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Reduction and Analysis of Networks of
Nonlinear Oscillators under Weak Coupling Gain

Anes Lazri

Abstract— We analyze the behavior of Stuart-Landau os-
cillator networks interconnected with low coupling gain. It
is known in the literature that when the coupling gain is
sufficiently high, full synchronization takes place between
the different oscillators in the network. In this paper, we
are interested in the case where the coupling gain is not
sufficiently high, we propose a method for reducing the
network using the spectral properties of the Laplacian,
which can then be used to analyze the possible exhib-
ited behaviors. Secondly, and still in order to analyze the
network’s behavior via the proposed reduced model, we
analyze the effect of an oscillation frequency perturbation
in the first oscillator on the network as a whole.

[. INTRODUCTION

This paper focuses on the synchronization of Stuart-Landau
oscillator networks, which represent a generic model of non-
linear oscillators near a Hopf bifurcation [1], [2], [3], [4].
Stuart-Landau oscillators, which are often used to represent
lasers [5], neuronal networks [6], [7], and various biological
systems [8], efc., are also known for the very rich behaviors
they can exhibit, depending on their own parameters as well
as those related to coupling. This richness can be seen even
when the network contains only two oscillators—see [1].

One of the widely observed behaviors of oscillator networks
is dynamic consensus, which consists of the total synchro-
nization into an averaged oscillator [9]. This behavior is only
possible when the coupling gain is relatively high. On the
contrary, when the coupling gain is low, clustering takes place.
In other words, subgroups of oscillators synchronize with each
other but not with the other oscillators in the network, even
if they are not directly connected (remote synchronization
—see , e.g., [6],[7], [10]). This behavior is highlighted in
[11] for a network of oscillators interconnected on a Stuart-
Landau topology. As explained in [12] and [13], this particular
behavior is linked to the structure of the interconnection
graph and the coupling gain. In order to explain the different
behaviors when the coupling gain is relatively low, the authors
of [11] present a bifurcation analysis via linearization of
dynamics. However, it is strongly believed that it is possible
to analyze the network synchronization problem via graph
reduction.

Reducing the dynamics of interconnected Stuart-Landau
oscillators has been investigated in the literature. Indeed, in
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[14], a technique to reduce the network, by considering the
parameters and spectral properties of the matrices linked to
the interconnection graph, is presented. However, the reduced-
order network model obtained by the method proposed in [14]
has nonlinear interconnections. This hampers significantly the
analysis of the reduced-order network, let alone, the charac-
terization of the various possible behaviors, in function of the
coupling gain.

For a network of connected Stuart-Landau oscillators with
relatively high coupling gain, the authors of [9] approximate
the general behavior of the network by a single averaged oscil-
lator; this makes sense given that the behavior that emerges is
that of a single oscillator. This work, as well as [14], motivates
our work. One of the aims is to present a reduced model
with linear interconnections, that we can analyze the various
possible behaviors for the network under consideration.

As far as we know, apart from [14], eigenvectors-based
graph-reduction methods have not yet been applied to non-
linear oscillators. Furthermore, given that Stuart-Landau os-
cillators are represented by a complex variable model, many
works in the literature have focused on cases in which the
interconnection gain is not scalar [1], [10], [4]. In these pa-
pers, the authors explain the possible behaviors of oscillators,
which are rich and strongly dependent on the values of the
interconnection gain. That said, it is interesting to apply a
graph reduction method on a network where the coupling gain
is not scalar.

It is also worth noting that when the coupling is relatively
high, full synchronization of the oscillators takes place. Never-
theless, the effect of a perturbation on the frequency of one of
the oscillators may completely change the emergent behavior
—see [15], [16]. Depending on the value of the disturbance,
we may see an oscillation death, a phase lock, or even a phase
drift. This problem is addressed in [11] for identical inter-
connected oscillators on a star network when the frequency
of the central node is disturbed. This is also studied for a
heterogeneous network in [17] considering more considerable
disturbances. In this paper, after proposing a reduced model,
we use this model to analyze the various possible behaviors
of the network when a frequency disturbance is introduced.

