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Abstract. In the realm of cybersecurity, logging system and application
activity is a crucial technique to detect and understand cyberattacks by
identifying Indicators of Compromise (IoCs). Since these logs can take
vast amounts of disk space, it can be tempting to delegate their storage
to an external service provider. This requires to encrypt the data, so the
service provider does not have access to possibly sensitive information.
However, this usually makes it impossible to search for relevant informa-
tion in the encrypted log. To address this predicament, this paper delves
into the realm of modern cryptographic tools to reconcile the dual ob-
jectives of protecting log data from prying eyes while enabling controlled
processing. We propose a comprehensive framework that contextualizes
log data and presents several mechanisms to solve the outsourcing prob-
lem, allowing searchable encryption, and we apply our approach to DNS
logs. Our contributions include the introduction of two novel schemes,
namely symmetric and asymmetric, which facilitate efficient and secure
retrieval of intrusion detection-related information from encrypted out-
sourced storage. Furthermore, we conduct extensive experiments on a
test bed to evaluate and compare the effectiveness of the different so-
lutions, providing valuable insights into the practical implementation of
our proposed infrastructure for monitoring encrypted logs.

Keywords: Forensics · Indicators of Compromise · Searchable Encryption.

1 Introduction and Motivation

In the recent years, the amount of encrypted data (either in transit or at rest)
has increased drastically. This is a good thing from the point of view of the
privacy since it significantly reduces the exposition of personal data to cyberat-
tacks. This, however, poses new challenges for information system administrators
whose monitoring solutions have become obsolete in the face of user-generated
traffic. Should we keep the data relevant to intrusion detection systems (IDSes)
in cleartext at the cost of the confidentiality of communications by exposing
sensitive information to an external third party? Or should we accept that our
detection tools have become blind?
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In the realm of intrusion detection, the necessity to maintain system and
application logs often results in the accumulation of extensive data volumes, a
scenario that lends itself to potential outsourcing. Moreover, the sheer magni-
tude of data generated through DNS logs presents a significant predicament for
organizations, prompting meticulous deliberation regarding storage solutions. A
standard DNS log entry, contingent upon its complexity, consumes between 100
and 1000 bytes of storage. Each operational day, a single machine generates be-
tween 1000 and 10,000 DNS requests, each contributing to the accumulation of
log data. For an organization comprising 50 machines, operating on the premise
of 200 working days annually, the yearly DNS log data volume can oscillate from 1
gigabyte (109 bytes) to a staggering 100 gigabytes (1011 bytes). This underscores
the substantial storage requisites that organizations confront in effectively man-
aging these logs. Notably, this circumstance further accentuates the imperative
to reconcile ostensibly conflicting objectives: the imperative to encrypt the data
to safeguard it from the service provider handling the logs, while concurrently
permitting a certain level of processing to enable the retrieval of information
requisite for attack detection. In practical terms, this mandates that the service
provider possesses the capability to process the encrypted logs effectively.

DNS is usually central to detect intrusions in retrospect. Indeed, in many
cases, malware need to call their Command & Control (or C2) server to get
instructions on the action to execute. This communication usually triggers DNS
requests at some point. Information about these requests (the requested domain
name or the returned IP addresses), which are called Indicators of Compromise
(IoCs), can be shared to detect attacks (or even block them sometimes).

By leveraging advanced cryptographic tools, we propose in this paper to
encrypt the logs while allowing a partial, controlled and delegatable search ca-
pability to the service provider. We thus describe and implement solutions to
encrypt DNS logs and allow for specific requests, e.g. to find the DNS queries
sent for a given domain name, on them later.

In this paper, our contributions are threefold. First, we describe the DNS
context in details, including the logs to store, the relevant requests and the threat
model we consider. Then we study and implement several mechanisms, using
either symmetric and asymmetric cryptography, to allow for efficient searchable
encryption in our precise context. Finally, we design and run a test bed to
experiment on the different solutions and compare them.

