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Practical Synchronization of Perturbed Networks
of Semi-Passive Systems

Anes Lazri Mohamed Maghenem Elena Panteley Antonio Lorı́a

Abstract— We study practical synchronization for heteroge-
neous networks of nonlinear systems in the presence of bounded
perturbations. Under the assumption that the nodes are state
semi-passive and the interconnection graph admits a spanning
tree, we establish uniform ultimate boundedness of the solutions
and, consequently, practical synchronization. That is, we show
that the systems’ trajectories approach each other up to a
steady-state error. The magnitude of this steady-state error can
be made arbitrarily small by increasing a scalar coupling gain.
The results are shown to hold under the assumption that (at
least) a single “well-located” node in the network enjoys some
robustness properties. Our theoretical results are fairly general
in regards to the topology and are illustrated in simulation on
a case-study of networked mobile robots.

I. INTRODUCTION

Depending on the context and the domain of study, precise
definitions of synchronization may differ. For the purpose of
this paper, we simply refer to it as the property by which the
solutions of individual systems, after interconnection, match
asymptotically. For heterogeneous networks, synchronization
is not expected to occur when employing most of the widely-
used interconnection protocols, and steady-state errors are
unavoidable. This is even more likely to happen when the
nodes are affected by external perturbations. In such scenar-
ios, it is more realistic to guarantee practical synchronization
[1], [2], [3], [4].

To establish practical synchronization, we use a frame-
work that is based on showing uniform boundedness and
uniform ultimate boundedness of the network’s solutions.
The latter two properties have been studied in the literature
of networked systems. For instance, by appealing to ISS-
like conditions for the individual nodes, the so-called mesh-
stability property is established in [5], implying bounded-
ness of the network’s solutions. In [1], nonlinear networks,
interconnected according to a balanced graph and subject
to dynamic uncertainties, are shown to be semi-passive,
implying ultimate boundedness of the network’s solutions.
In [6], when the individual nodes are semi passive, networks
interconnected according to a strongly-connected graph, are
shown to have ultimately bounded solutions. A similar
study of networked semi-passive systems, under undirected
graphs, is provided in [7]. The latter two boundedness results
have been key to establish synchronization and practical
synchronization for homogeneous [8] and for heterogeneous
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[4], [9] networks of semi-passive systems, respectively. We
recall, roughly speaking, that a semi-passive system defines a
passive map away from a compact set around the origin [10],
[7]. This property is verified by several physical systems,
including robotics systems [1] and some neuronal models
such as Hodgkin-Huxley, Morris-Lecar, FitzHugh-Nagumo,
and Hindmarsh-Rose models [11].

Most of the works studying boundedness and synchroniza-
tion for networks of semi-passive systems rely on the as-
sumption that the interconnection graph to be either strongly
connected or balanced. Nevertheless, many networks, en-
countered in control applications [12], physics [13], and
opinion-dynamics [14], may not meet these criteria. This
explains the interest in considering general directed graphs.
Although such a general interconnection scenario has been
recently considered in [9], the results therein do not hold in
the presence of (even arbitrarily-small) input perturbations.

In this paper, we study practical synchronization for input-
disturbed networks of semi-passive systems, interconnected
according to a general directed graph admitting a spanning
tree. To do so, we first establish ultimate boundedness of
the network’s solutions. The value of this result is that it
applies to generic directed connected graphs. Furthermore,
we handle input perturbations, which can affect the entire
network, by requiring a single well-located node to be robust
in a specific sense. Without such a robustness property,
we are able to find an example where boundedness of the
network’s solutions is not satisfied. Later on, we show that
ultimate boundedness allows us to guarantee practical syn-
chronization by guaranteeing practical asymptotic stability
of the synchronization manifold.

The rest of the paper is organized as follows. The con-
sidered class of networks is introduced in Section II. The
boundedness and ultimate-boundedness results are in Section
III. The practical-synchronization results are in Section IV.
Finally, numerical illustrations are provided in Section V.

