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Reduction and Analysis of Networks of
Nonlinear Oscillators under Weak Coupling Gain

Anes Lazri Elena Panteley Antonio Lorı́a

Abstract— We analyze the behavior of Stuart-Landau os-
cillator networks interconnected with low coupling gain. It
is known in the literature that when the coupling gain is
sufficiently high, full synchronization takes place between
the different oscillators in the network. In this paper, we
are interested in the case where the coupling gain is not
sufficiently high, we propose a method for reducing the
network using the spectral properties of the Laplacian,
which can then be used to analyze the possible exhib-
ited behaviors. Secondly, and still in order to analyze the
network’s behavior via the proposed reduced model, we
analyze the effect of an oscillation frequency perturbation
in the first oscillator on the network as a whole.

I. INTRODUCTION

This paper focuses on the synchronization of Stuart-Landau
oscillator networks, which represent a generic model of non-
linear oscillators near a Hopf bifurcation [1], [2], [3], [4].
Stuart-Landau oscillators, which are often used to represent
lasers [5], neuronal networks [6], [7], and various biological
systems [8], etc., are also known for the very rich behaviors
they can exhibit, depending on their own parameters as well
as those related to coupling. This richness can be seen even
when the network contains only two oscillators—see [1].

One of the widely observed behaviors of oscillator networks
is dynamic consensus, which consists of the total synchro-
nization into an averaged oscillator [9]. This behavior is only
possible when the coupling gain is relatively high. On the
contrary, when the coupling gain is low, clustering takes place.
In other words, subgroups of oscillators synchronize with each
other but not with the other oscillators in the network, even
if they are not directly connected (remote synchronization
—see , e.g., [6],[7], [10]). This behavior is highlighted in
[11] for a network of oscillators interconnected on a Stuart-
Landau topology. As explained in [12] and [13], this particular
behavior is linked to the structure of the interconnection
graph and the coupling gain. In order to explain the different
behaviors when the coupling gain is relatively low, the authors
of [11] present a bifurcation analysis via linearization of
dynamics. However, it is strongly believed that it is possible
to analyze the network synchronization problem via graph
reduction.

Reducing the dynamics of interconnected Stuart-Landau
oscillators has been investigated in the literature. Indeed, in
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[14], a technique to reduce the network, by considering the
parameters and spectral properties of the matrices linked to
the interconnection graph, is presented. However, the reduced-
order network model obtained by the method proposed in [14]
has nonlinear interconnections. This hampers significantly the
analysis of the reduced-order network, let alone, the charac-
terization of the various possible behaviors, in function of the
coupling gain.

For a network of connected Stuart-Landau oscillators with
relatively high coupling gain, the authors of [9] approximate
the general behavior of the network by a single averaged oscil-
lator; this makes sense given that the behavior that emerges is
that of a single oscillator. This work, as well as [14], motivates
our work. One of the aims is to present a reduced model
with linear interconnections, that we can analyze the various
possible behaviors for the network under consideration.

As far as we know, apart from [14], eigenvectors-based
graph-reduction methods have not yet been applied to non-
linear oscillators. Furthermore, given that Stuart-Landau os-
cillators are represented by a complex variable model, many
works in the literature have focused on cases in which the
interconnection gain is not scalar [1], [10], [4]. In these pa-
pers, the authors explain the possible behaviors of oscillators,
which are rich and strongly dependent on the values of the
interconnection gain. That said, it is interesting to apply a
graph reduction method on a network where the coupling gain
is not scalar.

It is also worth noting that when the coupling is relatively
high, full synchronization of the oscillators takes place. Never-
theless, the effect of a perturbation on the frequency of one of
the oscillators may completely change the emergent behavior
—see [15], [16]. Depending on the value of the disturbance,
we may see an oscillation death, a phase lock, or even a phase
drift. This problem is addressed in [11] for identical inter-
connected oscillators on a star network when the frequency
of the central node is disturbed. This is also studied for a
heterogeneous network in [17] considering more considerable
disturbances. In this paper, after proposing a reduced model,
we use this model to analyze the various possible behaviors
of the network when a frequency disturbance is introduced.