2 DNS Use Case

2.1 Description

Every usual operation (such as accessing a website, checking an e-mail, or logging
into a user account via an application) starts with a name resolution. This task
is handled by the DNS resolver. Since cyberattacks usually trigger DNS requests,
one of the ways to deal with these incidents is to identify traces of Indicators of
Compromise in DNS logs (such as domain names or IP addresses corresponding
to a malicious server).
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To illustrate our use case shown on Figure 1, we consider a company with
one or several internal DNS resolvers and employees using these resolvers. The
company wants to delegate storage and monitoring of its DNS logs to an exter-
nal service provider. Since DNS logs contain sensitive information, they require
encryption to guarantee confidentiality. Additional guarantees such as search
capabilities are required. As the goal is to reconcile privacy-preserving storage
with the ability to search for IoCs in an efficient and outsourced manner, we
need a suitable cryptographic scheme. We describe such schemes in Sec. 3.

DNS
Resolver

Employees

DNS
requests

Security Officer

DNS resolver Encrypted DNS log

Encrypted search results

Query search

Service Provider
Company

Fig. 1. Platform Illustration

In our reference scenario, when an employee sends a query for a domain
name, the DNS resolver responds and generates the corresponding DNS log entry.
This entry is then encrypted and transmitted to a designated service provider
in charge of storing and monitoring the encrypted logs. While we assume the
service provider to be honest in performing their assigned tasks, they may possess
a level of curiosity and attempt to extract sensitive information from the logs.
To facilitate Indicators of Compromise (IoC) detection, the company’s security
officer, responsible for IT security, has the authority to grant search capabilities
for specific IoCs to the service provider. This enables the service provider to
conduct searches over the encrypted logs. It is important to define searchable
attributes within the logs to facilitate these search operations accurately.

Each log entry associated to a DNS query, that we call a DNS log, is a record
containing the following information:

– the timestamp of the query;
– the DNS resolver identifier (in case the company has several resolvers);
– the IP address of the employee who makes the request;
– the domain name queried;
– the type of the query (A, AAAA, MX etc.);
– the response code (which describes the result/status of the request, e.g.

NOERROR, NXDOMAIN);
– the list (possibly empty) of IP addresses returned to the employee.
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To allow for future IoC lookup, each DNS log entry is linked with both the
requested domain name and all the IP addresses provided in response to that
specific request. We refer to these attributes, whether it’s the domain name
or the IP addresses, as keywords. On average, a log entry is associated with
approximately 5 keywords. When a keyword is later used during a query search,
because it is supposedly related to malicious activity, we talk about an IoC.

As described above, we need to share DNS logs that contain sensitive infor-
mation with a service provider that is supposed to be honest but curious. We
therefore need a threat model to define the required security properties.

2.2 Security Properties

The adopted threat model assumes the service provider honestly performs all
their tasks, but tries to obtain confidential information by analyzing the received
encrypted logs, search queries, and matching results to obtain information about
the content of the logs. Moreover, we assume the existence of external threats.

Log Unforgeability Unauthorized party (including the service provider) should
not be able to forge a valid encrypted log. This means that only DNS requests
sent to a legitimate resolver should be present in the logs.

Predicate Privacy In order to analyze the stored encrypted logs, the security
officer must provide the search capability to the service provider which we refer
to as a trapdoor. A trapdoor is generated using a secret key owned by the secu-
rity officer and an IoC. We expect the service provider to extract all encrypted
logs relevant to this IoC. In this scenario the IoC is considered sensitive, thus
a trapdoor should not reveal any information on the encapsulated IoC. This
requirement is known as Predicate Privacy [10].

Correlation Privacy Finally the search results of the analysis should not reveal
any information to the service provider except the number of matching entries.
In particular, the knowledge of a trapdoor and an encrypted entry matching the
IoC represented by the trapdoor should not reveal any information about the
plaintext log associated with this entry.

3 Searchable Encryption

To reconcile data encryption and the ability to search for IoCs in the logs, a triv-
ial but naive solution is to download the complete logs from the server, decrypt
them, and search for IoCs in the plaintext data. Obviously, this is an inefficient
and costly approach due to the expense of downloading large amounts of data on
the client side. Thus, it is desirable to support search functionality at the server
level without having to decrypt all the data. To address this issue, Searchable
Encryption (SE) has been proposed as a mechanism to encrypt data while sup-
porting keyword search over the encrypted data, without requiring access to
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plaintext. Searchable encryption was first introduced and defined formally by
Song et al. [12].

