for M b and e) mechanism for M×.

2.4. Generalized strains
Consider any observable function of the curvilinear abscissa s (e.g., displacement, velocity,

temperature, etc.) denoted by −→a = (a1, a2, a3, a4), and the operator P giving the average a and
differences δna, δba, δ×a defined as follows :

P : −→a = (a1, a2, a3, a4) 7→ −→a δ = (a, δna, δba, δ×a) (21)

Where :
a = a1 + a2 + a3 + a4

4 δna = a1 + a2 − a3 − a4

2
δba = a1 − a2 + a3 − a4

2 δ×a = a1 − a2 − a3 + a4

(22)

One can notice that P is bĳective and −→a = P−1(−→a δ).
Thus, using (15) and (19), the virtual power of internal forces (13) reads:

PVI(−→v ∗) =
∫ l

0

(
mn(s).δ

nv∗(s)
δn

+ mb(s).
δbv∗(s)
δb

+ m×(s).δ
×v∗(s)
δn δb

− F (s).v∗ ′(s)

−Mn(s).δ
nv∗ ′(s)
δn

− M b(s).
δbv∗ ′(s)

δb
− M×(s).δ

×v∗ ′(s)
δn δb

)
ds

(23)
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On the one hand, the first order gradient defined in Appendix A is introduced as the following
second order tensor:

−→
∇ −→v ∗(s) = v∗ ′(s) ⊗ t(s) + δnv∗(s)

δn
⊗ n(s) + δbv∗(s)

δb
⊗ b(s) (24)

And the (virtual) Eulerian tangential rate of deformation tensor as the symmetric part of the first
gradient (24):

d∗
ξ(s) = 1

2
(−→
∇ −→v ∗(s) + −→

∇ −→v ∗(s)⊤
)

(25)

On the other hand, a complementary generalized rate of deformation tensor is defined from the
second gradient obtained in Appendix A, which reads as the following third order tensor:

d∗
χ(s) = δnv∗ ′(s)

δn
⊗ n(s) ⊗ t(s) + δbv∗ ′(s)

δb
⊗ b(s) ⊗ t(s)

+δ
×v∗(s)
δnδb

⊗ (n(s) ⊗ b(s) + b(s) ⊗ n(s)) + v∗ ′(s) ⊗ t′(s) ⊗ t(s)

+ (b(s).ω(s).n(s))
(
δnv∗(s)
δn

⊗ b(s) ⊗ t(s) − δbv∗(s)
δb

⊗ n(s) ⊗ t(s)
) (26)

Moreover, the following vector is a contribution of the third order gradient that will arise in the
virtual power of internal forces:

d∗
γ(s) = δ×v∗ ′(s)

δnδb
(27)

Consequently, using the fact that Σ is symmetric, (23) reads:

PVI(−→v ∗) = −
∫ l

0

(
d∗

ξ(s) : Σ(s) + d∗
χ(s) ... M(s) + d∗

γ(s).M×(s)
)

ds (28)

It should be noted that interestingly, although the 2nd gradient component involving v∗ ′′ is not
activated in the QuadWire model (see. Appendix A), a 3rd gradient component naturally arises
in the derivation. This means that the geometrical constraints associated with the choice of using
4 particles are automatically translated into a selection of components of higher-order gradients,
which significantly reduces the number of DoF with respect to a complete 3rd order 3D continuum
model.

Since the second order tensor d∗
ξ (s−1) is symmetric, there are 6 independent components, while

there are only 9 additional independent components in d∗
χ (m−1.s−1) (since the last three terms

in (26) already appear in d∗
ξ) and 3 additional components for d∗

γ (m−2.s−1). So there is a total of
18 generalized strain components. Similarly, the model involves 18 generalized force components
–namely 6 components for the symmetric second order tensor Σ, and 9 components for the third
order tensor M and 3 for M×. In addition, as already mentioned, there are 12 kinematic DoF
(i.e., 4 displacements with 3 components each).
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2.5. Virtual power principle
The virtual power principle is used to derive a weak form of the balance equations along with

boundary conditions. To do so, consider the following linear form of −→v ∗ as the power of external
forces:

PVE(−→v ∗) =
4∑

k=1

∫ l

0
f ext

k (s).v∗
k(s) ds+ F ext

k (0).v∗
k(0) + F ext

k (l).v∗
k(l) (29)

where f ext
k (N.m−1) are external forces per unit length, and F ext

k (N) are external forces applied to
both ends of the domain C (i.e., s = 0 and s = l) with 1 ≤ k ≤ 4. Using the same notations as
in (17), the power of external forces reads:

PVE(−→v ∗) =
∫ l

0

(
f ext(s).v∗(s) + mext

n (s).δ
nv∗(s)
δn

+ mext
b (s).δ

bv∗(s)
δb

+ mext
× (s).δ

×v∗(s)
δn δb

)
ds

+F ext(0).v∗(0) + M ext
n (0).δ

nv∗(0)
δn

+ M ext
b (0).δ

bv∗(0)
δb

+ M ext
× (0).δ

×v∗(0)
δnδb

+F ext(l).v∗(l) + M ext
n (l).δ

nv∗(l)
δn

+ M ext
b (l).δ

bv∗(l)
δb

+ M ext
× (l).δ

×v∗(l)
δnδb

(30)
The power of acceleration forces is neglected, so that the virtual power principle reduces to:

∀ −→v ∗ ∈ V∗, PVI
(−→v ∗)+ PVE

(−→v ∗) = 0 (31)

From the weak form (31) one can derive the balance equations and boundary conditions of the
QuadWire model (see. Appendix B). Nevertheless, the weak form (31) is directly discretized within
the framework of FEA to obtain numerical results (see. Appendix D).

3. Thermodynamic analysis of deformation processes

The thermodynamic analysis of a deformation process is conducted to derive a hyperelastic
behavior for the QuadWire model. The first and second laws of thermodynamics are applied,
enabling the derivation of energy balance equations as well as the Clausius-Duhem inequality,
which are essential to derive the material behavior within the framework of GSM.

Consider a real motion −→v ∈ V , and the total energyEtot (J) composed of the kinetic energyC (J)
and the internal energyU (J), i.e.,Etot = C+U . In virtue of the first law of thermodynamics, there is
no production of total energy, hence the total energy variation Ėtot is balanced by the power brought
to the domain C, which reads as the power of external forces, denoted as PEXT = PVE(−→v ) (W)
and heat input denoted by Q (W):

Ėtot = Ċ + U̇ = Q+ PEXT (32)

Hence, considering the power of internal forces PINT = PVI(−→v ) and acceleration forces which read
as time derivative of the kinetic energy Ċ, and using the virtual power principle PEXT + PINT = Ċ
(where Ċ has been neglected in previous sections), one obtains the balance equation on internal
energy:

U̇ = Q− PINT (33)
12



where the deformation power −PINT reads as a production of internal energy. Consider the internal
energy density per unit mass eU (J.kg−1) so that :

U =
∫

C
ρ(s) eU(s) ds (34)

where ρ (kg.m−1) is the density defined as the mass per unit length. Since no mass transport is
considered one simply obtains:

U̇ =
∫

C
ρ(s) ėU(s) ds (35)

The heat input Q is composed of two local contributions. The first heat density is the heat per unit
length r(s) (W.m−1) – accounting for two contributions from the 3D point of view (see. figure 3),
namely the heat input per unit volume integrated over the bead section and the heat input per unit
surface from external surface of the bead integrated over the contour of the bead cross-section.
The second heat density is the tangential heat q (W) – accounting from the 3D point of view (see.
figure 3) for the tangential heat input per unit surface integrated over the bead section. Hence:

Q =
∫

C
r(s) ds− (q(l) − q(0)) (36)

Which leads to:
Q =

∫
C
(r(s) − q′(s)) ds (37)

Using (33) along with (35), (37) and (28) the local internal energy balance equation in the deformed

Figure 3: Heat input from the 3D point of view.

configuration therefore reads :

ρ(s) ėU(s) = Σ(s) : ξ̇(s) + M (s) ... χ̇(s) + M×(s).γ̇(s) + r(s) − q′(s) (38)

Consider the entropy of the system S (J.K−1). The second law of thermodynamics states that
the entropy production PS (W.K−1) is positive i.e., PS ≥ 0. Classically heat inputs contribute to

13



the entropy balance through the inverse of the absolute temperature. Since the QuadWire model
contains 4 particles, one can define the absolute temperature as follows:

−→
T (s) = (T1(s), T2(s), T3(s), T4(s)) (39)

Only the average temperature T (s) = 1/4∑4
k=1 Tk(s) is considered in the following for the sake

of simplicity. Indeed, only the global energy balance equations are derived for the 4 particles
considered altogether. Therefore one can write the contribution of heat inputs in the entropy
balance such as:

Ṡ =
∫

C

r(s)
T (s) ds−

(
q(l)
T (l) − q(0)

T (0)

)
+ PS (40)

Hence:
Ṡ =

∫
C

(
r(s)
T (s) − q′(s)

T (s) + T ′(s) q(s)
T (s)2

)
ds+ PS (41)

Consider the entropy density per unit mass denoted by eS (J.K−1.kg−1) so that:

S =
∫

C
ρ(s) eS(s) ds (42)

Since no mass transport is considered one simply obtains:

Ṡ =
∫

C
ρ(s) ėS(s) ds (43)

It is also assumed that there exists a density of entropy production per unit length denoted by
pS(s) (W.K−1.m−1) so that:

PS =
∫

C
pS(s) ds (44)

Hence, by using (41) along with (43) and (44) the local entropy balance equation reads :

ρ(s)T (s) ėS(s) = r(s) − q′(s) + T ′(s) q(s)
T (s) + T (s) pS(s) (45)

Consider the Helmholtz free energy density per unit mass ψ (J.kg−1) defined by:

ψ(s) = eU(s) − T (s) eS(s) (46)

In addition, consider which is positive in virtue of the second law of thermodynamics:

D(s) = T (s) pS(s) ≥ 0 (47)

The thermodynamics balance equation of the QuadWire medium (i.e., Clausius-Duhem inequality)
is obtained by eliminating the heat inputs in (38) and (45) such as:

Σ(s) : ξ̇(s)+M (s) ... χ̇(s)+M×(s).γ̇(s)−ρ(s)
(
ψ̇(s) + Ṫ (s) eS(s)

)
−T ′(s) q(s)

T (s) = D(s) (48)

14



This thermodynamic balance equation (48) should be verified for any state of the system and all
possible time evolution from the considered state.