To be more precise, we use the spectral properties of
the network’s Laplacian to perform a graph reduction. Most
notably, we show that the systems constituting the reduced
network are Stuart-Landau oscillators linked together through
diffusive complex connections. Subsequently, we investigate
how a perturbation in frequency affects the overall system
behavior when the coupling is scalar, using this reduced-
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order network. Similar to the approaches in [11] and [14], our
analysis is limited to network structures with specific structural
criteria. It is worth noting that, to the best of our knowledge,
the general problem of graph reduction that preserves the
interconnection nature (diffusive, direct... ) remains open for
networks of nonlinear systems.

II. PROBLEM FORMULATION

Consider a network of N Stuart-Landau oscillators,

żk = −zk|zk|2 + (α+ iω)zk + uk, k ≤ N (1)

where α is a parameter detarmining the rate of convergence of
trajectories towards the the attractor, ω is the natural frequency
of oscillation, and the state zk ∈ C has a representation
on the Cartesian plane, given by its real part, denoted xk,
and its imaginary part yk. We assume that the network units
are connected via diffusive coupling over an undirected and
connected graph. For the ith unit the coupling uk is given by

uk = −β

N∑
j=1

aij(κzk − zj) (2)

where β := γ+ iµ ∈ C, with γ and µ > 0, corresponds to the
coupling gain, and κ ∈ [0 , 1] is a coupling parameter. When
κ = 1 the coupling is said to be diffusive, while the case in
which κ = 0 corresponds to that of direct coupling. On the
other hand, as is customary in graph theory, The weights of
the interconnections amongst the nodes define the adjacency
matrix, A := [aij ]i,j∈{1,2,··· ,N}, as well as the Laplacian
matrix L :=

[
lij

]
, where

lij =

−aij if i ̸= j∑N
i=1
i ̸=j

aij if i = j.

We are interested in the possible synchronized behavior of
oscillators as defined above under the effect of the coupling
term (2). Now, the collective behavior here mainly depends on
two factors: the network’s topology and the coupling gain β.
For instance, for networks of identical oscillators with an un-
derlying undirected connected-graph topology interconnected
with a scalar coupling gain γ > 0 sufficiently large, the
trajectories of the networked system converge to the solution
of the dynamical system,

żm = −zm|zm|2 + (αm + iωm)zm, i :=
√
−1, (3)

which is an emergent oscillator of the same nature—cf [9].
The behavior is much more complex when the scalar cou-

pling gain is not large enough. From [14], it is observed that
clusters emerge in this case, considering identical oscillators.
As a result, such rich behavior cannot be captured by a single
oscillator as defined in (3). Thus, it is necessary to represent
this behavior by a reduced network.

The contribution of this paper is twofold. First, we ana-
lyze the behavior of interconnected oscillators with complex
coupling gain. We show that the reduced model’s dimension
depends on the coupling strength’s magnitude β relative to
the eigenvalues of the Laplacian matrix L. Significantly, and
in contrast to [14], we propose a reduced-order network with

linear interconnections. Then, this reduced model elucidates
the various possible network behaviors, in function of the
coupling gain and the systems’ parameters’ values α and
ω. Secondly, the reduced-order model is used to analyze the
phenomenon of frequency mismatches and the impact of the
latter on the synchronization problem, which supports the
interest of such a model reduction.

III. MODEL DESCRIPTION

Let

z :=


z1
z2
...
zN

 , F (z) :=


f(z1)
f(z2)

...
f(zN )

 , (4)

where f(zk) = −zk|zk|2. With this notation, the diffusive
coupling inputs uk, defined in (2), can be re-written in the
compact form u = −βLz. Hence, the network dynamics
become

ż = F (z) + Γz − β̄Lz, (5)

where Γ ∈ RN×N corresponds to the diagonal matrix

Γ := (α̃+ iω̃)IN ,

where α̃ = α + γ(1 − κ) and ω̃ = ω + µ(1 − κ). Now,
given the complexity of characterizing the collective emergent
behavior and multi-agent synchronization for heterogeneous
systems interconnected over generic graphs, even when the
coupling is scalar (i.e. µ = 0), we focus on networked systems
with underlying graphs satisfying the following hypothesis.