To be more precise, we use the spectral properties of
the network’s Laplacian to perform a graph reduction. Most
notably, we show that the systems constituting the reduced
network are Stuart-Landau oscillators linked together through
diffusive complex connections. Subsequently, we investigate
how a perturbation in frequency affects the overall system
behavior when the coupling is scalar, using this reduced-



SUBMITTED TO IEEE TRANS. CONTR. NET. SYST.

order network. Similar to the approaches in [11] and [14], our
analysis is limited to network structures with specific structural
criteria. It is worth noting that, to the best of our knowledge,
the general problem of graph reduction that preserves the
interconnection nature (diffusive, direct... ) remains open for
networks of nonlinear systems.

II. PROBLEM FORMULATION
Consider a network of N Stuart-Landau oscillators,

Z'k:_zk\zk|2+(a+iw)zk+uk, k<N (D

where « is a parameter detarmining the rate of convergence of
trajectories towards the the attractor, w is the natural frequency
of oscillation, and the state z; € C has a representation
on the Cartesian plane, given by its real part, denoted xy,
and its imaginary part y;. We assume that the network units
are connected via diffusive coupling over an undirected and
connected graph. For the ith unit the coupling wuj is given by

N
wy, = —BZaij(K;zk —zj) 2)
j=1
where 8 := v +iu € C, with v and g > 0, corresponds to the
coupling gain, and x € [0,1] is a coupling parameter. When
x = 1 the coupling is said to be diffusive, while the case in
which x = 0 corresponds to that of direct coupling. On the
other hand, as is customary in graph theory, The weights of
the interconnections amongst the nodes define the adjacency
matrix, A := [ai;]; jef1,2,.,n}> as well as the Laplacian
matrix L := [l;;], where

i#J
Zf\il a;; if i=j.
i#£]

—Q45 if
lqjj =

We are interested in the possible synchronized behavior of
oscillators as defined above under the effect of the coupling
term (2). Now, the collective behavior here mainly depends on
two factors: the network’s topology and the coupling gain .
For instance, for networks of identical oscillators with an un-
derlying undirected connected-graph topology interconnected
with a scalar coupling gain v > 0 sufficiently large, the
trajectories of the networked system converge to the solution
of the dynamical system,

i=v-1, 3)

which is an emergent oscillator of the same nature—cf [9].

The behavior is much more complex when the scalar cou-
pling gain is not large enough. From [14], it is observed that
clusters emerge in this case, considering identical oscillators.
As a result, such rich behavior cannot be captured by a single
oscillator as defined in (3). Thus, it is necessary to represent
this behavior by a reduced network.

The contribution of this paper is twofold. First, we ana-
lyze the behavior of interconnected oscillators with complex
coupling gain. We show that the reduced model’s dimension
depends on the coupling strength’s magnitude [ relative to
the eigenvalues of the Laplacian matrix L. Significantly, and
in contrast to [14], we propose a reduced-order network with

Zm = _Zm|zm|2 + (am + iwm)zma

linear interconnections. Then, this reduced model elucidates
the various possible network behaviors, in function of the
coupling gain and the systems’ parameters’ values « and
w. Secondly, the reduced-order model is used to analyze the
phenomenon of frequency mismatches and the impact of the
latter on the synchronization problem, which supports the
interest of such a model reduction.

I1l. MODEL DESCRIPTION

Let
21 f(z1)
z = = , F(z):= f(ZQ) , “4)
ZN f(zn)
where f(21) = —zr|z|. With this notation, the diffusive

coupling inputs uy, defined in (2), can be re-written in the
compact form v = —pfLz. Hence, the network dynamics
become

2=F(2)+Tz— BLz, (3)
where I' € RV*Y corresponds to the diagonal matrix
T = (a4 id) Iy,

where & = a+ (1 — k) and ©® = w + p(l — k). Now,
given the complexity of characterizing the collective emergent
behavior and multi-agent synchronization for heterogeneous
systems interconnected over generic graphs, even when the
coupling is scalar (i.e. u© = 0), we focus on networked systems
with underlying graphs satisfying the following hypothesis.

Assumption 1: The eigenvalues A\i(L) of the Laplacian L
and their associated eigenvectors vy, are such that:

)\1(L) =0< )\Q(L) < /\3(L) <. < )\N(L),

1 -1
1 1

v =|.|, and vo=| . |. (6)
1 1

O
Remark 1: We stress that many networks with weighted
links satisfy Assumption 1. This class of networks contains,
for example, weighted all-to-all networks and weighted grid
networks. These networks are generally used to represent the
behavior of brain neurons—see, e.g., [18]-[20]. Multipartite
graphs can also satisfy this assumption; an example is given
in the simulations section. The latter find several applications
in biology as for example in the analysis of the transmission of
sexual disease [21] and ethnobiology [22]. It is also important
to note that the Laplacian matrices of other networks can have
these eigenvectors, as in the case of star networks, which are
studied in depth in the literature —see [11], [23], [24].