Since the model is derived within the framework of finite strain theory, the balance equation
(48) should be derived in the reference configuration. Generalized stress tensors Σ, M and M×
are defined in the deformed configuration but can be translated in the reference configuration into
Σ0, M 0 and M×0. The stress tensor Σ0 is classically determined by Σ0 = J−1R⊤.Σ.R, hence
using (19):

Σ0(s0) = (t0(s0) ⊗ F 0(s0) − n0(s0) ⊗ mn0(s0) − b0(s0) ⊗ mb0(s0))
+ω̃0(s0). (n0(s0) ⊗ Mn0(s0) + b0(s0) ⊗ M b0(s0))

(49)

where the following anti-symmetric 2nd order tensor has been introduced:

ω̃0(s0) =
(

ω0(s0) + R⊤(s0).
dR(s0)

ds0

)
(50)

and where internal forces in the reference configuration have been defined as follows:

f 0 = 0

mn0 = mn.
(
J−1R

)
mb0 = mb.

(
J−1R

)
m×0 = m×.

(
J−1R

)



F 0 = F .
(
J−1R

)
Mn0 = Mn.

(
J−1R

)
M b0 = M b.

(
J−1R

)
M×0 = M×.

(
J−1R

)
(51)

A similar expression is derived for M 0 from (20):
M 0(s0) = t0(s0) ⊗ n0(s0) ⊗ Mn0(s0) + t0(s0) ⊗ b0(s0) ⊗ M b0(s0)

−1
2 (b0(s0) ⊗ n0(s0) + n0(s0) ⊗ b0(s0)) ⊗ m×0(s0)

(52)

The generalized Eulerian rates of deformation dξ,dχ,dγ are also translated in the reference con-
figuration into ξ̇, χ̇, γ̇. Classically ξ̇ = J2R⊤.dξ.R, hence:

ξ̇(s0) = J(s0)2

2

(
R(s0)⊤.

(
v ′(s0) ⊗ t0(s0) + δnv(s0)

δn
⊗ n0(s0) + δbv(s0)

δb
⊗ b0(s0)

)

+
(

t0(s0) ⊗ v ′(s0) + n0(s0) ⊗ δnv(s0)
δn

+ b0(s0) ⊗ δbv(s0)
δb

)
.R(s0)

)
(53)

A similar expression is derived for χ̇ from (26):

χ̇(s0) = J(s0)2 R(s0)⊤.

(
δnv ′(s0)
δn

⊗ n0(s0) ⊗ t0(s0) + δbv ′(s0)
δb

⊗ b0(s0) ⊗ t0(s0)

+δ
×v(s0)
δnδb

⊗ (n0(s0) ⊗ b0(s0) + b0(s0) ⊗ n0(s0)) + v ′(s0) ⊗ (ω̃0(s0).t0(s0)) ⊗ t0(s0)

+ (b0(s0).ω̃0(s0).n0(s0))
(
δnv(s0)
δn

⊗ b0(s0) ⊗ t0(s0) − δbv(s0)
δb

⊗ n0(s0) ⊗ t0(s0)
))

(54)
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and from (27):

γ̇(s0) = J(s0)2 R(s0)⊤.
δ×v ′(s0)
δnδb

(55)

Thus by multiplying the balance equation (48) by J(s0) (to account for the fact that ds = J(s0)ds0)
the balance equation in the reference configuration reads:

Σ0 : ξ̇ + M 0
... χ̇ + M×0.γ̇ − ρ0

(
ψ̇ + Ṫ eS

)
− T−1 dT

ds0
q = D0 (56)

where the density in the reference configuration reads: ρ0 = Jρ and where D0 = JD.

4. Thermo-elastic constitutive laws

Local behavior is considered, that is to say, that state variables are defined for each curvilinear
abscissa s0 and not as entire distributions (e.g., T : s0 ∈ [0, l0] 7→ T (s0)). Thus, for each s0,
the state variables are the generalized strains ξ(s0), χ(s0) and γ(s0), the average temperature
T (s0), and the average temperature gradient dT (s0)/ds0, which is independent of T (s0) for each
fixed s0. Constitutive laws are obtained by defining two state functions of local state variables,
namely the free energy per unit mass denoted by Ψ(ξ(s0),χ(s0),γ(s0), T (s0)) = ψ(s0), which
is assumed to be independent of dT (s0)/ds0, and the dissipated power per unit length denoted by
D(T (s0), dT (s0)/ds0) = D0(s0), which is assumed to be independent of ξ(s0), χ(s0) and γ(s0).

The following relationship holds:

ψ̇ = ∂Ψ
∂ξ

: ξ̇ + ∂Ψ
∂χ

... χ̇ + ∂Ψ
∂γ

.γ̇ + ∂Ψ
∂T

Ṫ (57)

The balance equation (56) should be verified for all states. It is possible to consider without loss
of generality all states ξ(s0),χ(s0),γ(s0), T (s0) with dT (s0)/ds0 = 0. Since Ψ does not depend
on dT (s0)/ds0, all conclusions drawn on Ψ from dT (s0)/ds0 = 0 remain valid for states such as
dT (s0)/ds0 ̸= 0. Indeed the function Ψ does not depend on the entire distribution of temperature
s0 7→ T (s0) but only on the value T (s0) for fixed s0. For states dT (s0)/ds0 = 0, reversibility of
elastic behavior implies that D(T (s0), 0) = 0. Hence using (57) the balance equation (56) reduces
to:(

Σ0 − ρ0
∂Ψ
∂ξ

)
: ξ̇+

(
M 0 − ρ0

∂Ψ
∂χ

)
... χ̇+

(
M×0 − ρ0

∂Ψ
∂γ

)
.γ̇ −ρ0

(
∂Ψ
∂T

+ eS

)
Ṫ = 0 (58)

Hence (considering the orthogonal subspaces of the spaces to which the generalized strain rates
belong):

Σ0 = ρ0
∂Ψ
∂ξ

M 0 = ρ0
∂Ψ
∂χ

M×0 = ρ0
∂Ψ
∂γ

(59)

All secondary variables involved in the balance equation (56) have been explicitly related to state
variables through the energetic potential Ψ. This thermodynamic analysis enables us to easily
extend in subsequent contributions the hyperelastic behavior to visco-elasticity or elasto-plasticity
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by introducing adequate dissipation potential. To facilitate numerical implementation, numer-
ical examples provided in the following are carried out for linear elasticity under infinitesimal
strain assumption. Therefore a quadratic free energy Ψ is considered. The temperature variation
∆T (s0) = T (s0) − Tref (where Tref is a reference temperature) is used as a state variable instead
of T (s0). In addition, since eigenstrain should be considered in AM, an additional state variable
denoted by Γ(s0) representing any physical phenomena such as phase transformation, polymeriza-
tion, etc., and inducing eigenstrain (e.g., volume variation or deviatoric strain) is considered at this
stage. Since the heat equation is not derived one can only consider the following quadratic form:

ρ0 Ψ = 1
2

(
ξ : Rξ : ξ + χ

... Rχ ... χ + γ.Rγ.γ
)

+ ξ : Rξχ ... χ + ξ : Rξγ.γ + χ
... Rχγ.γ

−
(

ξ : Rξ : αξ + χ
... Rχ ... αχ + γ : Rγ.αγ

)
∆T

−
(

ξ : Rξ : βξ + χ
... Rχ ... βχ + γ : Rγ.βγ

)
Γ

(60)

where Rξ (N), Rχ (N.m2) and Rγ (N.m4) are respectively fourth, sixth and second order positive
definite stiffness tensors (i.e., 21, 45 and 6 components respectively), Rξχ (N.m), Rξγ (N.m2) and
Rχγ (N.m3) are respectively fifth, third and fourth order coupling stiffness tensors. In addition,
αξ (K−1) and βξ are second order tensors, and αχ (K−1) and βχ are third order tensors. Using
constitutive laws (59) one simply obtains the following thermo-elastic behavior:

Σ0 = Rξ :
(
ξ − αξ∆T − βξΓ

)
+ Rξχ ... χ + Rξγ.γ

M 0 = Rχ ... (χ − αχ∆T − βχΓ) + ξ : Rξχ + Rχγ.γ

M×0 = Rγ. (γ − αγ∆T − βγΓ) + ξ : Rξγ + χ : Rχγ

(61)

Several tensors have been introduced to capture the material behavior and should be identified by
fitting the Helmholtz free energy per unit length of the QuadWire with a detailed 3D conventional
computation. Several stiffness tensors involved in (61) may be neglected without compromising the
model accuracy. For instance based on a simple homogenization procedure detailed in Appendix C,
the following behavior is considered in the following: Σ0 = Rξ :

(
ξ − αξ∆T

)
M 0 = Rχ ... χ

(62)

It should be noted that the homogenization procedure simply consists in identifying the QuadWire
and 3D free energy per unit length by assuming that the Representative Volume Element (RVE) is
a simple single hexahedron element in 3D. Of course, this is not the aim of the proposed work, as
the QuadWire should capture the complex behavior of the real bead. But this homogenization was
only meant to a priori reduce the total number of stiffness components to identify.