As described by Bösch et al. [7], SE can be used either for data outsourcing
or sharing. In the first case, outsourcing, also known as Symmetric Searchable
Encryption (SSE), the secret key holder both produces ciphertexts and search
queries using symmetric primitives. The first SSE was proposed by Song et
al. [12]. In the second case, which corresponds to data sharing, we use a pub-
lic key setting called Asymmetric Searchable Encryption (ASE). Such a scheme
allows multiple users (in possession of the public key) to generate searchable
ciphertexts, and only the private key holder controls the ability to perform en-
crypted search. The first ASE is due to Boneh et al. [4] who proposed a Public
key Encryption with Keyword Search (PEKS) scheme.

Informally, in searchable encryption schemes, there is a message and a set
of associated keywords. During encryption, the user encrypts the message with
a symmetric key encryption, then, generates searchable encrypted indexes from
these keywords, which we call tokens. In the SSE, a token may be generated
by using a one-way function as a hash function or pseudo-random function
(PRF) [8,6], while in the ASE, a token may be a ciphertext corresponding to
a keyword. Let M be a message with associated keywords kw1, . . . , kwn. We
denote the searchable ciphertext as {EncK(M), TK1, . . . , TKn} where each TKi

is a token corresponding to the keyword kwi.

In our formalism, an SE scheme is defined by five algorithms: The Setup

algorithm generates the cryptographic setting. It takes a security level and gen-
erates the public and private parameters. The Encryption algorithm takes a
message M , a set of keywords kw1, . . . , kwn associated to M and the public pa-
rameters (for an ASE scheme) or the secret key (for an SSE scheme). Then this
algorithm produces a searchable ciphertext output. The TrapdoorGen algorithm
takes a keyword kw and private parameters and then produces a trapdoor T (kw)
for that keyword. The trapdoor T (kw) is a search capability who authorizes the
service provider to only process encrypted entries relevant to the keyword kw.
When a trapdoor T (kw) is sent to the service provider, it runs the Search algo-
rithm to extract all encrypted entries that match the keyword kw. Finally, the
FinalDecryption algorithm is required to decrypt the plaintext logs from the
search results. The complete cinematics is represented in Figure 2 in Section 4.2.

SE schemes are mostly used to secure sensitive data outsourcing or sharing.
It is thus important to consider the privacy and security requirements, which in-
clude the confidentiality protection of the data, the privacy of the search queries,
the prevention of unauthorized access either to the data or search results, and
the guarantee that the search process does not reveal any information about the
data (Correlation Privacy) or the search queries (Predicate Privacy) [4,10].

Additionally, the SE scheme should be efficient and scalable to support prac-
tical applications.
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4 Application of Searchable Encryption to DNS Logs

4.1 Studied Schemes

In this section, we present three cryptographic schemes to create encrypted and
searchable entries. We first present the symmetric scheme proposed by Waters
et al. [13] and a new symmetric solution based on PRFs. The third scheme is an
ASE based on Identity-Based Encryption.

All the schemes rely on symmetric primitives, namely an authenticated en-
cryption scheme Ek and a pseudo-random function PRF .

WBDS–SSE scheme We now present an SSE proposed by Waters et al. in [13].
Setup. The security officer generates a random secret KR and shares it with

the DNS resolver R.

Encryption. We assume the security officer and the resolver R share the
KR secret to encrypt log entries. Let record be a DNS log along with keywords
kw1, . . . , kwn. Let flag be a constant bitstring of length l1. The resolver executes
the following steps

1. Choose a random symmetric key K and compute EK(record).
2. Choose a random bitstring r of some fixed length2.
3. For each keyword kwi, compute

ai = PRFKR
(kwi), bi = PRFai

(r), ci = bi ⊕ (flag|K).

4. Return the encrypted DNS log {EK(record), r, c1, . . . , cn}.

The output will be sent to the service provider.

TrapdoorGen. When the company wants to look for an IoC, the security
officer generates the search capability by evaluating a PRF keyed by the secret
key KR on the IoC denoted by KIoC := PRFKR

(IoC), and sends it to the service
provider.