SUBMITTED TO IEEE TRANS. CONTR. NET. SYST.

IV. REDUCED-ORDER NETWORK AND SYNCHRONIZATION
ERROR

The determination of the order of the reduced network Ng
is inherently connected to the spectral characteristics of the
linear component in (5). To make this clear, it is advantageous
to rewrite (5) as

% =F(z)+ BLz, (7

where L := [— L+ éjf]

The main idea behind reducing the graph is to exploit the
spectral properties of the linear part of the dynamics (7).

For the system z = BLz, the eigenvalues with positive real
parts in L generate unstable modes. In contrast, those with
negative real parts generate stable ones. That is, the solution
to 2 = BLz takes the form

2(t) = Blorv 2(t) + vavpz(t) + - - - + vnpuin, 2(1)] + e(t),

where vy and vy, for all k € {1,2,..., M}, are respectively
the right and the left eigenvectors of L associated with the
M positive real part eigenvalues of L. On the other hand,
e(t) contains the contributions to the solution generated by
the stable modes. As e(t) — 0, only the contributions of
the unstable modes remain. The number of positive real
part eigenvalues M defines, therefore, the order Np of the
reduced order network, and the unstable modes determine the
asymptotic behavior of the network.

First, we observe that because the graph is connected, L has
a unique zero eigenvalue and admits the Jordan decomposition

00 _1
L—V[OQJV . (8)
Furthermore, Q5 € RN-IXN-1 jg 5 diagonal matrix whose
elements correspond to the nonzero eigenvalues of L. Then,
in view of its definition, L satisfies the same decomposition
as L. That is, denoting by A, (L) the eigenvalues of L, after
(8), for all k € {1,2,..., N}, we have

VTILV = blkdiag{ﬁ

B2
Clearly, the number of eigenvalues of the matrix above with a
positive real part varies from 1 to N depending on the value
of 8 = v+ iu. The real part of each eigenvalue, for all k£ €
{1,2,..., N}, can be written as

(@+ i(:))—)\k(L)}. )

Re{ (D)} = O;Ziijf ML) +1—r  (10)
In what follows, for («, w) given, we are interested in the sign
of the real part of the eigenvalues of L. It is observable from
(10) that the number of eigenvalues with positive real part
increases when |3| = /72 + p? decreases. In other words,
when |3| is relatively high, only the real part of the first
eigenvalue, i.e., Re{\o(L)} = ‘giiy , is positive. On the
other hand, when || is relatively low, the number of positive
real part eigenvalues Np increases.
Consequently, for what follows, we set

LWy sy s U WO g

such that Vy > =, and p > p,,, the number of eigen-
values with positive real parts is Ng < 2. To highlight the
results, the paper focuses on the case where Np = 2. Prior
knowledge of the graph structure under study is important
for dynamics reduction since this reduction is based on the
spectral properties of the graph’s Laplacian. Thus, for v > v,,
and o > p,y, the eigenvectors associated with eigenvalues
having positive real parts are v; and ve from Assumption 1.
Therefore, these eigenvactoes are used to project the dynamics
onto the subspace corresponding to the unstable eigenvalues
of the linear part of the network dynamics.

Following this train of thought, we unfold a natural def-
inition of the synchronization errors e. Let V' = [V} V3],
where V; € RVXNr gathers the eigenvectors associated to
the Ny eigenvalues with positive real part in Eq. (8) and V5 €
RN*(N=Nr) contains the remaining N — N eigenvectors of
L. Then,

v

Vl=
V2T

Next, we use V] and V5 to introduce the new coordinate z =
V=12, and we use the partition

— §1 Vl]LZ
Z = = s
&2 Vyz
with & € RNz, & € RN=Ne_ Using VV—1 = WV +
V2V2T = In we deduce the relation
‘/252 =z - ‘/1517

which is useful to define the synchronization errors e := V5&s,
as

(1)

12)

e=2z—Vi&. (13)