Assumption 1: The eigenvalues λk(L) of the Laplacian L
and their associated eigenvectors vk are such that:

λ1(L) = 0 < λ2(L) < λ3(L) ≤ · · · ≤ λN (L),

v1 =


1
1
...
1

 , and v2 =


−1
1
...
1

 . (6)

□

Remark 1: We stress that many networks with weighted
links satisfy Assumption 1. This class of networks contains,
for example, weighted all-to-all networks and weighted grid
networks. These networks are generally used to represent the
behavior of brain neurons—see, e.g., [18]–[20]. Multipartite
graphs can also satisfy this assumption; an example is given
in the simulations section. The latter find several applications
in biology as for example in the analysis of the transmission of
sexual disease [21] and ethnobiology [22]. It is also important
to note that the Laplacian matrices of other networks can have
these eigenvectors, as in the case of star networks, which are
studied in depth in the literature —see [11], [23], [24].
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IV. REDUCED-ORDER NETWORK AND SYNCHRONIZATION
ERROR

The determination of the order of the reduced network NR

is inherently connected to the spectral characteristics of the
linear component in (5). To make this clear, it is advantageous
to rewrite (5) as

ż = F (z) + βL̃z, (7)

where L̃ :=
[
− L+ β∗

|β|2Γ
]
.

The main idea behind reducing the graph is to exploit the
spectral properties of the linear part of the dynamics (7).

For the system ż = βL̃z, the eigenvalues with positive real
parts in L̃ generate unstable modes. In contrast, those with
negative real parts generate stable ones. That is, the solution
to ż = βL̃z takes the form

z(t) = β[v1v
⊤
l1z(t) + v2vl2z(t) + · · ·+ vNR

vlNR
z(t)] + e(t),

where vk and vlk, for all k ∈ {1, 2, . . . ,M}, are respectively
the right and the left eigenvectors of L̃ associated with the
M positive real part eigenvalues of L̃. On the other hand,
e(t) contains the contributions to the solution generated by
the stable modes. As e(t) → 0, only the contributions of
the unstable modes remain. The number of positive real
part eigenvalues M defines, therefore, the order NR of the
reduced order network, and the unstable modes determine the
asymptotic behavior of the network.

First, we observe that because the graph is connected, L has
a unique zero eigenvalue and admits the Jordan decomposition

L = V

[
0 0
0 Ω2

]
V −1. (8)

Furthermore, Ω2 ∈ RN−1×N−1 is a diagonal matrix whose
elements correspond to the nonzero eigenvalues of L. Then,
in view of its definition, L̃ satisfies the same decomposition
as L. That is, denoting by λk(L) the eigenvalues of L, after
(8), for all k ∈ {1, 2, . . . , N}, we have

V −1L̃V = blkdiag
{

β∗

|β|2
(α̃+ iω̃)−λk(L)

}
. (9)

Clearly, the number of eigenvalues of the matrix above with a
positive real part varies from 1 to N depending on the value
of β = γ + iµ. The real part of each eigenvalue, for all k ∈
{1, 2, . . . , N}, can be written as

Re{λk(L̃)} =
αγ + ωµ

γ2 + µ2
− λk(L) + 1− κ. (10)

In what follows, for (α, ω) given, we are interested in the sign
of the real part of the eigenvalues of L̃. It is observable from
(10) that the number of eigenvalues with positive real part
increases when |β| =

√
γ2 + µ2 decreases. In other words,

when |β| is relatively high, only the real part of the first
eigenvalue, i.e., Re{λ0(L̃)} = αγ+ωµ

γ2+µ2 , is positive. On the
other hand, when |β| is relatively low, the number of positive
real part eigenvalues NR increases.

Consequently, for what follows, we set

γm :=
α

λ3(L)− (1− κ)
and µm :=

ω

λ3(L)− (1− κ)
,

such that ∀γ > γm and µ > µm, the number of eigen-
values with positive real parts is NR ≤ 2. To highlight the
results, the paper focuses on the case where NR = 2. Prior
knowledge of the graph structure under study is important
for dynamics reduction since this reduction is based on the
spectral properties of the graph’s Laplacian. Thus, for γ > γm
and µ > µm, the eigenvectors associated with eigenvalues
having positive real parts are v1 and v2 from Assumption 1.
Therefore, these eigenvactoes are used to project the dynamics
onto the subspace corresponding to the unstable eigenvalues
of the linear part of the network dynamics.