5. Identification of material parameters

Using the simple behavior (62) a total of 66 components should be identified. However, the
crude homogenization procedure derived in Appendix C enables to a priori reduce the number
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of non-zero components to 9 for Rξ and 15 for Rχ. Therefore only 24 stiffness components
are considered and gathered into a column vector denoted by p ∈ R24. In addition, the thermal
expansion is assumed to be αξ = α1 where α (K−1) is the thermal coefficient of the material.

The identification of stiffness components p is carried out by fitting the Helmholtz free energy
per unit length of the QuadWire model with the one obtained with a classical isotropic 3D FEA.
Hence the solution p† of the following minimization problem is used as the “correct” stiffness
components in following sections: p† = argmin

p∈R24
J(p) + ϵ ∥p− p0∥2

s.t. the principle of virtual power (31) is verified
(63)

where the objective function J(p) reads:

J(p) = 1
2

∫ l

0

(
ρψ(s) − ρ3D ψ3D(s)

)2
ds (64)

where ρψ(s) is derived from (60), and where ρ3D ψ3D(s) is the Helmholtz free energy per unit
length of the detailed 3D simulation. The 3D model is discretized using classical linear FEA to
compute ρ3D ψ3D(s) and a simple FEA implementation of the QuadWire model detailed in Ap-
pendix D, coded in Python [29] and accessible in the repository [30] is used to compute ρψ(s).
In addition, p0 ∈ R24 is a reference set of stiffness parameters given in (C.24) and (C.25) and ϵ
is a positive regularization coefficient. Indeed as with all inverse problems, the identification of
material properties is ill-posed and should be regularized. In this contribution, a simple Tikonov
regularization is considered and consists in adding a penalization on the distance between the con-
sidered material parameters p and the reference parameters denoted by p0. The same discretization
is used along the tangential direction for both the QuadWire model and the 3D model, but of course,
several elements along n and b directions are necessary for the 3D model.

The optimization problem (63) is solved by using an adaptive-step gradient algorithm. The
gradient of the objective function J(p) is derived in Appendix E by using adjoint techniques.
We rely on a multiple-load optimization procedure, meaning that a total of 12 independent and
identical beads are considered simultaneously with various loading conditions. Instead of summing
12 objective functions, we rather add successively the 12 beads in a single curve, and the length
l in the integration of (64) is 12 times the length of a single bead. Each bead length is set to
l = 2 mm and a square section is considered with δn = 0.1 mm and δb = 0.1 mm. The 3D
model is meshed using 10 elements along n and b (i.e., 100 elements for the cross-section) and
200 elements along t to obtain cubic elements (i.e., 20000 elements in total for each bead). The
QuadWire is also discretized with Ne = 200 elements for each bead so that no interpolation is
necessitated to compare with the 3D simulations. Boundary conditions only consist in clamping
displacements at one end of each bead. The 12 loading conditions consist in applying successively
one of the 3 components of the 4 external forces per unit length (f ext,mext

n ,mext
b ,mext

× ) defined
in (30). Each bead is loaded with a single, uniform and normalized component of the external
forces such that the free energy per unit length is comparable for the 12 beads (i.e., each bead
has the same weight in the minimization procedure). The regularization coefficient ϵ has been
classically determined by using an L-curve strategy [31]. The Young modulus of the 3D model is
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set to E = 3000 (MPa) and the Poisson coefficient is ν = 0.3, which corresponds to PLA. On this
basis the optimized stiffness parameters p† is determined and listed in table C.1 and C.2.

The free energy per unit length is presented in figure 4 for the 12 beads to emphasize the effect
of the optimization. It is clear that the optimized stiffness parameters p† enable to satisfyingly
fit the free energy per unit length computed with the conventional 3D model. The homogenized
stiffness components p0 led to significantly overestimate (resp. underestimate) the free energy for
the components mext

× .t, mext
× .n and mext

× .b (resp. mext
n .t,mext

b .t,f ext.n,mext
b .n,f ext.b, and

mext
n .b) of the applied forces, which demonstrates the necessity of the optimization procedure

and the deviation of the real bead from 3D hexahedron elements. However, for the components
f ext.t,mext

n .n,mext
b .b of the applied stress, the homogenized stiffness parameters p0 already

enabled to perfectly fit the reference free energy (i.e., computed using conventional 3D approach).
This is due to the fact that a square cross-section has been considered for the bead, as in the crude
homogenization procedure providing p0. However, it should be emphasized that different shapes
can be considered in the optimization procedure according to the real bead geometry.

The optimization validity is addressed by comparing the free energy per unit length of a thin-
walled structure undergoing thermal change of the form ∆T (s) = a × (s/l) with a = −60 K
computed with the QuadWire approach and a conventional 3D approach. Boundary conditions
consist in clamping bottom particles of the first layer (i.e., particles 2 and 4 corresponding to
the attachment with the substrate). A sinusoidal geometry is considered to address the effect of
varying curvature. The free energy per unit length is presented in figure 5. An excellent fit is
observed between the QuadWire model and the conventional 3D approach, which validates the
optimized stiffness parameters. It should be noted that excellent results are also obtained for
different geometries and applied thermal changes.

6. Application to fused deposition modeling

An essential aspect of additive manufacturing (AM) modeling is the addition of matter during
fabrication. Elements are either added progressively to extend the initial mesh at every time step
(i.e., element-birth technique for which implementation requires solver initialization and equation
renumbering but can be faster due to smaller mesh at initialization), or future elements are given
a nearly null stiffness until they are activated with their given stiffness when their respective time-
step is reached (i.e., quiet/active method which is easier to implement but can be computationally
expensive). Hybrid activation methods offer a twofold advantage by dealing with the current layer
based on quiet/active methods, while future layers are added when necessary using element-birth
technique [11, 12].

In this paper, a quiet/active method is used to simulate fused deposition modeling (FDM) of
polylactide (PLA) under conditions extracted from [32]. A thermo-elastic behavior is usually
considered for this combination of process and material. Glass transition of PLA is set to Tg =
328.15 K, and the Young modulus is more or less constant for temperatures lower than Tg and
set to E = 3000 MPa, and negligible for higher temperatures, while the Poisson coefficient is
set to ν = 0.3. It should be noted that the optimized behavior derived in Section 5 corresponds
to temperatures lower than Tg. Elements are activated during cooling when their temperature
reaches Tg. The build platform temperature is maintained constant during the entire fabrication at
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Figure 4: Normalized free energy per unit length along the 12 beads for the reference 3D computation, the initial
stiffness parameters p0, and the optimized stiffness parameters p†. The activated component of external forces are
a) f ext.t, b) mext

n .t, c) mext
b .t, d) f extn, e) mext

n .n, f) mext
b .n, g) f ext.b, h) mext

n .b, i) mext
b .b, j) mext

× .t, k) mext
× .n,

l) mext
× .b, where the interpretation of the internal forces is depicted in figure 2.

Tpla = 323.15 K, and final cooling of the entire structure (i.e., part+build platform) is considered at
the end of fabrication. In addition, the deposition temperature of the filament is Tdep = 353.15 K.
The filament is cooled down by the surrounding air (resp. the build platform), and the heat transfer
coefficient is set to hair = 3.96 W.m−2.K−1 (resp. hpla = 500 W.m−2.K−1). Thermal properties
are assumed to be temperature independent, and the thermal conductivity is k = 0.197 W.m−1.K−1

while the specific heat is cp = 1590 J.kg−1.K−1. In addition, the density is ρ3D = 1250 kg.m−3

and the thermal expansion coefficient is α = 11.3 × 10−6 K−1. A total of 15 beads with a length
of l = 50 mm are printed with a printing speed set to v = 25 mm.s−1. Two different structures are
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Figure 5: Color map of the free energy per unit length on the sinusoidal structure computed with the QuadWire model
(top) and comparison for each layer between the QuadWire and the 3D model (bottom). Negative values are obtained
for ψ as the quadratic term in ∆T has been omitted in its definition.

simulated, 1) a thin-walled structure for which beads are deposited on top of each other, and 2) a
“carpet” structure for which all the beads are deposited on the build platform next to each other. A
schematic view of the two different structures is presented in figure 6.

Temperature kinetics is computed by using the fast approach [2], and is presented in figure 7 for
the thin-walled structure and in figure 8 for the “carpet” structure, which is obtained by switching
the role of the surrounding air and the build platform. Results are very consistent with the
measurements reported in [32]. Temperature change ∆T is therefore computed by considering
the glass transition Tg as the reference temperature (i.e., ∆T = T − Tg). No other eigenstrain is
considered as polymerization occurs at higher temperature than Tg.

On this basis, mechanical computations are carried out for both the thin-walled and the “carpet”
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Figure 6: Schematic view of the FDM process for the thin-walled structure and the carpet.
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Figure 7: Temperature kinetics for the thin-walled structure, only odd beads are depicted for the sake of readability.

structures, with Ne = 50 elements for each bead and by clamping particles 2 and 4 (i.e., bottom
particles) for all nodes in contact with the substrate. Computation time is around 3 minutes
with a laptop for QuadWire simulations, whereas 3.7 hours are reported in [32] for an equivalent
conventional 3D computation using the commercial software COMSOL multiphysics.