II. PROBLEM SETTING

Consider n dynamical nonlinear systems modeled by

ẋi = fi(xi) + ui, xi ∈ R, i ∈ {1, 2, · · · , n}, (1)

where fi : R 7→ R is continuous and the input ui is set to

ui := −γ
n∑

i=1

aij(xi − xj) + di(t) (2)



where d := [d1 d2 · · · dn]⊤ is a bounded input perturbation.
It is assumed that there exists d̄ > 0 such that

sup
t≥0

|d(t)| ≤ d̄. (3)

Remark 1: In the main content of this paper, it is consid-
ered, for notational simplicity and without loss of generality,
that xi ∈ R. However, all the statements apply for systems
such that xi ∈ RN . •

Because we address the problem of synchronization as one
of stability, we say that the interconnected network (1)-(2)
achieves (global asymptotic) synchronization if the set

A := {x ∈ Rn : x1 = x2 = · · · = xn}. (4)

is globally asymptotically stable (GAS). However, since
(global asymptotic) synchronization is in general not ex-
pected to hold for this class of networks, we focus on the
following alternative property.

Definition 1 (Global Practical Synchronization): System
(1) in closed-loop with (2) achieves global practical
synchronization if, for each δ > 0, there exists λ∗ > 0 such
that, for each λ ≥ λ∗ and t 7→ d(t) satisfying (3) for some
d̄ > 0, the set Bδ(A) := {x ∈ Rn : |x|A ≤ δ} is GAS,
where |x|A := min{|x− z| : z ∈ A}. •

To guarantee global practical synchronization, we rely on
three hypotheses, one on the individual-node dynamics (1),
one on the network’s topology, and one more on a particular
node required to have enhanced robustness.

Assumption 1 (State strict semi-passivity): For each i ∈
{1, 2, ..., n}, there exists a continuously differentiable storage
function Vi : R → R≥0, a class K∞ function αi, a constant
ρi > 0, a continuous function Hi : R → R, and a continuous
function ψi : R≥0 → R≥0, such that

αi(|xi|) ≤ Vi(xi), (5)
V̇i(xi) ≤ 2uixi −Hi(xi), ∀xi ∈ Rni (6)
Hi(xi) ≥ ψi(|xi|) ∀|xi| ≥ ρi. (7)

Remark 2: The property described in Assumption 1 is
called strict quasi-passivity in [15]. The authors of [10]
define a similar property without imposing radial unbound-
edness of the storage function; see also [7]. •

Our second hypothesis concerns the network’s topology,
which is captured by a directed graph G to which corresponds
the network Laplacian L ∈ Rn×n whose entries are

[L]i,j =


−aij , i ̸= j

n∑
ℓ = 1
ℓ ̸= i

aiℓ, i = j, i, j ≤ n.

Assumption 2: The graph G is directed and contains a
directed spanning tree. •

Under Assumption 2 it is guaranteed that the Laplacian
matrix L has exactly one zero eigenvalue λ1(L) = 0, and,

Re(λi(L)) > 0 ∀i ∈ {2, 3, · · · , n},

where Re(·) stems for the real part of (·). Another very useful
and well-established [16] fact is that, under Assumption 2,

G can be decomposed into a leading strongly-connected sub-
graph {Gℓ(Vℓ, Eℓ)} with no incoming links, and, a subgraph
of followers {Gf (Vf , Ef )}. Note that a single node with no
incoming links can also be considered as a leading strongly-
connected subgraph. Up to some permutation, the matrix L
can be expressed in the lower-block triangular form

L =

[
Lℓ 0

−Aℓf Mf

]
, (8)

where Lℓ := Dℓ−Aℓ ∈ Rnℓ×nℓ corresponds to the Laplacian
matrix of the strongly-connected graph Gℓ, the lower-left
block Aℓf ∈ Rnf×nℓ , nf := n−nℓ, is a non-negative matrix,
and the lower-right block Mf ∈ Rnf×nf is a non-singular
M -matrix.