Search. When the service provider receives KIoC , it executes the following
algorithm:

1. For each entry {EK(record), r, c1, . . . , cn}
(a) Compute p = PRFKIoC

(r).
(b) For each ci in the entry, compute p ⊕ ci. If the first l bits of the result

matches flag, extract K as the remainder of the result; otherwise, the
computation is disregarded. If none of the results starts with flag, move
to the next query (the query is not a keyword match).

1 The flag can have a length significantly less than that of an encryption key K [13].
2 The length of r does not affect the security properties of the scheme with regards to
the expected security properties since it is the input to a PRF. The impact of the
size of r on other properties is discussed in Sec. 5.3.
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(c) If one of the results matches, use the computed K to decrypt EK(record)
to obtain the record in clear text form.

2. Send the (possibly empty) list of gathered records to the security officer.

Note that this steps directly produces the plaintext entries, letting the service
provider have access to them. It also makes the FinalDecryption step trivial.

An indexable, PRF-based SSE scheme We propose a different approach
from the previous scheme. The idea is to deterministically derive tokens from
the keywords and a truncated version of the timestamp3. A trapdoor for our
scheme is simply the corresponding token, which allows to efficiently retrieve
the relevant lines, e.g. by using database indexes. The rest of the record (and
the search results) are encrypted to preserve the confidentiality of logs.

The Setup algorithm is the same as the WBDS–SSE scheme and suppose
that the security officer share the secret key KR with the resolver R.

Encryption. Let record be a DNS log along with keywords kw1, . . . , kwn

and a timestamp TS. We run the following steps to generate the encrypted entry.

1. For each keyword kwi, compute the associated token TKi by evaluating the
PRF TKi = PRFKR

(kwi||TS) where TS is the truncated version of TS.
2. Generate the symmetric key K = PRFKR

(TK1|| . . . ||TKn).
3. Compute the encryption EK(record).
4. Return the encrypted DNS log {EK(record), TK1, . . . , TKn}.

The resolver sends {EK(record), TK1, . . . , TKn} to the service provider who
stores it in its database.

TrapdoorGen. In case one wants to recover all the queries associated with an
IoC within some time frame [TA, TB ], the security officer executes the following
steps to generate the trapdoor corresponding.

1. Generate KIoC = PRFKR
(IoC).

2. Find the minimal set of truncated timestamps TS1, . . . , TSm covering the
time frame [TA, TB ].

3. For each ti generate the corresponding token tki = PRFKR
(IoC||ti).

4. Return the trapdoor T (IoC) = {tk1, . . . , tkm}.

Search. Suppose that the service provider receives a query search (a trapdoor
T (IoC) := {tk1, . . . , tkm}) from the security officer. The service provider works
as follows to retrieve all queries matching the encrypted IoC. For each entry
{EK(record), TK1, . . . , TKn} in the encrypted database, check the intersection
of token sets {TK1, . . . , TKn} ∩ {tk1, . . . , tkm}. If this intersection is non-empty
set, i.e., there exist i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} such that TKi = tkj , the

3 A typical value for the truncation windows would be 1 hour or 1 day. Small windows
will lead to the multiplication of trapdoors, whereas big windows will make token
collision more probable (see Sec. 5.3 for a discussion on the matter).
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entry match, then add the entire entry (encrypted record with all its tokens) to
the search results. Finally, send the search results to the security officer.

FinalDecryption. When the security officer receives the search results, it
can derive, for each entry {EK(record), TK1, . . . , TKn} the decryption key K =
PRFKR

(TK1|| . . . ||TKn), and finally decrypt EK(record) to recover the plaintext
record.

Asymmetric Searchable Encryption (ASE) using IBE We propose a
solution based on an asymmetric approach. We first present the Identity-Based
Encryption (IBE) scheme of Boneh and Franklin [5], and then the ASE scheme
built on it.

Identity-Based Encryption IBE is a public key scheme where any arbitrary string
is a valid public key. The corresponding private key is generated by a trusted
third-party from the public key. The canonical example of IBE is to use one’s
identity (e.g. an email address) as the public key, hence the name of the scheme.