Generalized stress tensors Σ and M are computed, and to facilitate their interpretation internal
forces per unit length fk and internal forces F k (where 1 ≤ k ≤ 4) are also computed using (19),
(20) and (17). Even though the model can be derived without any reference to the Cauchy model
in 3D, fk and F k can be related to a conventional 3D stress tensor denoted by σ. Indeed, based on
the interpretation of internal forces given in (16) and the bead cross-section divided into 4 sectors
denoted by Sk (1 ≤ k ≤ 4) as depicted in figure 9, the average of σtt, σtn, σtb over each sector Sk
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Figure 8: Temperature kinetics for the “carpet” structure, only odd beads are depicted for the sake of readability.

reads:
⟨σ.t⟩Sk

= F k(s)
|Sk|

(65)

And the average of the interface stress σ.nk (where nk is the outer normal vector) over each sector
outer boundary (abusively denoted by ∂Sk) reads:

⟨σ.nk⟩∂Sk
= fk(s)

|∂Sk|
(66)

Tension and shear stress are presented in figure 10 for the thin-walled structure, and in figure 11

Figure 9: Simplified representation of the bead section to compute a 3D Cauchy stress tensor.

for the “carpet” structure. Stress distribution is similar to numerical results obtained for another
material in [11], and quantitatively consistent with [32]. The effect of clamping bottom particles
on the substrate is clearly demonstrated as significant tension stress evolution can be noticed for
the thin-walled structure due to the edge effect, while more uniform tension stress distribution is
observed for the “carpet” structure, which is much more constrained by the substrate. Similarly,
significant shear stress is observed for the thin-walled structure in order to accommodate the tension
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evolution near the edges (i.e., the equilibrium), whereas the shear stress is lower by several orders
of magnitude for the “carpet” structure as the tension stress is almost uniform.

In addition, the QuadWire model provides details on stress distribution in the cross-section.
For instance for the thin-walled structure, even though the averaged shear stress σtn over the bead
cross-section is 0 for symmetry reasons, one can obtain the stress in each sector Sk by directly using
(65). The shear stress σtn in sector S1 is presented for different beads in figure 12. Very similar
result is obtained for sector S2 and opposite values are obtained for sectors S3 and S4. Therefore by
using (65) and (66), the QuadWire model provides rather detailed information about the 3D Cauchy
stress tensor distribution along both the tangential direction and in the cross-section. Stresses (65)
enable to capture defects such as buckling, while interface stresses (66) enable to capture defects
associated with delamination between beads.
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Figure 10: 3D stress computed from (65) averaged over the four sectors Sk (1 ≤ k ≤ 4) for the thin-walled structure.

7. Conclusion

Most additive manufacturing processes involve the juxtaposition of elongated beads to form
3D solid parts. Conventional simulation tools to capture stress and displacement evolution during
and after fabrication are essential but strongly limited by excessive computation cost. The key
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Figure 11: 3D stress computed from (65) averaged over the four sectors Sk (1 ≤ k ≤ 4) for the “carpet” structure.

contribution of this paper is the development of a mechanical model called QuadWire enabling
to reduce the total number of degrees of freedom by several orders of magnitude for large parts,
without compromising accuracy or limiting too much the level of detail that can be obtained from
numerical simulations. The QuadWire model is one-dimensional with 4 particles (i.e., 12 degrees
of freedom per material point), which enables to easily set kinematic relations between different
beads and therefore assemble a 3D solid part.

The computation cost reduction relies on the fact that conventional 3D approaches necessitate
at least 3 to 4 elements across the bead section, which results in fine discretization along the
tangential direction to avoid conditioning issues, and therefore very fine mesh of the entire 3D
part; whereas the bead height and thickness are internal dimensions in the QuadWire model so
that the mesh along the tangential direction can be much coarser. A finite element analysis has
been implemented in Python, and numerical results are in excellent agreement with conventional
3D computations with very fine mesh. Fused deposition modeling of polylactide (PLA) has been
simulated under different process conditions, and results are very similar to the existing literature
while significantly reducing computation time (by a factor of 70 for the studied examples). It should
be noted that performances can be further improved by using a compiled language for numerical
implementation. It should be noted that unlike inherent strain approaches, the proposed work does
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Figure 12: 3D stress computed from (65) in sector S1 for the thin-walled structure.

not rely on previously detailed 3D computations of the process, and can be directly applied to any
set of process parameters and part geometry.

This work opens interesting perspectives for numerical simulations of bead-based fabrication
processes such as most additive manufacturing processes, as it holds substantial potential for com-
putation cost reduction. Optimization strategies and real-time control (based on neural networks
relying on large databases) are therefore more accessible. Future work will focus on implementing
non-linear behavior in the QuadWire model.

Funding. : This work was supported by the French National Centre for Scientific Research (CNRS)
for project OPAC (MITI 80|PRIME).
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Appendix A. First and second gradient definition

In this section, first and second order gradients of the QuadWire model are defined in the
deformed configuration. It should be emphasized that since there are 4 particles defined along a
continuous and differentiable direction (i.e., curvilinear abscissa denoted by s), one should consider
a mixture of finite differences to account for relative movements between particles for a given s,
and proper differentiation to account for deformation along the s direction.

The generalized velocity field reads −→v (s) = (v1(s),v2(s),v3(s),v4(s)). The gradient along
the t direction corresponds to a differentiation of the average displacement v(s) with respect to s:

−→
∇ −→v (s).t(s) = v′(s) (A.1)

In addition, the QuadWire gradient along n and b is defined by considering directional finite
differences. To do so, consider the 4 midpoints:

y12(s) = 1
2 (x1(s) + x2(s)) = x(s) + δn

2 n(s)

y13(s) = 1
2 (x1(s) + x3(s)) = x(s) + δb

2 b(s)

y24(s) = 1
2 (x2(s) + x4(s)) = x(s) − δb

2 b(s)

y34(s) = 1
2 (x3(s) + x4(s)) = x(s) − δn

2 n(s)

(A.2)

It should be noted that δn and δb characterize the bead size in the reference configuration, but since
relative motions between particles are small, δn and δb are also used in the deformed configuration.
Using the operator defined in (22), and the average displacements at the midpoint, the directional
finite difference along n reads:

−→
∇ −→v (s).n(s) =

(
v1(s) + v2(s)

2

)
−
(

v3(s) + v4(s)
2

)
δn

= δnv(s)
δn

(A.3)

And the directional finite difference along b reads:

−→
∇ −→v (s).b(s) =

(
v1(s) + v3(s)

2

)
−
(

v2(s) + v4(s)
2

)
δb

= δbv(s)
δb

(A.4)

Hence the first order gradient definition:
−→
∇ −→v (s) = v′(s) ⊗ t(s) + δnv(s)

δn
⊗ n(s) + δbv(s)

δb
⊗ b(s) (A.5)

The second order gradient along t is obtained by considering the differentiation of the first
order gradient (A.5) with respect to s which reads:

−→
∇
[−→
∇ −→v

]
.t(s) = v′′(s) ⊗ t(s) + δnv′(s)

δn
⊗ n(s) + δbv′(s)

δb
⊗ b(s)

+v′(s) ⊗ t′(s) + δnv(s)
δn

⊗ n′(s) + δbv(s)
δb

⊗ b′(s)
(A.6)
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In addition local tensors of finite differences are considered at the 4 midpoints y12,y13,y24,y34,
and using the operator defined in (22), the second order gradient along n and b is therefore defined
as the following finite differences:

−→
∇
[−→
∇ −→v

]
.n(s) =

(
v1 − v2

δb

)
⊗ b(s) −

(
v3 − v4

δb

)
⊗ b(s)

δn
= δ×u(s)

δnδb
⊗ b(s) (A.7)

−→
∇
[−→
∇ −→v

]
.b(s) =

(
v1 − v3

δn

)
⊗ n(s) −

(
v2 − v4

δn

)
⊗ n(s)

δb
= δ×v(s)

δnδb
⊗ n(s) (A.8)

Hence the second order gradient for the QuadWire model is defined as follows:
−→
∇
[−→
∇ −→v

]
= v′′(s) ⊗ t(s) ⊗ t(s) + δnv′(s)

δn
⊗ n(s) ⊗ t(s) + δbv′(s)

δb
⊗ b(s) ⊗ t(s)

+v′(s) ⊗ t′(s) ⊗ t(s) + δnv(s)
δn

⊗ n′(s) ⊗ t(s) + δbv(s)
δb

⊗ b′(s) ⊗ t(s)

+δ
×v(s)
δnδb

⊗ (b(s) ⊗ n(s) + n(s) ⊗ b(s))

(A.9)

It should be noted that this definition of the second order gradient (A.9) is too rich when compared
to the corresponding dual generalized stress M defined in (20). Therefore, all the components of
the second order gradient (A.9) which are vanishing in

−→
∇
[−→
∇ −→u

] ... M are removed to define the
rate of deformation dχ leading to the definition (26).

Appendix B. Balance equations and boundary conditions

The balance and boundary conditions are derived from the weak form (31). Integration by
parts leads to the equilibrium equations of the QuadWire model:

f ext(s) + (Σ.t)′(s) = 0

mext
n (s) + (n(s) ⊗ t(s)) : M ′(s) − Σ(s).n(s) = 0

mext
b (s) + (b(s) ⊗ t(s)) : M ′(s) − Σ(s).b(s) = 0

mext
× (s) + M ′

×(s) − M (s) : (b(s) ⊗ n(s) + n(s) ⊗ b(s)) = 0

(B.1)

The boundary conditions are given by:

Σ(s).N (s) = F ext(s)

(n(s) ⊗ N (s)) : M (s) = M ext
n (s)

(b(s) ⊗ N (s)) : M(s) = M ext
b (s)

(t(s).N (s)) M×(s) = M ext
× (s)

(B.2)

where N (s) is the outgoing normal to the domain (i.e., for s = 0,N (s) = −t(s) and for
s = l,N (s) = t(s)).
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Appendix C. Crude homogenization procedure to regularize stiffness identification

In the following, the Helmholtz free energy per unit length is simply homogenized by assuming
linear interpolation of displacements for a bead with a square cross-section under infinitesimal
strain assumption. Of course, this homogenization leads to identifying the QuadWire model as
a simple single hexahedron element in 3D, which is not the aim of the proposed work. But this
homogenization is only meant to reduce the total number of stiffness components involved in the
QuadWire model and provide a reasonable initial guess for the optimization (63). The initial
curvature is neglected (i.e., t′(s) = n′(s) = b′(s) = 0), which is consistent with linear FEA. For
each material point of QuadWire consider the following hexahedron RVE in 3D denoted by Ωs:

Ωs =
{

(xt, xnxb) ∈
(
s− lc

2 , s+ lc
2

)
×
(

−δn

2 ,
δn

2

)
×
(

−δb

2 ,
δb

2

)}
(C.1)

where lc (m) is a characteristic length, which can be assimilated to the element mesh size in FEA.
The 3D displacement field is depicted for each strain component in figures C.13, C.14 and C.15.