Therefore, the network state x := [x1 · · · xn]
⊤ and

perturbation d := [d1 · · · dn]⊤ may be decomposed into
x := [x⊤ℓ x⊤f ]

⊤ and d := [d⊤ℓ d⊤f ]
⊤, where xℓ, dℓ ∈ Rnℓ

contain, respectively, the states and the perturbations of the
nodes forming the leading strongly-connected subnetwork,
and xf , df ∈ Rnf contain, respectively, the states and
the perturbations of the remaining nodes, considered to be
“followers”. Correspondingly, we define

fℓ(xℓ) :=
[
fℓ1(xℓ1) · · · fℓnℓ

(xℓnℓ
)
]⊤
,

:=
[
f1(x1) · · · fnℓ

(xnℓ
)
]⊤
,

ff (xf ) :=
[
ff1(xf1) · · · ffnf

(xfnf
)
]⊤
,

:=
[
fnℓ+1(xnℓ+1) · · · fnℓ+nf

(xnℓ+nf
)
]⊤
.

Consequently, the closed-loop system (1)-(2), which in a
compact multi-variable form corresponds to

ẋ = F (x)− γLx+ d(t), (9)

may be re-expressed in the convenient cascaded form

ẋℓ = fℓ(xℓ)− γLℓxℓ + dℓ(t), (10)
ẋf = ff (xf ) + γAℓfxℓ − γMfxf + df (t). (11)

Equation (10) defines the dynamics of the leading
strongly-connected component, which is a networked system
with the underlying strongly-connected graph Gℓ. Further-
more, (11) gathers the dynamics of the followers. As a result,
many properties for (9) are expected to be achieved using
cascades-type arguments applied to (10)-(11).

Remark 3: It is worth stressing that the leader-follower
representation in (10)-(11) is always possible under Assump-
tion 2. A similar cascaded structure can also be obtained if,
instead of Assumption 2, we assume that the graph G is only
weakly connected. •

Our third hypothesis is a robustness condition on an
arbitrary node belonging to the strongly-connected leaders’
subgraph Gℓ. For a future reference, we label this node with
the index k ∈ {1, 2, · · · , nℓ}.

Assumption 3: There exists k ∈ {1, 2, · · · , nℓ} and a
positive constant c > 0 such that ψk(|xk|) ≥ c|xk| for all
|xk| ≥ ρk, where (ψk, ρk) are introduced in Assumption 1.
•



If Assumption 3 is not verified, there may be cases in which
the solutions are not bounded. In Section V, we give a
numerical example that is illustrative of this fact.

In the following section, we make some statements on
uniform boundedness and uniform ultimate boundedness for
networks of the form (9) satisfying Assumptions 1–2, as
well as Assumption 3 for specific values of the constant c
introduced therein. These values of c are derived based on
the following technical statement.

Lemma 1: The Laplacian matrix Lℓ ∈ Rnℓ×nℓ of a
directed and strongly connected graph Gℓ admits a vector
vℓ ∈ Rnℓ of positive elements vℓi > 0, such that v⊤ℓ Lℓ = 0.
Moreover, for the diagonal matrix Πℓ := diag{vℓi}, the
matrix Qℓ := ΠℓLℓ + L⊤

ℓ Πℓ is positive semi-definite and
its kernel is spanned by 1nℓ

:= [1 1 ... 1]⊤ ∈ Rnℓ . □

III. BOUNDEDNESS PROPERTIES

Our first result guarantees global uniform boundedness
(GUB) and global uniform ultimate boundedness (GUUB),
where uniformity is with respect to the coupling gain γ. For
clarity, we recall the definitions of these properties.

Definition 2 (GUB): The solutions t 7→ x(t) to (9) are
globally bounded, uniformly in γ, if, for every ro > 0 and
γo > 0, there exists R = R(ro, γo) ≥ ro such that, for all
γ ≥ γo and t 7→ d(t) satisfying (3), we have

|x(0)| ≤ ro ⇒ |x(t)| ≤ R ∀t ≥ 0.
•

Definition 3 (GUUB): The solutions t 7→ x(t) to (9) are
globally ultimately bounded, uniformly in γ, if given γo > 0,
there exists r = r(γo) > 0 such that, for all ro > 0, there
exists T = T (ro, γo) ≥ 0 such that, for all γ ≥ γo and
t 7→ d(t) satisfying (3),

|x(0)| ≤ ro ⇒ |x(t)| ≤ r ∀t ≥ T.
•

Then, we have the following result.
Theorem 1 (GUB & GUUB): Consider the network in (9)

such that (3) holds for some d̄ > 0 and such that Assump-
tions 1–2 hold. Assume further that Assumption 3 holds with

c > 2d̄|Πℓ1nℓ
|/vℓk, (12)

where Πℓ and vℓk are introduced in Lemma 1 and the index
k is defined in Assumption 3. Then, the solutions to (9) are
GUB and GUUB. □