Following this train of thought, we unfold a natural def-
inition of the synchronization errors e. Let V = [V1 V2],
where V1 ∈ RN×NR gathers the eigenvectors associated to
the NR eigenvalues with positive real part in Eq. (8) and V2 ∈
RN×(N−NR) contains the remaining N −NR eigenvectors of
L. Then,

V −1 =

[
V †
1

V †
2

]
.

Next, we use V1 and V2 to introduce the new coordinate z̄ =
V −1z, and we use the partition

z̄ :=

[
ξ1
ξ2

]
:=

[
V †
1 z

V †
2 z

]
, (11)

with ξ1 ∈ RNR , ξ2 ∈ RN−NR . Using V V −1 = V1V
†
1 +

V2V
†
2 = IN we deduce the relation

V2ξ2 = z − V1ξ1, (12)

which is useful to define the synchronization errors e := V2ξ2,
as

e = z − V1ξ1. (13)

It is clear from the last equation that the subspace of ξ1
captures the generalized solutions, while the subspace of ξ2
corresponds to a projection of the space of synchronization
errors. In other words, if e = 0, then ξ2 = 0 and z = V1ξ1.
Consequently, for NR = 2, we have V1 = [v1 v2] and V †

1 =
[v⊤l1 v

⊤
l2] , so e takes the form

e = z − v1v
⊤
l1z − v2v

⊤
l2z. (14)

This definition of e covers the cases treated previously in
the literature where the emerging dynamic is assimilated to
a single system — see e.g. [25]. Explicitly, (14) yields

e = z −
[
1 0⊤

K

0K
1
K1K1⊤

K

]
z,

where 1K is a vector of ones of size K and 0K a vector of
size K = N − 1 where all entries are equal to zero. With this
definition of e, we see that on {e = 0}, z1 is unchanged and,
for each i ∈ {2, 3, · · · , N}, zk converges to the average of the
latter.

With this definition of e, we see that on {e = 0}, z1 is
unchanged and, for each i ∈ {2, 3, · · · , N}, zk converges to
the average of the latter. Hence, defining zR =

[
z⊤1 z⊤2

]⊤
as

the state of the reduced order network, on {e = 0}, we have

zR = W⊤z, z = QzR (15)
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where

W⊤ :=

[
1 0 0 · · · 0
0 1

K
1
K · · · 1

K

]
Q⊤ :=

[
1 0 · · · 0
0 1 · · · 1

]
.

Thus, on the synchronization manifold {e = 0}, we have z2 =
z3 = · · · = zN = 1

K

∑N
k=2 zk and the dynamics described

by the state zR =
[
z1 z2

]⊤
=

[
z1

1
K

∑N
k=2 zk

]⊤
persist

asymptotically.
We are ready to present our first statements: Proposition 1

on the dynamics of the synchronization errors e and Proposi-
tion 2 on the reduced-order network, with state zR.

Proposition 1 (synchronization): For a network of systems
with dynamics (1) in closed loop with (2), under Assumption
1, the set {e = 0}, where e is defined in (14), is globally
exponentially stable, for any β > βm := γm + iµm. □

Proof: After (11) and (12), we have e = V2V
†
2 z. Now,

consider the Lyapunov function candidate V(e) = 1
2∥e∥

2 =
1
2e

∗e, where e∗ is the conjugate transpose of the vector e.
Furthermore, let P := V2V

†
2 = IN − V1V

†
1 . Clearly, P = P⊤

and P⊤P = P . Moreover,

V(e) ≡ Vz(z) :=
1

2
z∗Pz. (16)

Therefore, the total derivative of V (e) may be computed by
differentiating Vz(z) above, along the trajectories of (7). For
clarity, we split V̇z(z) into

V̇z(z) := V̇(l)
z (z) + V̇(nl)

z (z),

where

V̇(l)
z (z) :=

∂V(l)
z

∂z
βL̃z, (17)

V̇(nl)
z (z) :=

∂V(nl)
z

∂z⊤
F (z), (18)

and we compute V̇
(l)
z (z) and V̇

(nl)
z (z) separately. For the

former, we use the identity e = Pz, to obtain

V̇(l)(e) =
β

2
e∗PL̃z +

β∗

2
z⊤L̃⊤Pe. (19)

Next, since V = [V1 V2], P = V2V
†
2 is equivalent to

P = V

[
0 0
0 IN−NR

]
V −1. (20)

On the other hand, for NR = 2, we have

L̃ = V

[
Λ1 0
0 Λ2

]
V −1, (21)

where Λ2 ∈ R(N−NR)×(N−NR) is a block diagonal matrix
gathering N −NR blocks with negative-real-part eigenvalues
λk(L̃).