For second and third order gradient components, the 3D displacement field is not uniform in Ωs.
Consider the 3D displacement field denoted by U 3D which reads:

U 3D(xt, xn, xb) =
(
u′

t (xt − s) + δnut

δn
xn + δbut

δb
xb + δ×ut

δn δb
xn xb

+ δnu′
t

δn
xn (xt − s) + δbu′

t

δb
xb (xt − s) + δ×u′

t

δn δb
(xt − s)xn xb

)
t

+
(
u′

n (xt − s) + δnun

δn
xn + δbun

δb
xb + δ×un

δn δb
xn xb

+ δnu′
n

δn
xn (xt − s) + δbu′

n

δb
xb (xt − s) + δ×u′

n

δn δb
(xt − s)xn xb

)
n

+
(
u′

b (xt − s) + δnub

δn
xn + δbub

δb
xb + δ×ub

δn δb
xn xb

+ δnu′
b

δn
xn (xt − s) + δbu′

b

δb
xb (xt − s) + δ×u′

b

δn δb
(xt − s)xn xb

)
b

(C.2)

Thus, using (24), (26) and (27) the 3D strain denoted by ε reads:

ε(xt, xn, xb) = (t ⊗ t) (ξtt + χtnt xn + χtbt xb + γt xn xb)

+ (n ⊗ n) (ξnn + χnnb xb + χnnt (xt − s) + γn (xt − s)xb)

+ (b ⊗ b) (ξbb + χbnb xn + χbbt (xt − s) + γb (xt − s)xn)

+1
2 (t ⊗ n + n ⊗ t) (2ξtn + (χnbt + χtnb)xb + χtnt (xt − s) + χnnt xn

+γt (xt − s)xb + γn xn xb)

+1
2 (t ⊗ b + b ⊗ t) (2ξtb + (χtnb + χbnt)xn + χtbt (xt − s) + χbbt xb

+γt (xt − s)xn + γb xn xb)

+1
2 (n ⊗ b + b ⊗ n) (2ξnb + χnnb xn + (χnbt + χbnt) (xt − s) + χbnb xb

+γn (xt − s)xn + γb (xt − s)xb)
(C.3)
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Figure C.13: 3D displacements for the first gradient components.

Which reads:
ε = ξ + ((xt − s) Lt + xn Ln + xb Lb)

... χ
+ ((xt − s)xn Ltn + (xt − s)xb Ltb + xn xb Lnb) .γ

(C.4)

where following localization fifth order tensors have been introduced:

L t = n ⊗ n ⊗ t ⊗ n ⊗ n + b ⊗ b ⊗ t ⊗ b ⊗ b
+1

2 (t ⊗ n + n ⊗ t) ⊗ t ⊗ n ⊗ t
+1

2 (t ⊗ b + b ⊗ t) ⊗ t ⊗ b ⊗ t
+1

2 (n ⊗ b + b ⊗ n) ⊗ (t ⊗ b ⊗ n + t ⊗ n ⊗ b)

(C.5)
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Figure C.14: 3D displacements for the second gradient components.

L n = t ⊗ t ⊗ t ⊗ n ⊗ t + b ⊗ b ⊗ b ⊗ n ⊗ b
+1

2 (t ⊗ n + n ⊗ t) ⊗ t ⊗ n ⊗ n
+1

2 (t ⊗ b + b ⊗ t) ⊗ (b ⊗ n ⊗ t + t ⊗ n ⊗ b)
+1

2 (n ⊗ b + b ⊗ n) ⊗ b ⊗ n ⊗ n

(C.6)

L b = t ⊗ t ⊗ t ⊗ b ⊗ t + n ⊗ n ⊗ b ⊗ n ⊗ n
+1

2 (t ⊗ n + n ⊗ t) ⊗ (t ⊗ b ⊗ n + b ⊗ n ⊗ t)
+1

2 (t ⊗ b + b ⊗ t) ⊗ t ⊗ b ⊗ b
+1

2 (n ⊗ b + b ⊗ n) ⊗ b ⊗ n ⊗ b

(C.7)

And where following localization third order tensors have been introduced:

Ltn = b ⊗ b ⊗ b + 1
2 (t ⊗ b + b ⊗ t) ⊗ t + 1

2 (n ⊗ b + b ⊗ n) ⊗ n (C.8)

Ltb = n ⊗ n ⊗ n + 1
2 (t ⊗ n + n ⊗ t) ⊗ t + 1

2 (n ⊗ b + b ⊗ n) ⊗ b (C.9)
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Figure C.15: 3D displacements for the third gradient components.

Lnb = t ⊗ t ⊗ t + 1
2 (t ⊗ n + n ⊗ t) ⊗ n + 1

2 (t ⊗ b + b ⊗ t) ⊗ b (C.10)

Furthermore, one can notice that the average volume variation is related to the average trace
operator, i.e., (1/|Ωs|)

∫
Ωs

tr (ε) dΩ = tr(ξ). The Helmholtz free energy per unit length is defined
in (60) and reads for ∆T = 0 and Γ = 0:

ρψ(s) = 1
2 ξ(s) :

(
Rξ : ξ(s) + Rξχ ... χ(s) + Rξγ.γ(s)

)
︸ ︷︷ ︸

Σ(s)
+1

2 χ(s) ...
(

Rχ ... χ(s) + ξ(s) : Rξχ + Rχγ.γ(s)
)

︸ ︷︷ ︸
M (s)

+1
2 γ(s).

(
Rγ.γ(s) + ξ(s) : Rξγ + χ(s) ... Rχγ

)
︸ ︷︷ ︸

M×(s)

(C.11)

The free energy per unit length denoted by ρ3D ψ3D(s) (J.m−1) of the 3D model is calculated as
the average value along the tangential direction t of the total free energy in the RVE, hence:

ρ3D ψ3D(s) = 1
2 lc

∫ lc
2

− lc
2

∫ δn
2

− δn
2

∫ δb
2

− δb
2

ε : C : ε︸ ︷︷ ︸
σ

dxt dxn dxb (C.12)

where C is the Cauchy stiffness matrix.
Consider an isotropic material with bulk and shear moduli denoted by k0 (MPa) and µ (MPa)

respectively. Hence the Cauchy stress tensor σ reads:

σ = k0
tr(ε)

3 1 + 2µ dev(ε) (C.13)
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By decomposing the elastic 3D strain as follows ε = tr(ε)
3 1 + dev(ε) we obtain:

ρ3Dψ3D(s) = 1
2 lc

∫ lc
2

− lc
2

∫ δn
2

− δn
2

∫ δb
2

− δb
2

(
k0

tr(ε)2

3 + 2µ dev(ε) : dev(ε)
)

dxt dxn dxb (C.14)

From (C.4) the following expression holds:

ρ3Dψ3D(s) = 1
2

(
δnδb

(
k0
3 tr(ξ)2 + 2µ dev(ξ) : dev(ξ)

)
+ l2cδnδb

12

(
k0
3 tr

(
L t

... χ
)2

+ 2µ dev
(

L t
... χ
)

: dev
(

L t
... χ
))

+ δn3δb
12

(
k0
3 tr

(
L n

... χ
)2

+ 2µ dev
(

L n
... χ
)

: dev
(

L n
... χ
))

+ δb3δn
12

(
k0
3 tr

(
L b

... χ
)2

+ 2µ dev
(

L b
... χ
)

: dev
(

L b
... χ
)))

(C.15)

Which rewrites as follows:

ρ3Dψ3D(s) = δnδb

2

(
ξ : C : ξ + l2c

12 χ
... Ct

... χ + δn2

12 χ
... Cn

... χ + δb2

12 χ
... Cb

... χ
)

(C.16)

where the following sixth order tensors have been defined Ct =
(

†L t : C : L t

)
, Cn =

(
†L n : C : L n

)
and Cb =

(
†L b : C : L b

)
, and where the pseudo transposition of fifth order tensors has been

defined as follows:
∀(i, j,k, l,m) ∈ {t,n, b}5 ,
† (i ⊗ j ⊗ k ⊗ l ⊗ m) = (k ⊗ l ⊗ m ⊗ i ⊗ j) (C.17)

By identifying (C.11) and (C.16) one obtains the homogenized stiffness tensors:
Rξχ = 0 Rξγ = 0 Rχγ = 0 Rγ = 0
Rξ = δnδbC

Rχ= δnδb

[(
l2c
12

)
Ct +

(
δn2

12

)
Cn +

(
δb2

12

)
Cb

] (C.18)

A direct calculation gives the following component-wise expression:

Ct = k0 + 4µ
3 (t ⊗ n ⊗ n ⊗ t ⊗ n ⊗ n + t ⊗ b ⊗ b ⊗ t ⊗ b ⊗ b)

+k0 − 2µ
3 (t ⊗ n ⊗ n ⊗ t ⊗ b ⊗ b + t ⊗ b ⊗ b ⊗ t ⊗ n ⊗ n)