Remark 4: It is important to note that both Assumption
3 and Inequality (12) are verified if it is possible to find
k ∈ {1, 2, · · · , nℓ} such that

ψk(|xk|) ≥ c(|xk|)|xk|, for some c(·) ∈ K∞.

Indeed, in this case, one can choose ρk in Assumption 1
sufficiently large so that

c(|xk|) ≥ 2d̄|Πℓ1nℓ
|/vℓk ∀|xk| ≥ ρk.

Under such a particular form of ψk no global knowledge on
the network is required to verify (12) and Assumption 3. •
Sketch of proof: The proof relies on establishing GUB and
GUUB, first, for the dynamics of the leading sub-network

(10) and, then, for the follower dynamics (11), considering
the latter as a system affected by a disturbance t 7→ xℓ(t).

The analysis of (10) uses the Lyapunov-like function

Wℓ(xℓ) :=

nℓ∑
i=1

vℓiVi(xℓi), (13)

where the vℓis are positive constants introduced in Lemma 1
and the Vis are the storage functions provided in Assumption
1. Now, using Lemma 1, one can show the existence of C >
0 and µ > 0 such that

Ẇℓ(xℓ) ≤ C − γλ2(Qℓ)|xℓ|2Aℓ
+ µ|xℓ|Aℓ

∀xℓ ∈ Rnℓ .

As a consequence, given γo > 0 and ϵ > 0, we can find
Rc(γo, ϵ) > 0 such that

Ẇ (xℓ) ≤ −ϵ ∀xℓ /∈ C := {xℓ ∈ Rnℓ : |xℓ|Aℓ
≤ Rc} .

Furthermore, using (6) and (7), one can find a constant
βℓ(γo, ϵ) > 0 and a function Ψ : Rnℓ → R that is continuous
and positive on C\Bβℓ

, where Bβℓ
:= {xℓ ∈ Rnℓ : |xℓ| ≤

βℓ}, such that

Ẇℓ(xℓ) ≤ −Ψ(xℓ) ∀xℓ ∈ C\Bβℓ
. (14)

Thus, we conclude that

Ẇℓ(xℓ) ≤ −min{Ψ(xℓ), ϵ} < 0 ∀xℓ ∈ Rnℓ\Bβℓ
.

The latter is enough to find σℓ(γo) > 0 such that the set

Sσℓ
:= {xℓ ∈ Rnℓ :W (xℓ) ≤ σℓ},

which satisfies Bβℓ
⊂ Sσℓ

, is globally attractive and forward
invariant. Finally, the first inequality in Assumption 1 allows
to deduce a candidate uniform ultimate bound

rℓ :=

[
min

i∈{1,...,nℓ}
{αℓi}

]−1

(σℓ).

Next, we compute an upperbound, Tℓ(ro, γo), on the time
that the solutions to (10) with γ ≥ γo, and starting from
Bro := {xℓ ∈ Rnℓ : |xℓ| ≤ ro}, take to reach the compact set
Bβℓ

⊂ Sσℓ
. For this, we find ϵo(ro, γo) > 0 such that, along

every solution t 7→ xℓ(t) to (10) with xℓ(0) ∈ Bro\Bβℓ
,

we have Ẇℓ(xℓ(t)) ≤ −ϵo, up to the earliest time when xℓ
reaches Bβℓ

. Thus, we can take Tℓ := max{Wℓ(y) : y ∈
Bro}/ϵo.

Finally, to compute the upperbound Rℓ(ro, γo) on the
solutions to (10), with γ ≥ γo and starting from Bro , we use
the fact that |xℓ(t)| ≤ rℓ(γo) for all t ≥ Tℓ(ro, γo). Hence,
it remains to upperbound the norm of those solutions over
the interval [0, Tℓ]. To that end, we show that on the latter
interval

W (xℓ(t)) ≤ C +
θ21Tℓ(ro, γo)

γoλ2(Qℓ)
+ max{Wℓ(y) : y ∈ Bro}.