In our use case, we use the keywords associated to the DNS logs as public
keys (or identities); the third party generating private keys is the security officer.

Boneh and Franklin proposed the FullIdent IBE protocol [5], which is proven
to be IND-CCA under BDH assumption4. This scheme, on which we build the
ASE scheme, defines the following operations.

IBE.Setup. Choose a large prime number q, two groups G1 and G2 of order
q and choose an admissible bilinear map e : G1 × G2 → GT . Choose a random
generator P of G1, a random master key s ∈ Z∗

q . We also need four hash functions
H1 : {0, 1}∗ → G∗

2, H2 : GT → {0, 1}n, H3 : {0, 1}n × {0, 1}n → Z∗
q and

H4 : {0, 1}n → {0, 1}n. Finally the authority publish the public parameters
params = ⟨q,G1,G2,GT , e, n, P, Ppub, H1, H2, H3, H4⟩ where Ppub = sP ∈ G1

and keep secret the master key s.

IBE.Extract. Given an ID ∈ {0, 1}∗ as a public key, this algorithm computes
the corresponding private key SKID = sH1(ID) ∈ G2 where s is the master key.

IBE.Encrypt. To encrypt a message M ∈ {0, 1}n under the public key ID :

1. Compute QID = H1(ID) ∈ G2.
2. Choose a random bitstring σ ∈ {0, 1}n and set r = H3(σ,M) ∈ Z∗

q .
3. The ciphertext is C = ⟨rP, σ ⊕H2(e(Ppub, QID)r),M ⊕H4(σ)⟩.

IBE.Decrypt. Let C = ⟨U, V,W ⟩ a ciphertext encrypted using the public key
ID. If U /∈ G1, reject the ciphertext. To decrypt C using the private key SKID:

1. Compute σ = V ⊕H2(e(U, SKID)) and M = W ⊕H4(σ).
2. Set r = H3(σ,M). Test that U = rP . If not, reject the ciphertext.

4 Assuming the Bilinear Diffie-Hellman Problem (BDH) is hard (i.e. all polynomial
time algorithms have a negligible advantage in solving BDH), FullIdent is semanti-
cally secure against an adaptive chosen ciphertext attack (IND-CCA) [5].
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3. Return M as the decryption of C.

The decryption function is a kind of try-decrypt, which is particularly interesting
for our use case. Let C = IBE.Encrypt(params, ID,M) be a ciphertext and
SKID∗ a private key (corresponding to the public key ID∗) generated by the
IBE.Extract algorithm. The decryption of C success if and only if C is well
formed and ID∗ = ID.

ASE scheme The IBE-based ASE scheme relies on the following algorithms.
Setup. First, run the IBE.Setup algorithm to generate public parameters

params and the master key s. Then, draw a random secret key KR which is
shared with the resolver. Public parameters are shared with the different actors.

Encryption. Let record be a DNS log along with keywords kw1, . . . , kwm,
the DNS resolver executes the following steps to generate the encrypted and
searchable entry:

1. Choose a random secret key K.
2. For each keyword kwi, compute Ci = IBE.Encrypt(K, kwi) i.e. we encrypt

K using the keywords kwi as public keys.
3. Compute the encryption EK′(record) where K ′ = PRFKR

(K).
4. Return the encrypted DNS log {EK′(record), C1, . . . , Cm}.

The resolver sends the result of this algorithm with a timestamp TS which can
be stored by the service provider in form {EK′(record), TS, C1, . . . , Cm}.

TrapdoorGen. When the security officer wants to search for an IoC, it runs
IBE.Extract algorithm to generate SKIoC the private key corresponding to the
public key IoC, which is trapdoor. It sends the trapdoor with the time frame
of interest {SKIoC, [TA, TB ]} to the service provider which processes encrypted
logs received in the [TA, TB ] period.

Search. Let SKIoC a trapdoor and [TA, TB ] the time frame sent to the service
provider. For each encrypted record {EK′(record), TS,C1, . . . , Cm} within the
given time frame, the service provider executes the following steps.