+µ(t ⊗ n ⊗ t ⊗ t ⊗ n ⊗ t + t ⊗ b ⊗ t ⊗ t ⊗ b ⊗ t)
+µ(t ⊗ n ⊗ b + t ⊗ b ⊗ n) ⊗ (t ⊗ n ⊗ b + t ⊗ b ⊗ n))

(C.19)

Cn = k0 + 4µ
3 (t ⊗ n ⊗ t ⊗ t ⊗ n ⊗ t + b ⊗ n ⊗ b ⊗ b ⊗ n ⊗ b)

+k0 − 2µ
3 (t ⊗ n ⊗ t ⊗ b ⊗ n ⊗ b + b ⊗ n ⊗ b ⊗ t ⊗ n ⊗ t)

+µ(t ⊗ n ⊗ n ⊗ t ⊗ n ⊗ n + b ⊗ n ⊗ n ⊗ b ⊗ n ⊗ n)
+µ(b ⊗ n ⊗ t + t ⊗ n ⊗ b) ⊗ (b ⊗ n ⊗ t + t ⊗ n ⊗ b))

(C.20)
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Cb = k0 + 4µ
3 (t ⊗ b ⊗ t ⊗ t ⊗ b ⊗ t + b ⊗ n ⊗ n ⊗ b ⊗ n ⊗ n)

+k0 − 2µ
3 (t ⊗ b ⊗ t ⊗ b ⊗ n ⊗ n + b ⊗ n ⊗ n ⊗ t ⊗ b ⊗ t)

+µ(t ⊗ b ⊗ b ⊗ t ⊗ b ⊗ b + b ⊗ n ⊗ b ⊗ b ⊗ n ⊗ b)
+µ(b ⊗ n ⊗ t + t ⊗ b ⊗ n) ⊗ (b ⊗ n ⊗ t + t ⊗ b ⊗ n))

(C.21)

Therefore the 6 × 6 matrix Rξ and the 9 × 9 matrix Rχ defined Appendix D reduce to:

Rξ =



p1 p7 p8 0 0 0
p7 p2 p9 0 0 0
p8 p9 p3 0 0 0
0 0 0 p4 0 0
0 0 0 0 p5 0
0 0 0 0 0 p6


(C.22)

Rχ =



p10 0 0 0 0 0 0 0 p21
0 p11 0 0 0 p19 0 0 0
0 0 p12 0 p20 0 p22 0 0
0 0 0 p13 0 0 0 p23 0
0 0 p20 0 p14 0 p24 0 0
0 p19 0 0 0 p15 0 0 0
0 0 p22 0 p24 0 p16 0 0
0 0 0 p23 0 0 0 p17 0
p21 0 0 0 0 0 0 0 p18


(C.23)

And the initial guess denoted by p0 used in the minimization (63) reads:

p0
1 = p0

2 = p0
3 = A1 p0

4 = p0
5 = p0

6 = 4A2 p0
7 = p0

8 = p0
9 = A3 (C.24)

p0
10 = l2c

12 A2 + δn2

12 A1 p0
11 = l2c

12 A1 + δn2

12 A2 p0
12 =

(
l2c
12 + δn2

12

)
A2

p0
13 = l2c

12 A2 + δb2

12 A1 p0
14 =

(
l2c
12 + δb2

12

)
A2 p0

15 = l2c
12 A1 + δb2

12 A2

p0
16 =

(
δn2

12 + δb2

12

)
A2 p0

17 = δn2

12 A2 + δb2

12 A1 p0
18 = δn2

12 A1 + δb2

12 A2

p0
19 = l2c

12 A3 p0
20 = l2c

12 A2 p0
21 = δn2

12 A3

p0
22 = δn2

12 A2 p0
23 = δb2

12 A3 p0
24 = δb2

12 A2

(C.25)

where:
A1 = δn δb

(
k0 + 4µ

3

)
A2 = δn δb µ A3 = δn δb

(
k0 − 2µ

3

)
(C.26)

In addition, the optimized stiffness parameter p† reads:
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Table C.1: Optimized stiffness parameters p† in (N).

p†
1 = p†

2 = p†
3 = 40.38 p†

4 = p†
5 = p†

6 = 46.15 p†
7 = p†

8 = p†
9 = 17.31

Table C.2: Optimized stiffness parameters p† in (×10−4 N.mm2).

p†
10 = 259 p†

11 = 97.7 p†
12 = 93.9 p†

13 = 259 p†
14 = 93.9

p†
15 = 97.7 p†

16 = 559 p†
17 = 730 p†

18 = 730 p†
19 = 2.77

p†
20 = 11.5 p†

21 = 40.7 p†
22 = 92.1 p†

23 = 40.7 p†
24 = 92.1

It should be noted that isotropic material was considered to simplify the calculations, but in
practice, a similar result with vanishing coupling stiffness tensors is obtained with orthotropic
behavior. A similar situation is observed in plate theory, where orthotropic behavior leads to the
decoupling between membrane and bending forces.

Appendix D. Finite elements discretization

In this section, a first order FEA is derived, where the initial curvature of each element
is neglected. The general thermo-elastic behavior including eigenstrain derived in Section 4
is considered. The generalized displacements are determined by discretizing the virtual power
principle (31), which rewrites as follows:∫

C

(
ξ̇

∗(s) : Rξ : ξ(s) + χ̇∗(s) ... Rχ ... χ(s) + γ̇∗(s).Rγ.γ(s)

+ξ̇
∗(s) : Rξχ ... χ(s) + ξ(s) : Rξχ ... χ̇∗(s) + ξ̇

∗(s) : Rξγ.γ(s) + ξ(s) : Rξγ.γ̇∗(s)
+χ̇∗(s) ... Rχγ.γ(s) + χ(s) ... Rχγ.γ̇∗(s)

)
ds

=
∫

C

(
ξ̇

∗(s) : Rξ :
(
αξ ∆T (s) + βξ Γ(s)

)
+ χ̇∗(s) ... Rχ ... (αχ ∆T (s) + βχ Γ(s))

+ γ̇∗(s).Rγ. (αγ ∆T (s) + βγ Γ(s))) ds

+
∫

C

(
f ext(s).v∗(s) + mext

n (s).δ
n−→v ∗(s)
δn

+ mext
b (s).δ

b−→v ∗(s)
δb

+ mext
× (s).δ

×−→v ∗(s)
δn δb

)
ds

+
K∑

k=1
F ext(sk).v∗(sk) + M ext

n (sk).δ
n−→v ∗(sk)
δn

+ M ext
b (sk).δ

b−→v ∗(sk)
δb

(D.1)
where ξ,χ,γ are the solution generalized strains being defined as in (24), (26) and (27) but using
generalized displacements denoted by −→u ∈ U , where U is the set of kinematically admissible
generalized displacements defined as in (8) but replacing velocities by displacements. In addi-
tion, (D.1) should be verified for all −→v ∗ ∈ V∗ defined in (9) from which ξ̇

∗
, χ̇∗ and γ̇∗ are obtained

by using (24), (26) and (27). In addition, the domain C is not necessarily composed of a unique
line but can involve several disconnected parts, where K is the number of ending points denoted
by sk with 1 ≤ k ≤ K.

Consider a mesh denoted by Cmesh containing Ne elements denoted by Cj = (x(sj0),x(sj1))
where x(sj0) and x(sj1) both belong to C, with sj0 < sj1 (1 ≤ j ≤ Ne), and Cmesh = ⋃Ne

j=1 Cj .
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Consider a reference element defined by virtual abscissa η ∈ (0, 1), and linear shape functions
denoted by η 7→ N0(η) and η 7→ N1(η) such as:

η ∈ (0, 1) 7→ N0(η) = 1 − η and η ∈ (0, 1) 7→ N1(η) = η (D.2)

Thus, for each element j ∈ {1, · · · , Ne}, any curvilinear abscissa s ∈ (sj0, sj1) is written as
follows:

s(η) = sj0 N0(η) + sj1 N1(η) ⇒ ds = lj dη (D.3)

where lj = sj1 − sj0 is the element length.
The solution displacement denoted by −→u (s) = (u1(s),u2(s),u3(s),u4(s)) is represented as

a 12 × 1 matrix denoted by U(s) where components are arranged as follows:

U(s) =
(
u1t u2t u3t u4t u1n u2n u3n u4n u1b u2b u3b u4b

)
⊤ (D.4)

It should be noted that similar definitions hold for virtual motions. The displacement U(s) is
approximated as a function of nodal displacements in the global coordinate system denoted by Uj0
and Uj1 of size 12 × 1. Hence for each element j ∈ {1, · · · , Ne}:

U(s) ≈ N(η)Pj Uj (D.5)

where Uj and Pj are the following 24 × 1 and 24 × 24 matrices (where dots stand for 12 × 12 zero
matrices):

Uj =
(
Uj0
Uj1

)
and Pj =

(
P̊j ·
· P̊j

)
(D.6)

where P̊j is the 12 × 12 transition matrix between local and global coordinate systems of the j-th
element. In addition N(η) is the following 12 × 24 matrix:

N(η) =
(
N0(η)I12 N1(η)I12

)
(D.7)

where I12 is the 12 × 12 identity matrix. Furthermore:

U ′(s) ≈ N ′(η)Pj Uj (D.8)

where the derivation is considered with respect to the curvilinear abscissa s, hence N ′(η) reads as
the following 12 × 24 matrix for each element j ∈ {1, · · · , Ne}:

N ′(η) = 1
lj

(
−I12 I12

)
(D.9)

Consider P̊ the following 4 × 4 transition matrix and P the 24 × 24 block matrix (where dots stand
for 4 × 4 zero matrices):