It is clear from the last equation that the subspace of &;
captures the generalized solutions, while the subspace of &
corresponds to a projection of the space of synchronization
errors. In other words, if e = 0, then &, = 0 and z = Vi&;.
Consequently, for Ng = 2, we have V] = [v; v5] and Vf =
[v) v}] . so e takes the form

e=z— vlvlle — vgvlgz. (14)

This definition of e covers the cases treated previously in
the literature where the emerging dynamic is assimilated to
a single system — see e.g. [25]. Explicitly, (14) yields
1 0y
€T {OK }(1;(1}} =

where 1y is a vector of ones of size K and O a vector of
size K = N — 1 where all entries are equal to zero. With this
definition of e, we see that on {e = 0}, 21 is unchanged and,
foreach i € {2,3,--- , N}, z; converges to the average of the
latter.

With this definition of e, we see that on {e = 0}, 27 is
unchanged and, for each i € {2,3,---, N}, z; converges to
the average of the latter. Hence, defining zp = [le 25 ]T as
the state of the reduced order network, on {e = 0}, we have

cR=W'Tz, 2= Qzgr (15)
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where

10 0 ---0 10---0

W= [ 1 1 1] QT { } .
0 ? F A ? O 1 1

Thus, on the synchronization manifold {e = 0}, we have z, =

23 = =2y = % Eszz 2z and the dynamics described
by the state zp =

(1 2] = [ & Tia]
asymptotically.

We are ready to present our first statements: Proposition 1
on the dynamics of the synchronization errors e and Proposi-
tion 2 on the reduced-order network, with state zp.

Proposition 1 (synchronization): For a network of systems
with dynamics (1) in closed loop with (2), under Assumption
1, the set {e = 0}, where e is defined in (14), is globally
exponentially stable, for any 8 > S, := Ym + itim. O

Proof: After (11) and (12), we have e = V2V2 z. Now,
conmder the Lyapunov function candidate V(e) = ille[|? =
26 e, where e* is the conjugate transpose of the vector e.
Furthermore, let P := VQVT =1y — VlV Clearly, P = Pt
and PT P = P. Moreover,

persist

Vie) =V, (z) = %Z*Pz.

Therefore, the total derivative of V' (e) may be computed by
differentiating Vz'(z) above, along the trajectories of (7). For
clarity, we split V. (z) into

V:(2) =V (2) + V" (2),

(16)

where
: av 2
V() = (17)
) av(nl)
nl L z
Vi (z) = aziTF(z), (18)

and we compute Vz(l)(z) and Vz(nl)(z) separately. For the
former, we use the identity e = Pz, to obtain

VO (e) = ge*Pﬂz + %JETP& (19)
Next, since V = [V} Vs, P = V2V2T is equivalent to
0 0 1
P=V V. 20
{0 INNR] (20)
On the other hand, for Nz = 2, we have
= A O 1
LV[O AJV , 1)

where Ay € RIV-Nr)x(N=Nr) j5 a block diagonal matrix
gathering N — Ny blocks with negative-real-part eigenvalues

Ae(L).
Therefore, using (20) and (21) in (19), we obtain
(1) 5 oy (00
VWi(e) = 14 [O AJ V72
»3* T 0 0 1 '
+ ?Z V 0 A; V e,
or, equivalently,
. T
Vie) = ge*VgAV;z + gz—r |:‘/—2A‘/2Tj| e.

Now, since VQTVQ = In_nNp, We have V;e = V;z, SO

V(e) = #&VQ [A+AT]Ve.
Finally, since [A + AT] is a diagonal matrix with N — Np
entries with negative real part,

——Re{As(L)}le]?, (22)

where /\3([~/) is the lowest eigenvalue of L with negative real
part. Now we focus on Vz("l)(z) and show that it is non-
positive. To that end, we develop the matrix product on the
right-hand side of (16) to obtain

1 N N
= ﬁZZsz - z%.

k=2 j=2

(23)

The total derivative of the latter along the trajectories of (1)
and disregarding the linear terms (including the inputs), yields

v (z ZZ |2nl* = 12517 + 2 zil25 | + 25 2l 2.
k 2j5=2
However, for each {i,5} € {2,3,--- , N},
% . 1 1
|l2|*202) + |25 [% 2525 < §|zk|4 + |2k %2> + 5|zj\4,
Hence,
NNy
V() < 2 20 —plarl! + el - f\zj|4
k=2 j=2
| NN
<o 2 2 el =15

=~
I|
N
<
I|
N

Thus,

Vi (z) <o. (24)

Putting together (24) and (22), and in view of the first identity
in (16), we obtain

V(e) < yRe{As(L)}le]|*.