1. For each Ci, it tries to decrypt Ci with IBE.Decrypt using the private key
SKIoC. If the decryption succeeds, Ci corresponds to IoC and the secret
K := IBE.Decrypt(Ci, SKIoC) is recovered. It thus adds {EK′(record),K}
to the search results and moves to the next log entry.

2. If none of the Ci can be decrypted, the entry does not match the IoC and
it moves to the next entry.

In the end, the service provider sends all the relevant search results to the security
officer.

FinalDecryption. For each entry {EK′(record),K}, the security officer can
derive the decryption key K ′ = PRFKR

(K), and finally decrypt EK′(record) to
recover the plaintext record.



10 Abdel-rahman et al.

4.2 Platform Implementation

Our proposed infrastructure for monitoring DNS logs using searchable encryp-
tion is designed to provide secure and efficient monitoring of DNS logs. As shown
in Figure 2, the infrastructure consists of several actors that work together to
achieve this goal. We describe in detail in this section the main task of these
actors.
Step 1–2 (initialization and sharing secret key) At the beginning, the security
officer runs the Setup algorithm to initialize cryptographic materials for the
considered scheme (SSE or ASE) and shares the secret key KR with the DNS
resolver. The public parameters, including cryptographic primitives and public
key (in case of ASE) are shared with the resolver and the service provider.

Step 3 (processing log) At the core of the infrastructure is a DNS resolver, which
generates DNS logs. For each DNS query, the resolver extracts the keywords
from the DNS log, constructs the record and encrypts it using Encryption

algorithm. The Encryption takes as input the record and a set of keywords
and produces a searchable ciphertext as described in section 3. The resolver
sends the Encryption output (including the tokens), to the service provider
who stores them in its database.

Step 4 (searching over encrypted logs) To perform a search query on the en-
crypted logs, the security officer generates the search capabilities for an IoC by
running the TrapdoorGen algorithm and sends them to the service provider.
When the service provider receives a query from the security officer, it runs the
Search algorithm which takes as input a search capability. It retrieves all match-
ing records from the encrypted logs stored in the database and sends results to
the security officer.

Step 5 (decrypting search results) When the security officer receives the search
results for its query search, it runs the FinalDecryption algorithm to decrypt
them and recover the plaintext records.

Implementation details We implemented our test bed in C. Symmetric prim-
itives come from OpenSSL. For the indexable PRF-based scheme, the database
is SQLite. Finally, for the asymmetric primitives, we use the RELIC library,
a modern, research-oriented, cryptographic meta-toolkit with emphasis on effi-
ciency and flexibility [1]. The IBE scheme we use indeed requires an asymmetric
pairing-friendly setting (q,G1,G2,GT , e, P, Ppub). RELIC implements several el-
liptic curves; it also implements hash functions on elliptic curves and asymmetric
pairings.

For our implementation parameters, we use the BLS12-381 elliptic curve [3].
In terms of symmetric primitives, we have employed E = AES-256-GCM for
encryption and PRF = HMAC-SHA-2 for PRF. The selection of the BLS12-
381 curve for our IBE-based ASE scheme is underpinned by a comprehensive
assessment that considers established standards and practical suitability. This
particular curve has gained widespread recognition and adoption in prominent



A Privacy-Preserving Infrastructure to Monitor Encrypted DNS Logs 11

Trapdoor

IoC

Relevant Logs
(Plaintext)

Database

KeyStore

record

Security Level

DNS resolver Service Provider

Secret Key

4

1

2

3

Security Officer

Search Results

5

Fig. 2. Platform Architecture

blockchain projects such as Zcash and Ethereum 2.0, a testament to its resilience
and its alignment with the stringent requirements of security-sensitive applica-
tions. Furthermore, our choice aligns with the recommendations outlined by the
IETF [9], which emphasize the merits of the BLS12-381 curve. This alignment
with industry best practices, particularly for achieving a 128-bit security level,
underscores the curve’s status as both widely used and efficient. These attributes
collectively reinforce its credibility as a secure and pragmatic choice for our cryp-
tographic setup.