Hence, ∀t ≥ 0, we have

|xℓ(t)| ≤ Rℓ :=
[
min
i
{αℓi}

]−1
(
C +

θ21Tℓ
γoλ2(Qℓ)

+ σo + rℓ

)
.

A similar analysis may be carried out for the follower com-
ponents relying on the boundedness properties established



for the leading sub-network. For that, a key step consists in
using the Lyapunov function

Wf (xf ) :=

nf∑
i=1

pfiVnℓ+i(xfi),

where the coefficients pfi > 0 are generated based on the
M -matrix Mf in (11) via the following statement.

Lemma 2: Let Mf ∈ Rnf×nf be a non-singular M-
matrix. Then, the matrices

Sf := RfMf +M⊤
f Rf ,

Rf := diag
{
M−⊤

f 1nf

}(
diag

{
M−1

f 1nf

})−1

are positive definite. □
Remark 5: From the sketch of proof of Theorem 1, we

can see that Tℓ(ro, γo) and Rℓ(ro, γo) are continuous with
respect to ro. Even though this is not shown here, the same
property holds for the candidates T (ro, γo) and R(ro, γo). •

IV. PRACTICAL SYNCHRONIZATION

To ensure practical stability of the synchronization man-
ifold A in (4), we start performing a change of variable,
along the lines of [4], [9]. Indeed, after Assumption 2,
λ1(L) = 0 has multiplicity one and L admits the Jordan-
block decomposition:

L = V

[
0 0
0 Λ

]
V −1, (15)

where Λ ∈ R(n−1)×(n−1) is composed by the Jordan blocks
corresponding to the remaining eigenvalues having positive
real parts. Moreover, V and V −1 correspond to V =

[
1n U

]
and V −1 =

[
v⊤ℓ
U†

]
, where U ∈ Rn×n−1, v⊤ℓ U = 0,

v⊤ℓ 1nℓ
= 1, and U†U = In−1. Now, using V −1, we define

the new coordinates (xm, ev) := (v⊤ℓ x, U
†x). In these new

coordinates, since V V −1 = 1nv
⊤
ℓ +UU†, the state vector x

can be expressed as

x = 1nxm + Uev. (16)

Therefore, the network dynamics consists of two in-
terconnected dynamics: the “average-state” dynamics (the
dynamics of xm) and the projected ”synchronization-error”
dynamics (the dynamics of ev). Under this transformation,
we obtain

ẋm = Fm(d, xm, ev) (17a)
ėv = −γΛev +Ge(d, xm, ev), (17b)

Fm(d, xm, ev) := v⊤ℓ [F (1nxm + Uev) + d],

Ge(d, xm, ev) := U†[F (1nxm + Uev) + d].

Note that, in view of (16), ev = 0 is equivalent to x =
1nxm. Hence, the following equality holds true

A = {x ∈ Rn : ev = U†x = 0}.

As a consequence, to analyze global practical synchroniza-
tion for (9) (according to Definition 1), it is enough to

analyze global practical asymptotic stability (GPAS) of the
set {(xm, ev) : ev = 0} for (17). More precisely, we establish
the following property.

Property 1 (GPAS of {(xm, ev) : ev = 0}): There exist
β1, β2 ∈ KL such that, for each δ > 0, there exists
γ∗(δ) > 0 such that, for each γ ≥ γ∗, for each x(0) ∈ Rn,
and for all t 7→ d(t) verifying (3) for some d̄ > 0, the
solutions to (17) satisfy

|ev(t)|2 ≤ δ + β1(|ev(0)|, t) +
β2(|x(0)|, t)

γ
∀t ≥ 0. (18)

•
Theorem 2: Consider the network (9) subject to (3) for

some d̄ > 0 and such that Assumptions 1–2 hold. Assume
further that Assumption 3 holds with the constant c therein
verifying (12). Then, Property 1 above holds and the network
achieves global practical synchronization. □