Therefore, using (20) and (21) in (19), we obtain

V̇(l)(e) =
β

2
e∗V

[
0 0
0 Λ2

]
V −1z

+
β∗

2
z⊤

[
V

[
0 0
0 Λ⊤

2

]
V −1

]⊤
e,

or, equivalently,

V̇ l(e) =
β

2
e∗V2ΛV

†
2 z +

β

2
z⊤

[
V2ΛV

†
2

]⊤
e.

Now, since V †
2 V2 = IN−NR

, we have V †
2 e = V †

2 z, so

V̇(l)(e) =
β + β∗

2
e∗V2

[
Λ + Λ⊤]V †

2 e.

Finally, since
[
Λ + Λ⊤] is a diagonal matrix with N − NR

entries with negative real part,

V̇(l)(e) ≤ β + β∗

2
ℜe{λ3(L̃)}||e||2, (22)

where λ3(L̃) is the lowest eigenvalue of L̃ with negative real
part. Now we focus on V̇

(nl)
z (z) and show that it is non-

positive. To that end, we develop the matrix product on the
right-hand side of (16) to obtain

Vz(z) =
1

2K

N∑
k=2

N∑
j=2

||zk − zj ||2. (23)

The total derivative of the latter along the trajectories of (1)
and disregarding the linear terms (including the inputs), yields

V̇(nl)
z (z) =

1

K

N∑
k=2

N∑
j=2

−|zk|4 − |zj |2 + z∗kzj |zj |2 + z∗j zk|zk|2.

However, for each {i, j} ∈ {2, 3, · · · , N},

|zk|2zkz∗j + |zj |2zjz∗k ≤ 1

2
|zk|4 + |zk|2|zj |2 +

1

2
|zj |4.

Hence,

V̇(nl)
z (z) ≤ 1

K

N∑
k=2

N∑
j=2

−1

2
|zk|4 + |zk|2|zj |2 −

1

2
|zj |4

≤− 1

2K

N∑
k=2

N∑
j=2

(|zk|2 − |zj |2)2.

Thus,
V̇(nl)
z (z) ≤ 0. (24)

Putting together (24) and (22), and in view of the first identity
in (16), we obtain

V̇(e) ≤ γℜe{λ3(L̃)}||e||2.

Since λ3(L̃) < 0, Global exponential stability of {e = 0}
follows.

Proposition 2 (reduced-order network): Consider a net-
work of N Stuart-Landau oscillators with dynamics (1), in
closed-loop with (2) and under Assumption 1. Then, on the
synchronization manifold {e = 0}, if β > βm = γm + iµm,
there exists a network of reduced order NR = 2, whose nodes
are dynamical systems of the form

żk = −zk|zk|2 + (α+ iω)zk − β

N∑
j=1

(κzk − zj), (25)

where i ∈ {1, 2}. □

Remark 2: This reduction of the network of N units to
a network of NR = 2 units has the benefit of providing
a characterization of different behaviors that the original
network may exhibit.

Proof: Consider the matrices W and Q defined below
(15). These matrices may also be expressed in function of the
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two right eigenvectors v1 and v2 and the corresponding left
eigenvectors, vl1 and vl2, which in turn may be obtained by
evaluating the pseudo-inverse V †

1 = (V ⊤
1 V1)

−1V ⊤
1 . We obtain

Q =
1

2

[
v1 − v2 v1 + v2

]
, W =

[
vl1 − vl2 vl1 + vl2

]
.

Now, according to (15), zR = W⊤z and z = QzR. Therefore,

żR = W⊤F (z) + βW⊤L̃QzR, (26)

with L̃ =
[
− L+ β∗

|β|2Γ
]
.