36



P̊ =



1
4

1
4

1
4

1
4

1
2

1
2 −1

2 −1
2

1
2 −1

2
1
2 −1

2
1 −1 −1 1


(D.10) P =



P̊ · · · · ·
· P̊ · · · ·
· · P̊ · · ·
· · · P̊ · ·
· · · · P̊ ·
· · · · · P̊


(D.11)

In addition, applying the operator (21) consider the 12 × 1 matrix:

δU(s) =
(
ut δnut δbut δ×ut un δnun δbun δ×un ub δnub δbub δ×ub

)
⊤ (D.12)

Hence δU(s) is written as follows:

δU(s) ≈ N(η)P Pj Uj (D.13)

The second order symmetric tensor ξ(s) is represented by a 6 × 1 matrix, which reads according
to the definition (24):

ξ(s) =
(
u′

t
δnun

δn
δbub

δb
1
2

(
u′

n + δnut

δn

)
1
2

(
u′

b + δbut

δb

)
1
2

(
δnub

δn
+ δbun

δb

) )
⊤ (D.14)

Therefore the generalized strain is approximated in the j-th element as follows:

ξ(s) ≈ Bj(η)Uj (D.15)

where the following 6 × 24 matrix has been introduced:

Bj(η) = (B0N(η) +B1N
′(η)) P Pj (D.16)

whereB0 andB1 are 6×12 matrices determined by using the first gradient definition (24) and (25),
which read (where dots stand for 0):

B0 =



· · · · · · · · · · · ·
· · · · · 1

δn
· · · · · ·

· · · · · · · · · · 1
δb

·
· 1

2δn
· · · · · · · · · ·

· · 1
2δb

· · · · · · · · ·
· · · · · · 1

2δb
· · 1

2δn
· ·


B1 =



1 · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · 1

2 · · · · · · ·
· · · · · · · · 1

2 · · ·
· · · · · · · · · · · ·


(D.17)

In addition, the first generalized strain tensor χ(s) ∈ T 3
χ is represented by a 9 × 1 matrix, which

reads according to the definition (26):

χ(s) =
(

δnu′
t

δn
δnu′

n

δn

δnu′
b

δn

δbu′
t

δb
δbu′

n

δb

δbu′
b

δb
δ×ut

δnδb
δ×un

δnδb
δ×ub

δnδb

)
⊤ (D.18)

Therefore the second generalized strain is approximated in the j-th element as follows:

χ(s) ≈ Cj(η)Uj (D.19)
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where the following 9 × 24 matrix has been introduced:

Cj(η) = (C0N(η) + C1N
′(η)) P Pj (D.20)

whereC0 andC1 are 9×12 matrices determined by using the second order gradient definition (26),
which read (where dots stand for 0):

C0 =



· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · 1

δn δb
· · · · · · · ·

· · · · · · · 1
δn δb

· · · ·
· · · · · · · · · · · 1

δn δb


C1 =



· 1
δn

· · · · · · · · · ·
· · · · · 1

δn
· · · · · ·

· · · · · · · · · 1
δn

· ·
· · 1

δb
· · · · · · · · ·

· · · · · · 1
δb

· · · · ·
· · · · · · · · · · 1

δb
·

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·


(D.21)

In addition the, the strain γ(s) ∈ R3 is represented by a 3 × 1 matrix, which reads according to the
definition (27):

γ(s) =
(

δ×u′
t

δnδb
δ×u′

n

δnδb

δ×u′
b

δnδb

)
⊤ (D.22)

Therefore the third generalized strain is approximated in the j-th element as follows:

γ(s) ≈ Dj(η)Uj (D.23)

where the following 3 × 24 matrix has been introduced:

Dj(η) = D1 N
′(η)P Pj (D.24)

where D1 is the following 3 × 12 matrices:

D1 =

 · · · 1
δnδb

· · · · · · · ·
· · · · · · · 1

δnδb
· · · ·

· · · · · · · · · · · 1
δnδb

 (D.25)

Thus, the left-hand side of (D.1) is approximated as follows:∫
C

(
ξ̇

∗(s) : Rξ : ξ(s) + χ̇∗(s) ... Rχ ... χ(s) + γ̇∗(s).Rγ.γ(s) + · · ·
)

ds ≈
J∑

j=1
V ∗

j
⊤ Kj Uj (D.26)

where V ∗
j is the virtual nodal motion defined similarly as Uj , in addition Kj is a 24 × 24 matrix

called element stiffness, which reads:

Kj =
∫ 1

0
lj
(
Bj(η)⊤RξBj(η) + Cj(η)⊤RχCj(η) +Dj(η)⊤RγDj(η)

+Bj(η)⊤RξχCj(η) + Cj(η)⊤Rξχ⊤Bj(η)

+Bj(η)⊤RξγDj(η) +Dj(η)⊤Rξγ ⊤Bj(η)

+Cj(η)⊤RχγDj(η) +Dj(η)⊤Rχγ ⊤Cj(η)
)

dη

(D.27)
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where Rξ, Rχ and Rγ are respectively 6 × 6, 9 × 9 and 3 × 3 positive-definite matrices. Moreover
Rξχ,Rξγ andRχγ are respectively 6×9, 6×3 and 9×3 matrices. The integral (D.27) is computed
using classical Gauss-Legendre quadrature of order NG = 2, where Gauss points are defined as
ηG

1 =
(
1 − 1/

√
3
)
/2 and ηG

2 =
(
1 + 1/

√
3
)
/2 and weights wG

1 = wG
2 = 0.5, hence:

Kj =
NG∑
i=1

wG
i lj

(
Bj(ηG

i )⊤RξBj(ηG
i ) + Cj(ηG

i )⊤RχCj(ηG
i ) +Dj(ηG

i )⊤RγDj(ηG
i )

+Bj(ηG
i )⊤RξχCj(ηG

i ) + Cj(ηG
i )⊤Rξχ⊤Bj(ηG

i )

+Bj(ηG
i )⊤RξγDj(ηG

i ) +Dj(ηG
i )⊤Rξγ ⊤Bj(ηG

i )

+Cj(ηG
i )⊤RχγDj(ηG

i ) +Dj(ηG
i )⊤Rχγ ⊤Cj(ηG

i )
)

(D.28)

The temperature variation ∆T (s) and the state variable Γ(s) are approximated by using nodal
values ∆Tj0 and ∆Tj1 (resp. Γj0 and Γj1) as follows:

∆T (s) ≈ Ñ(η) ∆Tj and Γ(s) ≈ Ñ(η) Γj (D.29)

where ∆Tj and Γj are the following 2 × 1 matrices ∆Tj =
(

∆Tj0 ∆Tj1
)

⊤ and Γj =(
Γj0 Γj1

)
⊤ and Ñ(η) is the following 1 × 2 matrix Ñ(η) =

(
N0(η) N1(η)

)
. Thus,

the first integral of the right-hand side of (D.1) reads:

∫
C

(
ξ̇

∗(s) : Rξ : αξ + χ̇∗(s) ... Rχ ... αχ + γ̇∗(s) : Rγ : αγ
)

∆T (s) ds ≈
J∑

j=1
V ∗

j
⊤ f th

j ∆Tj

∫
C

(
ξ̇

∗(s) : Rξ : βξ + χ̇∗(s) ... Rχ ... βχ + γ̇∗(s) : Rγ : βγ
)

Γ(s) ds ≈
J∑

j=1
V ∗

j
⊤ f eig

j Γj

(D.30)
where f th

j and f eig
j are the following 24 × 2 matrices:

f th
j =

∫ 1

0
lj
(
Bj(η)⊤ Rξ αξ + Cj(η)⊤ Rχ αχ +Dj(η)⊤ Rγ αγ

)
Ñ(η) dη

≈
NG∑
i=1

wG
i lj

(
Bj(ηG

i )⊤ Rξ αξ + Cj(ηG
i )⊤ Rχ αχ +Dj(ηG

i )⊤ Rγ αγ
)
Ñ(ηG

i )

f eig
j =

∫ 1

0
lj
(
Bj(η)⊤Rξ βξ + Cj(η)⊤ Rχ βχ +Dj(η)⊤ Rγ βγ

)
Ñ(η) dη

≈
NG∑
i=1

wG
i lj

(
Bj(ηG

i )⊤ Rξ βξ + Cj(ηG
i )⊤ Rχ βχ +Dj(ηG

i )⊤ Rγ βγ
)
Ñ(ηG

i )

(D.31)

where αξ and βξ are 6 × 1 matrices, αχ and βχ are a 9 × 1 matrices, and αγ and βγ are 3 × 1
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matrices such as:

αξ =
(
αξ

tt αξ
nn αξ

bb αξ
tn αξ

tb αξ
nb

)
⊤

αχ =
(
αχ

tnt αχ
nnt αχ

bnt αχ
tbt αχ

nbt αχ
bbt αχ

tnb αχ
nnb αχ

bnb

)
⊤

αγ =
(
αγ

t αγ
n αγ

b

)
⊤

βξ =
(
βξ

tt βξ
nn βξ

bb βξ
tn βξ

tb βξ
nb

)
⊤

βχ =
(
βχ

tnt βχ
nnt βχ

bnt βχ
tbt βχ

nbt βχ
bbt βχ

tnb βχ
nnb βχ

bnb

)
⊤

βγ =
(
βγ

t βγ
n βγ

b

)
⊤

(D.32)