Since A3(L) < 0, Global exponential stability of {e = 0}
follows.

Proposition 2 (reduced-order network): Consider a net-
work of N Stuart-Landau oscillators with dynamics (1), in
closed-loop with (2) and under Assumption 1. Then, on the
synchronization manifold {e = 0}, if 8 > By = Ym + iftm.
there exists a network of reduced order Nr = 2, whose nodes
are dynamical systems of the form

T —zk|zk|2—|—(a+iw)zk —ﬂZ(Fazk —2j), (25)
j=1
where ¢ € {1,2}. O
Remark 2: This reduction of the network of N units to
a network of Nr = 2 units has the benefit of providing
a characterization of different behaviors that the original
network may exhibit.
Proof: Consider the matrices W and () defined below
(15). These matrices may also be expressed in function of the
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two right eigenvectors v; and vy and the corresponding left
eigenvectors, v;; and v, which in turn may be obtained by
evaluating the pseudo-inverse VlT = (V,"V1)~'V;". We obtain

1
@=1fn-u vl W=l

Now, according to (15), zg = WTzand z = Qzg. Therefore,
irn=W'F(2)+ W LQzr, (26)

with L= [~ L+ {T].

Then, using the definitions of W and () above, considering
Assumption 1, and using the identities UZTIL =0and Lv; =0,
we obtain

Lr:=W'TLQ= [_} ” .

On the other hand, we define

T |G+ 0
Pr=WTQ= [ 0 &ﬂa}
Hence, the second term on the right-hand side of (26) equals
to vLrzgr, where
Lp= [—LR+|§|2FR}.

Next, we turn our attention to the first term on the right-
hand side of (26). Since zp = W'z, referring to (4), and

defining z, = [z; 25 - zI,]T, we obtain
. Z1 f(z1) =
ZR = .| = N +vLRrzR.
|:11(1£ZU7:| |Jl( Zk-zz f(zk)
Moreover, on {e¢ = 0} the relation zo = z3 = - -+ = zx holds.

N N
Then + >, 5 f(2k) = & Yp_s f(22) = f(22). Thus, the
reduced-order network takes the form

ZR = HEZﬂ +7yLRr2r,

which is Equivalent to equations (25). ]

V. EFFECT OF PARAMETER MISMATCH

In this section, we focus on the effect of a disturbance on the
oscillation frequency w on the overall behavior of the network.
More precisely, we assume that this dw disturbance affects
the ’leader’ parameters. This translates into a transition to the
dynamics

2 = —z1|z1\2 + [a +i(w+ &u)]zl + up

2L = fzk|zk|2 + (@ +iw)zg + ug

(27a)
(27b)

with wy as introduced in (2) and ¢ € {2,3,---,N}. The
network is heterogeneous since the first system’s oscillation
frequency is now w + dw. In the literature, analyzing the
dynamics reduction of heterogeneous networks of oscillators
when the coupling gain is low remains an open problem. For
this reason, we assume in this section that y =0 and Kk = 1
(i.e. we analyze the behavior for a network with diffusive
coupling). In compact form, (27) can be written as

2=F(z)+Tz—~Lz (28)

with
a+i(w + dw) 0

Lo = 0 (a+iw)In_1.

In what follows, the collective behavior is analyzed as a func-
tion of two main parameters, the gain v and the disturbance
dw. As it may become clearer later, it is convenient to rewrite
(5) as

i=F(z2)+ T2z —v[L ® L]z, (29)
where v and L are scaled as follows:
2 Ao(L) _
L=—=—L = . 30
WA 5 (30)
Then, Eq. (5) becomes
5= F(2) +7Lyz, (31)

where Lo := [—L+ %Fg].

Now, in order to compare the behavior of the networked
system before and after including the frequency perturbation,
we rely on the following result for the unperturbed system.
Note from Propositions 1-2 that the collective behavior of the
network is characterized by a reduced-oder network of N =
2 oscillators, for 8 > B = Ym + tbm.