Proof: Since the eigenvalues of Λ in (15) have positive
real parts, we conclude the existence of a positive-definite
matrix P ∈ R(n−1)×(n−1) such that PΛ + ΛP⊤ ≥ In−1.
Then, we let V (ev) := e⊤v Pev , which satisfies

λm|ev|2 ≤ V (ev) ≤ λM |ev|2,

where λm > 0 and λM > 0 are the minimum and the
maximum eigenvalues of P , respectively. The total derivative
of V along (17b) satisfies

V̇ (ev) ≤ −γ|ev|2 + 2λM |Ge(d, xm, ev)||ev|. (19)

Now, after Theorem 1, the network solutions are GUB and
GUUB. As a result, given γo > 0 and an initial condition
|x(0)| =: ro ≥ 0 and , there exist T (ro, γo), ra(γo), re(γo),
Ra(ro, γo), and Re(ro, γo) > 0 such that

|ev(t)| ≤ re, |xm(t)| ≤ ra ∀t ≥ T, (20)
|ev(t)| ≤ Re, |xm(t)| ≤ Ra ∀t ≥ 0. (21)

Back to (19), and letting

Ḡ(ro, γo) := Re(ro, γo) max
|d| ≤ d̄,

|xm| ≤ Ra(ro, γo),
|ev| ≤ Re(ro, γo)

|Ge(d, xm, ev)|,

we see, in view of the continuity of Ge and Remark 5,
that ro 7→ Ḡ(ro, γo) is continuous and non-decreasing.
Furthermore, for each γ ≥ γo, we have

V̇ (ev(t)) ≤ − γ

λM
V (ev(t)) + 2λM Ḡ(ro, γo).

It follows that, on the interval [0, T ] and for γ ≥ γo, we have

V (ev(t)) ≤ λM |ev(0)|2e
−γot
λM +

2λ2M
γ
Ḡ(ro, γo).

Hence, defining β1(a, t) := λMa2

λm
e

−γo
λM

t and

κ(a) :=
2λ2M
λm

[
Ḡ(a, γo)− Ḡ(0, γo)

]
,

we conclude that, for all γ ≥ γo > 0 and t ∈ [0, T ],

|ev(t)|2 ≤ β1(|ev(0)|, t) +
κ(|x(0)|)

γ
+

2λ2MḠ(0)

λmγ
.



As a result, for each δ > 0, there exists γ∗1 ≥ γo such that,
for each γ ≥ γ∗1 , we have

|ev(t)|2 ≤ β1(|ev(0)|, t) +
κ(|x(0)|)

γ
+ δ ∀t ∈ [0, T ]. (22)

We now focus on the interval [T,+∞). After Theorem 1 and
in view of (20), we let

Ĝ(γo) := re(γo) max
|d| ≤ d̄,

|xm| ≤ ra(γo),
|ev| ≤ re(γo)

|Ge(d, xm, ev)|,

leading, for each γ ≥ γo, to

V̇ (ev(t)) ≤ − γ

λM
V (ev(t)) + 2λM Ĝ(γo) ∀t ≥ T.

Hence, for each γ ≥ γo > 0, we obtain

|ev(t)|2 ≤ β1(|ev(T )|, t− T ) +
2λ2MĜ(γo)

γλm
∀t ≥ T.

We conclude that, for each δ > 0, there exists γ∗2 ≥ γo such
that, for each γ ≥ γ∗2 , we have

|ev(t)| ≤ β1(|ev(T )|, t− T ) + δ ∀t ≥ T. (23)

Finally, using (22) and (23), we conclude that Property
1 is verified with γ∗ ≥ sup{γ∗1 , γ∗2} and β2(a, t) :=

e
−γot
λM

(
κ(a)e

γoT (a,γo)
λM

)
.

V. NUMERICAL EXAMPLE

To illustrate our theoretical results, we present a numerical
example involving a network of n = 4 nonholonomic mobile
robots, with kinematics given, for each i ∈ {1, 2, 3, 4}, by

ṙxi
= vi cos(θi), ṙyi

= vi sin(θi), θ̇i = ωi,

where (rxi
, ryi

) is the position of the center of the ith
robot and θi is its orientation. The inputs vi and ωi are,
respectively, the linear and angular velocities of the ith robot.