5 Evaluation

5.1 Security

In the WBDS–SSE scheme, the log is encrypted using a random key, which
means anyone can generate valid encryption. Only the generation of the tokens
requires the knowledge of the secret key KR. However, knowing a trapdoor is
sufficient to forge a valid token (for the corresponding keyword), which means
the Log Unforgeability property is not completely satisfied, especially w.r.t. the
service provider which is supposed to eventually learn trapdoors. In this scheme,
the trapdoor for a keyword results from a PRF keyed by the secret key KR. The
Predicate Privacy property is a direct result of the PRF properties.

Finally, by construction, the original scheme described by Waters et al. does
not provide Correlation Privacy. A simple way to add this property would be
to encrypt the record with a key shared only between the resolver and the secu-
rity officer before running the scheme. Adding this encryption step would also
guarantee Log Unforgeability.
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In our PRF-based SSE scheme the tokens and the encryption key are cal-
culated using a PRF keyed by a secrete key. This implies that an attacker who
does not know this secret key cannot generate a valid entry, which guarantees
the Log Unforgeability property. At the same time, the guarantee of Predicate
Privacy and Correlation Privacy properties follows directly from the security
properties of the PRF and from the secrecy of KR.

For our IBE-based ASE, a token is the ciphertext returned by the encryption
algorithm of the IBE, which is a public key encryption. That means an attacker
can generate valid tokens. They can also create an arbitrary EK′(record) ele-
ment. Yet, they can not create a consistent ciphertext where K ′ is linked to the
Ci, thanks to the PRF security properties. Thus, the Log Unforgeability property
is guaranteed. The Predicate Privacy follows directly from the definition of the
secret key SKID from the public key, via a one-way hash function. Finally, since
the actual record is protected by the secret key KR, the Correlation Privacy is
guaranteed by the security properties of the authenticated encryption primitive.

5.2 Benchmarking

We evaluate the effectiveness and scalability of our proposed infrastructure using
a realistic DNS log dataset [11]. We compare the performance of our infrastruc-
ture with a baseline approach that uses plaintext log data and a conventional
search function. Since the plaintext and the PRF-based schemes are compati-
ble with database indexes, we also provide figures for a variant thereof using a
database back-end.

We evaluated the studied with 21 PCAP files (each files corresponds to 1-
hour long captures form) of size 6.29 GB from [11]. Among these files, the DNS
response packets of interest amounted to 3.45 GB. We preprocess these PCAP
files to generate the corresponding record files (according to the records format
described in section 2.1). These record files make a total of 14, 816, 004 records
and a size of 763 MB. For our experiments, we ran the whole cinematics (from
Setup to Search and FinalDecryption with different IoCs) on those files. The
experiments were run on a computer running Linux with a 32-core Intel Xeon
Gold 5218R CPU, 2.10GHz and 64GB of RAM memory.

The results in Table 1 clearly show that the IBE cost are orders of magni-
tude bigger in terms of processing time. For the schemes which are compatible
with database indexes, using an SQLite back-end leads to bigger storage require-
ments, and slows down significantly the encryption time, but it allows for drastic
improvements in the search time. This is indeed expected since these schemes
allow to retrieve the relevant lines using an index, without the need for testing
each line, which can be a game changer when looking at a handful of records in
huge logs.

5.3 Discussion About Token Collision

In the PRF-based SSE, the tokens are directly derived from keywords and a
truncated timestamp, therefore, within a truncation interval, the token for a
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Encryption Time Size of Searchable Search Time
(µs/log) Ciphertext (in bytes) (s/IoC)

Plaintext (baseline) 2.7 1.0 (102) 0.4

Plaintext + DB 130.0 2.4 (248) < 0.01

WBDS–SSE [13] 22.4 2.3 (236) 2.2

PRF-based SSE 28.9 1.3 (129) 9.97

PRF-based SSE + DB 134.4 3.3 (343) 0.02

IBE-based ASE 5569.0 4.7 (480) 2189.28

Table 1. Comparison of different schemes using a public DNS data set [11]. Schemes
with a “+ DB” annotation correspond to variants which allows for indexable search
and where the data is stored in an SQLite back-end. The Encryption Time is per DNS
log. The Size of Searchable Ciphertext is given relative to the plaintext baseline, which
averages around 102 bytes. The Search Time corresponds to the processing time of one
IoC in 705,524 encrypted lines logs (1-hour long capture).

given keyword is deterministic. Such leakage allow the service provider to derive
statistics on the encrypted logs, including those unrelated to IoCs.