Then, using the definitions of W and Q above, considering
Assumption 1, and using the identities v⊤l1L = 0 and Lv1 = 0,
we obtain

LR := W⊤LQ =

[
1 −1

−1 1

]
.

On the other hand, we define

ΓR := W⊤ΓQ =

[
α̃+ iω̃ 0

0 α̃+ iω̃

]
.

Hence, the second term on the right-hand side of (26) equals
to γL̃RzR, where

L̃R =
[
− LR +

β∗

|β|2
ΓR

]
.

Next, we turn our attention to the first term on the right-
hand side of (26). Since zR = W⊤z, referring to (4), and
defining zv =

[
z⊤2 z⊤3 · · · z⊤N

]⊤
, we obtain

żR =

[
ż1

1
K1⊤

K żv,

]
=

[
f(z1)

1
K

∑N
k=2 f(zk)

]
+ γL̃RzR.

Moreover, on {e = 0} the relation z2 = z3 = · · · = zN holds.
Then 1

K

∑N
k=2 f(zk) = 1

K

∑N
k=2 f(z2) = f(z2). Thus, the

reduced-order network takes the form

żR =

[
f(z1)
f(z2)

]
+ γL̃RzR,

which is Equivalent to equations (25).

V. EFFECT OF PARAMETER MISMATCH

In this section, we focus on the effect of a disturbance on the
oscillation frequency ω on the overall behavior of the network.
More precisely, we assume that this δω disturbance affects
the ’leader’ parameters. This translates into a transition to the
dynamics

ż1 = −z1|z1|2 +
[
α+ i(ω + δω)

]
z1 + u1 (27a)

żk = −zk|zk|2 + (α+ iω)zk + uk (27b)

with uk as introduced in (2) and i ∈ {2, 3, · · · , N}. The
network is heterogeneous since the first system’s oscillation
frequency is now ω + δω. In the literature, analyzing the
dynamics reduction of heterogeneous networks of oscillators
when the coupling gain is low remains an open problem. For
this reason, we assume in this section that µ = 0 and κ = 1
(i.e. we analyze the behavior for a network with diffusive
coupling). In compact form, (27) can be written as

ż = F (z) + Γ2z − γLz (28)

with
Γ2 :=

[
α+ i(ω + δω) 0

0 (α+ iω)IN−1.

]
In what follows, the collective behavior is analyzed as a func-
tion of two main parameters, the gain γ and the disturbance
δω. As it may become clearer later, it is convenient to rewrite
(5) as

ż = F (z) + Γ2z − γ
[
L ⊗ I2

]
z, (29)

where γ and L are scaled as follows:

L =
2

λ2(L)
L, γ =

λ2(L)

2
γ̄. (30)

Then, Eq. (5) becomes

ż = F (z) + γL̃2z, (31)

where L̃2 :=
[
− L+ 1

γΓ2

]
.

Now, in order to compare the behavior of the networked
system before and after including the frequency perturbation,
we rely on the following result for the unperturbed system.
Note from Propositions 1-2 that the collective behavior of the
network is characterized by a reduced-oder network of NR =
2 oscillators, for β > βm = γm + iµm.

Proposition 3 ([1]): For the network (25), the in-phase
solution is linearly asymptotically stable (sic), provided that

γ2 + µ2 + γ[(1− κ) + α] > 0.

Otherwise, when

γ <
α

4
and 3γ2 − αγ + µ2 > 0

the anti-phase solution is linearly asymptotically stable (sic).
□

Remark 3: In [1] linear stability refers to local stability.
Moreover, according to Proposition 2, on the synchronization
manifold {e = 0}, the asymptotic behavior of the network
(1)-(2) is represented by a network of NR = 2 oscillators.

A. Eigenvalues of L̃
To determine NR we observe that under Assumption 1, L

has a unique zero eigenvalue and admits the decomposition
(8). Furthermore, note that

V −1Γ2V =
α+ iω + i δω2 −i δω2 0 · · · 0

−i δω2 α+ iω + i δω2 0 · · · 0
0 0 α+ iω 0

0 0 0
. . . 0

0 0 0 · · · α+ iω

 .