Similarly, the second integral of the right-hand side of (D.1) reads:∫
C

(
f ext(s).v∗(s) + mext

n (s).δ
n−→v ∗(s)
δn

+ mext
b (s).δ

b−→v ∗(s)
δb

+ mext
× (s).δ

×−→v ∗(s)
δn δb

)
ds ≈

J∑
j=1

V ∗
j

⊤ f ext
j

(D.33)
where f ext

j is the following 24 × 1 matrix:

f ext
j =

∫ 1

0
ljP

⊤ N(η)⊤ f ext(η) dη ≈
NG∑
i=1

wG
i lj P

⊤ N(ηG
i )⊤ f ext(ηG

i ) (D.34)

where f ext(s) is the following 12 × 1 matrix:

f ext(s) =
(
f ext

t

mext
n,t

δn

mext
b,t

δb

mext
×,t

δn δb
f ext

n
mext

n,n

δn

mext
b,n

δb

mext
×,n

δn δb
f ext

b

mext
n,b

δn

mext
b,b

δb

mext
×,b

δn δb

)
⊤

(D.35)
Considering that the last term in the weak form (D.1) applies to the ending points sk (with

1 ≤ k ≤ K) of the lines included in the domain, the corresponding virtual abscissa is η = 0 (resp.
η = 1) for sk = sjk0 (resp. sk = sjk1) where jk is the unique element containing the ending point
sk. Hence:

K∑
k=1

F ext(sk).v∗(sk) + M ext
n (sk).δ

n−→v ∗(sk)
δn

+ M ext
b (sk).δ

b−→v ∗(sk)
δb

≈
J∑

j=1
V ∗

j
⊤ F ext

j (D.36)

where F ext
j is the following 24 × 1 matrix:

F ext
j =


P⊤ N(0)⊤ F ext(sj0) if ∃k ∈ {1, · · · , K} , sk = sj0
P⊤ N(1)⊤ F ext(sj1) if ∃k ∈ {1, · · · , K} , sk = sj1
0 else

(D.37)

where F ext(s) is the following 12 × 1 matrix:

F ext(s) =
(
F ext

t

Mext
n,t

δn

Mext
b,t

δb

Mext
×,t

δnδb
F ext

n
Mext

n,n

δn

Mext
b,n

δb

Mext
×,n

δnδb
F ext

b

Mext
n,b

δn

Mext
b,b

δb

Mext
×,b

δnδb

)
⊤

(D.38)
The weak formulation (D.1) therefore reduces to:

∀−→v ∗ ∈ V∗,
J∑

j=1
V ∗

j
⊤ Kj Uj =

J∑
j=1

V ∗
j

⊤
(
f th

j ∆Tj + f eig
j Γj + f ext

j + F ext
j

)
(D.39)
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After standard assembly procedure one obtains (where brackets are used to denote assembled
entities over all Ne elements of the mesh):

∀ [V ]∗ ∈ R12N , [V ]∗ ⊤ [̃K] [U ] = [V ]∗ ⊤
[
F tot

]
(D.40)

Where: [
F tot

]
=
[
f th
]

⊤ [∆T ] +
[
f eig

]
⊤ [Γ] +

[
f ext

]
+
[
F ext

]
(D.41)

Since there are 12 DoF for each node, [V ]∗ and [U ] are the assembled 12N × 1 virtual motion and
solution displacement matrices in the global coordinate system, whereN is the number of nodes in
the mesh, [̃K] is the assembled 12N × 12N stiffness matrix, [∆T ] , [Γ] are the assembled 12N × 1
temperature variation and additional state variable respectively, and

[
f th
]
, [f eig], [f ext] and [F ext]

are the assembled 12N × 1 force matrices.
In addition, let there be Nkin kinematic relations (e.g., with the build platform or between

different beads), therefore there are only Ndof = 12N − Nkin DoF in total. Consider [U ]dof of
size Ndof × 1 the displacement components corresponding to these remaining DoF, and [U ]kin
corresponding to the components fixed by the kinematic relations (and similarly for [V ]∗) written
in the form:

[U ]kin = [C]kin [U ]dof + [U ]0 (D.42)

where [C]kin is a known Nkin × Ndof matrix capturing the relationships between displacement
components, and [U0] is a known Nkin × 1 matrix of imposed displacements. Thus, consider
V∗

dof ⊂ R12N the set of nodal virtual motions defined according to (9), which reads:

V∗
dof =

{
[V ]∗ ∈ R12N , [V ]∗kin = 0

}
(D.43)

Thus, one cannot cancel [V ]∗ ⊤ from both sides in (D.40) as there are Nkin zero components in
[V ]∗. The system needs to be reduced, and in practice 12N × Nkin and 12N × Ndof matrices
respectively denoted by [L]kin and [L]dof are introduced such as:

[U ] =
(

[L]dof [L]kin

) ( [U ]dof
[U ]kin

)
(D.44)

Thus, using [V ]∗kin = 0 the system (D.40) reduces to:

∀ [V ]∗dof ∈ RNdof , [V ]∗dof
⊤ [K] [U ]dof = [V ]∗dof

⊤ [f ]dof (D.45)

where the Ndof ×Ndof reduced global stiffness matrix has been introduced:

[K] = [L] ⊤
dof [̃K] ([L]dof + [L]kin [C]kin) (D.46)

And where the modified Ndof × 1 force matrix accounting for kinematic relations and boundary
conditions has been introduced:

[f ]dof = [L]dof
⊤
(([

f eig
]

+
[
f ext

])
− [̃K] [L]kin [U ]0

)
(D.47)
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Eventually (D.45) reduces to:
[K] [U ]dof = [f ]dof (D.48)

The linear system (D.48) is then solved to obtain nodal displacements [U ]dof , which enables to
compute the remaining displacements [U ]kin through the kinematic relations (D.42). In addition,
stresses are computed at the Gauss points ηG

i in each element. This FEA has been implemented in
Python [29].

Appendix E. Gradient of the objective function

One can rewrite (63) as follows: p† = argmin
p∈R24

J(p) + ϵ ∥p− p0∥2

s.t. [K] (p) [U ]dof − [f ]dof (p) = 0
(E.1)

One can rewrite (64) as follows:

J(p) = 1
2

Ne∑
j=1

lj

(1
2U

⊤
j K

0
j (p)Uj − U⊤

j f
0
j (p) − ρ3Dψ3D

j

)2
(E.2)

whereNe is the number of elements along the tangential direction, lj is the j-th element length, Uj

is the nodal displacement vector in the j-th element (defined by (D.26), which depends on p since
it is a solution of (D.48)), and K0

j is the element stiffness matrix computed at the center of the j-th
element, which reads:

K0
j (p) = B0

j
⊤ Rξ(p)B0

j + C0
j

⊤ Rχ(p)C0
j (E.3)

where B0
j and C0

j are defined in (D.16) and (D.20) and computed at the center of the j-th element.
In addition f 0

j is a force vector computed at the center of the j-th element as follows:

f 0
j (p) = B0

j
⊤ Rξ(p) (αξ Ñ0 ∆Tj) (E.4)

where Ñ0 is the shape function vector computed at the center of the elements, and ∆Tj is the
nodal temperature change vector in the j-th element. In addition, ρ3Dψ3D

j is the free energy per
unit length of the 3D model computed at the center of the bead section corresponding to the j-th
element of the QuadWire mesh.

Nodal displacements in each element j are involved in (E.2), which is uneasy to use for
the minimization procedure as the mechanical equation (D.48) involves the assembled nodal
displacement [U ]dof instead. Since independent beads are considered for the optimization (i.e., there
are no kinematic relations between nodes of different beads) one can consider the matrixLj relating
nodal displacements in each element j and nodal displacements [U ]dof in the entire domain so that
for all j (with 1 ≤ j ≤ Ne):

Uj = Lj [U ]dof (E.5)
Hence the objective function rewrites as follows:

J(p) = 1
2

Ne∑
j=1

lj

(1
2 [U ]dof

⊤ Lj
⊤ K0

j (p)Lj [U ]dof − [U ]dof
⊤ Lj

⊤ f 0
j (p) − ρ3Dψ3D

j

)2
(E.6)
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A gradient-based algorithm is used to solve the minimization problem (63). To do so, an adjoint
problem is derived to compute the gradient composed of ∂J(p)/∂pm with 1 ≤ m ≤ 24. Consider
the following Lagrangian:

L (Q, y, p) = 1
2

Ne∑
j=1

lj

(1
2 Q

⊤ Lj
⊤ K0

j (p)Lj Q−Q⊤ Lj
⊤ f 0

j (p) − ρ3D ψ3D
j

)2

+y⊤ ([K] (p)Q− [f ]dof (p))
(E.7)

where Q is a dummy variable (which at optimality is equal to [U ]dof), and y is the Lagrange
multiplier or adjoint variable. The adjoint equation consists in finding a specific adjoint state y†

such as:
∂L
∂Q

(
[U ]dof , y

†, p
)

= 0 (E.8)

The adjoint equation therefore reduces to:

[K] (p)⊤ y† = −
Ne∑
j=1

lj
(
Lj

⊤ K0
i (p)Lj [U ]dof − Lj

⊤ f 0
j (p)

)
λj(p) (E.9)

where the scalar coefficients λj(p) read:

λj(p) = 1
2 [U ]dof

⊤ Lj
⊤ K0

j (p)Lj [U ]dof − [U ]dof
⊤ Lj

⊤ f 0
j (p) − ρ3D ψ3D

j (E.10)

Considering y† the solution of the adjoint problem (E.9) one obtains the successive derivatives of
the objective function for 1 ≤ m ≤ 24:

∂J(p)
∂pm

=
Ne∑
j=1

lj λj(p)
(

1
2 [U ]dof

⊤ Lj
⊤ ∂K0

j (p)
∂pm

Lj [U ]dof − [U ]dof
⊤ Lj

⊤ ∂f 0
j (p)
∂pm

)

+y†⊤
(
∂ [K] (p)
∂pm

[U ]dof − ∂ [f ]dof (p)
∂pm

) (E.11)

The application of (E.11) only necessitates to compute ∂Rξ(p)/∂pm and ∂Rχ(p)/∂pm which is
obvious as p are the non-zero components of Rξ and Rχ.
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