Proposition 3 ([1]): For the network (25), the in-phase
solution is linearly asymptotically stable (sic), provided that

Y+ 1?4+ 9[(1—k)+a] >0,
Otherwise, when
7<% and 372 —ay+pu* >0

the anti-phase solution is linearly asymptotically stable (sic).
]

Remark 3: In [1] linear stability refers to local stability.
Moreover, according to Proposition 2, on the synchronization
manifold {e = 0}, the asymptotic behavior of the network
(1)-(2) is represented by a network of Np = 2 oscillators.

A. Eigenvalues of

To determine N we observe that under Assumption 1, £
has a unique zero eigenvalue and admits the decomposition
(8). Furthermore, note that

VDLV =
atiw+i%  —i% 0 0
—i%  atiw+i% 0 0
0 0 a+ 1w 0
0 0 0 . 0
0 0 0 - at+iw
As a result, the eigenvalues are given by
. 2a dw 1 ow?
AM(L2) ==X (L) + — +1i —) = =4[ (L) — —
1(£2) 2(£) + S Filw+ =) = 54/ A(L) 2
. 2a ow 1 Oow?
Ao(Lo) ==X (L) + — +1i —) — =4[ A(L)? — —
2(L2) 2(£) + S Filw+ =) = 54/ A(L) 2

2
)‘k(EQ):_)\k(E)+7a+iw for allk € {3,4,--- ,N}.
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6
M >2 M =2 M=1
o 5 4
0 A3(L) 7&1 v
M > 2 M =2 M=0 M=1
— e
(7
0 As(L) @ k(a, dw) v
Fig. 1. Variations of M, the number of positive real part eigenvalues

of the matrix £ depending on the value of 7 Intervals in red are those
where M = 2 and k(a, dw) := 40 4|6w|?

8

Furthermore, the real part of Ay (Ly)for allk € {3,4,--- ,N}
is given by Re{\x(L2)} = = (L) + 27" The respective real
part of the two first eigenvalues are

Re{\i(£2)} = —Xa(L) + 2o

Re{A2(L2)} = —Xa(L) + 2701

w

b
when v < (D) and

5 2 1 Sw?
Re{\(£Ls)} = —Xa(L) + 7“ — 54/ 20— 7‘*’2
5 2 1 dw?
Re{)‘2(£2)} = 7/\2(6) + 701 - 5 )\Q(ﬁ)2 — —;}2

when v > ( 19k Let M be the number of eigenvalues of Lo
with positive real part and note that Ay(£) = 2. Consequently,
the sign of the real part of the two first eigenvalues of Lo
depends on the parameters -y, dw and . We gather these two
cases in the same figure by presenting the evolution of M in
function of the gain ~.

The case of M = 0 corresponds to global asymptotic
stability of the linear part z = 'y£~z. M = 1 brings us back
to the known result of [9] on the practical stability of the set
{z1 = 29 = -+ = zn}. In this paper, we focus on the case
in which, given the relatively low values of the coupling gain
~, we have M > 1. It would, therefore, make sense for such
a network to be modeled by a reduced network of Np = 2
oscillators since it can also represent the first two behaviors
previously explained (M =0 and M = 1).

B. Behavior of the perturbed network

This section shows the effect of the dw > 0 perturbation
on the whole network. In this configuration, for v > 3(2
L has two eigenvalues with positive real parts. As a resuft
the definition of the synchronization error e is the same as
in (13). So, even with the perturbation of the first oscillator
frequency, the origin for the synchronization error e = 0
is globally asymptotically stable, and the proof follows with
V(e) = e* Pe. Furthermore, the computations explained in the
proof of Proposition 2 lead to the following result.

Proposition 4: Consider a network of N Stuart-Landau
oscillators with dynamics (28) under Assumption 1. Then, on
the synchronization manifold {e¢ = 0}, if v > %, there
exists a network of reduced order Np = 2, whose nodes are
dynamical systems of the form

2 = _Zl‘zl|2 4+ <a+z’(w +5w))21 - ’Y(Zl - 22) (32a)

Zg = —ZQ\22|2 + (a+iw)z; — (22 — 21). (32b)

O

The following statement is reminiscent of Proposition 2.1 and
Section 3 in [1], and characterizes the behavior of the reduced-
order network when dw > 0. According to Proposition 4, for
v > ﬁ, {e = 0} is globally asymptotically stable and
the collective behavior of the network is characterized by the
reduced order network in (32), the statement follows.