With WBDS–SSE, the collision are subtler. As discussed earlier, a collision
on the masked flag (of length l) may arise by accident, with probability 2−l.
However, two logs pertaining to the same keyword can be encrypted with the
same random r, which will lead to the same bi. This will happen with probability
2−|r|/2. So, if |r| is small and significantly less than l, collisions may reveal the
presence of a common keyword between two records.

We believe this leakage is small and should not be problematic for the studied
use cases. This might however require further analysis. In the meantime, a conser-
vative measure would be to choose parameters reducing the collision probability
(long enough random bitstring r for WBDS–SSE or small truncation windows
for the PRF-based scheme).

5.4 Summary

Log Predicate Correlation Token Search
Unforgeability Privacy Privacy Collisions Efficiency

WBDS–SSE [13] ✗ ✓ ✗ if |r| ≪ l +

PRF-based SSE ✓ ✓ ✓
Within the trun-
cation window

++

IBE-based ASE ✓ ✓ ✓ No --

6 Related Work

In recent years, there has been a growing interest in the use of searchable en-
cryption techniques for secure and efficient searching of encrypted data. One of
the earliest works in this area was published in 2000. In this paper, Song et
al. [12] proposed a symmetric key-based scheme. In their scheme, the message to
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be encrypted is seen as a sequence of keywords. The main idea is to achieve, for
each keyword, a special two-layered encryption construct. Thus, given a trap-
door, the server can strip the outer layer and check if the inner layer is in the
correct form. This scheme works on text content and allow to filter ciphertexts
containing a given keyword. Since the schemes we study take advantage of the
underlying data structure (domain names, IP addresses, etc.), our results are
more efficient, both in terms of processing time and encrypted data volume.

Boneh et al. [4] introduced the idea of using public key encryption to en-
able search over encrypted data. They provide a precise definition of what they
call Public key Encryption with Keyword Search (PEKS) along with several con-
structions that are provably secure in their model under suitable cryptographic
assumptions. Our work proposes a suitable construction using a hybrid symmet-
ric scheme for monitoring DNS logs securely.

Building on these foundational works, several research efforts have explored
the use of searchable encryption for secure logging. Waters et al. [13] proposed
an encrypted and searchable audit log. They proposed two approaches: an SSE,
which we introduced in Section 4.1 and an ASE similar to the construction
presented in this paper. Our work proposes a new symmetric scheme, which is
compatible with database indexes. We validate the performance of this scheme
with regards to schemes proposed by Waters et al. [13].

More recently, Araújo and Pinto [2] proposed a system for secure remote stor-
age of logs while maintaining its confidentiality and server-side search capabili-
ties. This work uses symmetric and asymmetric encryption algorithms to enable
secure and efficient search over encrypted log data. The system provides very
expressive queries, however, their experiments were only run on small datasets
(they target logs from web servers, with 30,000 lines), which makes it difficult
to assess the scalability in use cases as ours.

7 Conclusion

In this work, we design an architecture for monitor encrypted DNS logs while
ensuring the privacy preserving of the DNS logs. To do so, we leverage the use of
searchable encryption. We have proposed two solutions which are symmetric and
asymmetric approaches. We also studied the SSE scheme proposed by Waters
et al. [13]. We set up a platform with the different actors and implemented the
studied schemes.

Our symmetric approach allows for efficient and secure searching of encrypted
DNS logs, while preserving the privacy of sensitive information. We evaluate our
approach using real-world DNS log data and demonstrate its effectiveness in
terms of performance and security. By using our infrastructure, companies could
outsource and monitor their DNS logs while ensuring the privacy and security
of the logged data.

Beyond DNS logs, we believe our work can be extended as future work to
more complex and more sensitive data, such as system logs or mail-related logs.
However, this extension would raise interesting questions to accommodate the
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constraints related to these logs, e.g. mail logs contain both structured and non-
structured (textual) data which might be hard to reconcile.
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1. D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. RELIC
is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic.
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