As a result, the eigenvalues are given by

λ1(L̃2) = −λ2(L) +
2α

γ
+ i(ω +

δω

2
)− 1

2

√
λ2(L)2 −

δω2

γ2

λ2(L̃2) = −λ2(L) +
2α

γ
+ i(ω +

δω

2
)− 1

2

√
λ2(L)2 −

δω2

γ2

λk(L̃2) = −λk(L) +
2α

γ
+ iω for all k ∈ {3, 4, · · · , N}.
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δω ≤ 2α

γ0 α
λ3(L)

δω
2

M > 2 M = 2 M = 1

δω > 2α

γ0
α

λ3(L) α k(α, δω)

M > 2 M = 0 M = 1M = 2

Fig. 1. Variations of M , the number of positive real part eigenvalues
of the matrix L̃ depending on the value of γ. Intervals in red are those
where M = 2 and k(α, δω) :=

4α2+|δω|2
8α

.

Furthermore, the real part of λk(L̃2)for all k ∈ {3, 4, · · · , N}
is given by Re{λk(L̃2)} = −λk(L)+ 2α

γ . The respective real
part of the two first eigenvalues are

Re{λ1(L̃2)} = −λ2(L) +
2α

γ

Re{λ2(L̃2)} = −λ2(L) +
2α

γ

when γ ≤ δω
λ2(L) and

Re{λ1(L̃2)} = −λ2(L) +
2α

γ
− 1

2

√
λ2(L)2 −

δω2

γ2

Re{λ2(L̃2)} = −λ2(L) +
2α

γ
− 1

2

√
λ2(L)2 −

δω2

γ2

when γ > δω
λ2(L) . Let M be the number of eigenvalues of L̃2

with positive real part and note that λ2(L) = 2. Consequently,
the sign of the real part of the two first eigenvalues of L̃2

depends on the parameters γ, δω and α. We gather these two
cases in the same figure by presenting the evolution of M in
function of the gain γ.

The case of M = 0 corresponds to global asymptotic
stability of the linear part ż = γL̃z. M = 1 brings us back
to the known result of [9] on the practical stability of the set
{z1 = z2 = · · · = zN}. In this paper, we focus on the case
in which, given the relatively low values of the coupling gain
γ, we have M > 1. It would, therefore, make sense for such
a network to be modeled by a reduced network of NR = 2
oscillators since it can also represent the first two behaviors
previously explained (M = 0 and M = 1).

B. Behavior of the perturbed network
This section shows the effect of the δω > 0 perturbation

on the whole network. In this configuration, for γ > α
λ3(L) ,

L has two eigenvalues with positive real parts. As a result,
the definition of the synchronization error e is the same as
in (13). So, even with the perturbation of the first oscillator
frequency, the origin for the synchronization error e = 0
is globally asymptotically stable, and the proof follows with
V(e) = e∗Pe. Furthermore, the computations explained in the
proof of Proposition 2 lead to the following result.

Proposition 4: Consider a network of N Stuart-Landau
oscillators with dynamics (28) under Assumption 1. Then, on
the synchronization manifold {e = 0}, if γ > α

λ3(L) , there
exists a network of reduced order NR = 2, whose nodes are
dynamical systems of the form

ż1 = −z1|z1|2 +
(
α+ i(ω + δω)

)
z1 − γ(z1 − z2) (32a)

ż2 = −z2|z2|2 + (α+ iω)z1 − γ(z2 − z1). (32b)

□

The following statement is reminiscent of Proposition 2.1 and
Section 3 in [1], and characterizes the behavior of the reduced-
order network when δω > 0. According to Proposition 4, for
γ > α

λ3(L) , {e = 0} is globally asymptotically stable and
the collective behavior of the network is characterized by the
reduced order network in (32), the statement follows.

Proposition 5: Consider a network of NR = 2 Stuart-
Landau oscillators with dynamics (32). Let k(α, δω) :=
α2+|δω|2

8α , and γ > α
λ3(L) . Then,

if δω > 2α,

1) the origin {z = 0} is asymptotically stable, for all γ ∈]
α, k(α, δω)

[
;

2) if γ ≤ α, the network shows two trajectories with a phase
drift, and,

3) if γ ≥ k(α, δω), the network shows two trajectories with
a phase lock.