Proposition 5: Consider a network of Np = 2 Stuart-
Landau oscillators with dynamics (32). Let k(«,dw) =
% . and > %7, Then,
if &u > 2a,

1) the origin {z = 0} is asymptotically stable, for all v €
Ja, ke, 6w) [ ;

2) if v < «, the network shows two trajectories with a phase
drift, and,

3) if v > k(a, dw), the network shows two trajectories with
a phase lock.

If, otherwise, dw < 2q,

4) the network shows two trajectories with a phase drift for

all v < % and
5) the network shows two trajectories with a phase lock for
dw
O

For the initial homogeneous network, it can be seen that
anti-phase solutions and the origin are unstable. Nevertheless,
the perturbed network, over a given range of v gain, can be
stable at the origin. It is also noted that for the heterogeneous
network, non-synchronization can appear in several possible
forms: phase drift, where we see a time-varying phase differ-
ence, or phase lock, where oscillators are observed to adopt
a fixed phase difference. The latter is less important as the
coupling gain is increased and approaches zero when ~ is
very large. Although these results are linked to the coupling
gain ~, they also depend on the amplitude of the disturbance
ow.
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VI. NUMERICAL SIMULATIONS

Consider a network of N = 10 Stuart-Landau oscillators
interconnected according to a network with Laplacian L,

(1 -100000000]
-1 100000000
~1-230000000
~1-203000000
~1-200300000
~1-200030000]|°
~1-200003000
~1-200000300
~1-200000030
-1 20000000 3]

and with « = 1, w = 2, and x = 1. This Laplacian L satisfies
Assumption 1 since the first two eigenvecotors of L above
satisfy exactly (6).

First, we consider the network to be homogeneous, i.e.
dw = 0, and show the possibilities mentioned in Proposition
3. Figure 2 gives the trajectories of the network when the
trajectories are in phase opposition.

15 L2
VA N\,
s 5 )
© = \ J
15 : 12
time]s]| ‘1.2 Re(2) 12
15f ' ' i

-15[¢ I I ]
time[s] 20 30

Fig. 2. Evolution of the trajectories of the homogeneous network with
~Y =02+ %1, The bottom plot corresponds to the anti-phase case and
the dashed curves to the trajectories of the reduced-order network, the
right-upper plot corresponds to the synchronization error. The left upper
one corresponds to the phase plot of the trajectories.

The second full-synchronization case invoked in Proposition
3 is shown in Figure 3, below.

In a second step, we introduce a dw perturbation in the
frequency of the first oscillator and show the effect of these
perturbations through different values of dw as well as -+,
such that each behavior invoked in Proposition 5 is depicted.
Furthermore, after Proposition 5, when the perturbation sat-
isfles dw > 2a = 2 and 7 G]ﬁ, af, the trajectories
show a phase drift, depicted in Figure 5. Moreover, after the
same proposition, if v > k(«,dw), the network shows two
trajectories with a phase lock, this can be noticed in Figure 6.
Next, we show the behavior of the network when the frequency
perturbation satisfies dw < 2a = 2. The phase-drift and phase-
lock invoked in Proposition 5 are shown in Figures 7-8.

VIl. CONCLUSION

This paper presents results on the reduction of connected
oscillator networks based on the spectral properties of inter-
connection matrices. The results show, first, that it is possible

1.5 12
= % S AN /

e ' time]s]| ' El'-21.2 Re(2) 12
15f 1 ' 1
AN AN AN AN A
SN/\/\/\/\/\/\/\/\/V

& VoA NV VY
VARV VEARVERVERVERVARVER
-1'50 1.0 timels] 2I0 3:0

Fig. 3. Evolution of the trajectories of the homogeneous network with
~ = 1+ 0.54. The bottom plot corresponds to the anti-phase case and
the dashed curves to the trajectories of the reduced-order network,, the
right-upper plot corresponds to the synchronization error. The left upper
one corresponds to the phase plot of the trajectories.
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Fig. 4. Numerical results for dw = 3 and v = 1.2, the dashed black
curves stand for the trajectories of the reduced order network. After
a short transient, the behavior of the initial network is identical to the
behavior of the reduced order network, which explains the superposition
of the curves. This remark is supported by the global asymptotic stability
ofe = 0.

to reduce the network of NV oscillators to a reduced network of
Npr < N oscillators while preserving the collective behavior
of the network. This advantage then allows the analysis of the
different collective behaviors that can be observed, as well as
the effect of a disturbance on network synchronization. Future
research will focus on further generalizing the application of
this reduction method.
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