If, otherwise, δω ≤ 2α,

4) the network shows two trajectories with a phase drift for
all γ < δω

2 and

5) the network shows two trajectories with a phase lock for
all γ ≥ δω

2 . □

□

For the initial homogeneous network, it can be seen that
anti-phase solutions and the origin are unstable. Nevertheless,
the perturbed network, over a given range of γ gain, can be
stable at the origin. It is also noted that for the heterogeneous
network, non-synchronization can appear in several possible
forms: phase drift, where we see a time-varying phase differ-
ence, or phase lock, where oscillators are observed to adopt
a fixed phase difference. The latter is less important as the
coupling gain is increased and approaches zero when γ is
very large. Although these results are linked to the coupling
gain γ, they also depend on the amplitude of the disturbance
δω.
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VI. NUMERICAL SIMULATIONS

Consider a network of N = 10 Stuart-Landau oscillators
interconnected according to a network with Laplacian L,

L =



1 −1 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0
−1 −2 3 0 0 0 0 0 0 0
−1 −2 0 3 0 0 0 0 0 0
−1 −2 0 0 3 0 0 0 0 0
−1 −2 0 0 0 3 0 0 0 0
−1 −2 0 0 0 0 3 0 0 0
−1 −2 0 0 0 0 0 3 0 0
−1 −2 0 0 0 0 0 0 3 0
−1 −2 0 0 0 0 0 0 0 3


,

and with α = 1, ω = 2, and κ = 1. This Laplacian L satisfies
Assumption 1 since the first two eigenvecotors of L above
satisfy exactly (6).

First, we consider the network to be homogeneous, i.e.
δω = 0, and show the possibilities mentioned in Proposition
3. Figure 2 gives the trajectories of the network when the
trajectories are in phase opposition.

-1.2 1.2
-1.2

1.2

-1.5

1.5

0 10 20 30

-1.5

1.5

Fig. 2. Evolution of the trajectories of the homogeneous network with
γ = 0.2+ 1

3
i. The bottom plot corresponds to the anti-phase case and

the dashed curves to the trajectories of the reduced-order network, the
right-upper plot corresponds to the synchronization error. The left upper
one corresponds to the phase plot of the trajectories.

The second full-synchronization case invoked in Proposition
3 is shown in Figure 3, below.

In a second step, we introduce a δω perturbation in the
frequency of the first oscillator and show the effect of these
perturbations through different values of δω as well as γ,
such that each behavior invoked in Proposition 5 is depicted.
Furthermore, after Proposition 5, when the perturbation sat-
isfies δω > 2α = 2 and γ ∈] α

λ3(L) , α], the trajectories
show a phase drift, depicted in Figure 5. Moreover, after the
same proposition, if γ ≥ k(α, δω), the network shows two
trajectories with a phase lock, this can be noticed in Figure 6.
Next, we show the behavior of the network when the frequency
perturbation satisfies δω ≤ 2α = 2. The phase-drift and phase-
lock invoked in Proposition 5 are shown in Figures 7-8.

VII. CONCLUSION

This paper presents results on the reduction of connected
oscillator networks based on the spectral properties of inter-
connection matrices. The results show, first, that it is possible

-1.2 1.2
-1.2

1.2

-1.5

1.5

0 10 20 30

-1.5

1.5

Fig. 3. Evolution of the trajectories of the homogeneous network with
γ = 1+0.5i. The bottom plot corresponds to the anti-phase case and
the dashed curves to the trajectories of the reduced-order network,, the
right-upper plot corresponds to the synchronization error. The left upper
one corresponds to the phase plot of the trajectories.

-0.5 0.5
-0.5

0.5

-1.2

1.2

0 10 20 30
-1.2

1.2

Fig. 4. Numerical results for δω = 3 and γ = 1.2, the dashed black
curves stand for the trajectories of the reduced order network. After
a short transient, the behavior of the initial network is identical to the
behavior of the reduced order network, which explains the superposition
of the curves. This remark is supported by the global asymptotic stability
of e = 0.

to reduce the network of N oscillators to a reduced network of
NR < N oscillators while preserving the collective behavior
of the network. This advantage then allows the analysis of the
different collective behaviors that can be observed, as well as
the effect of a disturbance on network synchronization. Future
research will focus on further generalizing the application of
this reduction method.
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