To render each system strictly semi-passive, we apply a
preliminary control law and focus on the dynamics of the
position of a point xi located at a distance a > 0 off the
axis joining the wheels. To that end, we let

xi :=

[
x1i
x2i

]
=

[
rxi

+ a cos(θi)
ryi + a sin(θi)

]
,

φ1i :=
x1i(x

2
1i − λi)

x41i + 1
, φ2i :=

x1i(x
2
1i − λi)

x41i + 1

Then, we define the preliminary control inputs

vi := −
(
φ1i − u1i

)
cos(θi)−

(
φ2i − u2i

)
sin(θi)

ωi := −1

a

[
−
(
φ1i − u1i

)
sin(θi)−

(
φ2i − u2i

)
cos(θi)

]
,

where λi > 0. We obtain

ẋ1i = −φ1i + u1i, ẋ2i = −φ2i + u2i. (24)

The systems in (24) define semi passive maps u1i 7→ x1i
and u2i 7→ x2i with respective storage functions V (x1i) =
x21i and V (x2i) = x22i, so Assumption 1 holds for the two

networks with states x1 := [x11 x12 x13 x14]
⊤ and x2 :=

[x21 x22 x23 x24]
⊤, separately.

Next, we assume that every input pair (u1i, u2i) is affected
by a disturbance di and is given by

u1i := −γ
4∑

j=1

aij(x1i − x1j) + ν1i + di(t)

u2i := −γ
4∑

j=1

aij(x2i − x2j) + ν2i + di(t),

where γ > 0 is the coupling gain and aij ∈ {0, 1} are the
entries of the Laplacian matrix

L :=


0 0 0 0
−1 1 0 0
−1 0 1 0
0 0 −1 1

 ,
whose graph verifies Assumption 2, and ν1i and ν2i are
additional design inputs. First, we carried out some simu-
lation tests with ν1i = ν2i = 0 for all i ∈ {1, 2, 3, 4},
λ :=

[
0.5 0.3 1.2 0.8

]⊤
, and di(t) := arctan(t)/π. In

Figure 1 are shown the network’s state trajectories, which
grow unboundedly as t→ ∞.
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Fig. 1. Trajectories of xi = [x1i, x2i], i ∈ {1, 2, 3, 4}, for γ = 1.

Then, we added a robust node to the network, with state
xc ∈ R2 and dynamics

ẋ1c = −x31c + 3x1c + u1c,

ẋ2c = −x32c + 3x2c + u2c

This control node is interconnected to the node i = 1, that
is, we set u1c := −γ(x1c − x11) and u2c := −γ(x2c − x21).
Hence, Assumption 2 holds for the new graph and, in fact,
the first and control nodes form a leading strongly-connected
component with the latter—see Figure 2. Furthermore, we set

ν1i = ν2i = 0, ∀i ∈ {2, 3, 4}
ν11 = −γ(x11 − x1c), ν21 = −γ(x21 − x2c),

Assumption 1 also holds for the network dynamics gov-
erning [x1c x11 x12 x13 x14]

⊤ and the one governing
[x2c x21 x22 x23 x24]

⊤, separately. Finally, note that As-
sumption 3 is verified too, for k ≡ c. Indeed, using the
storage functions V (x1c) := x21c, we conclude that (5) holds
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Fig. 2. The graph representation after the red robust node is included. The
leading strongly-connected component is composed of nodes {1, c}.

for Hc(x1c) = ψc(|x1c|) = x21c(x
2
1c − 3). Note that, when

|x1c| ≥ ρk = ρc = 3, then ψ1c(|x1c|) = x21c(x
2
1c − 3) >

c|x1c| for c = 2. The same properties hold for x2c. As a
result, condition (12) in Theorem 1 holds. Figure 3 shows
the trajectories of the new network, which remain bounded
and approach a common point. Furthermore, the error vector
ev becomes less and less significant as the coupling gain
increases.
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Fig. 3. Trajectories of the new network for γ = 5.
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Fig. 4. Phase portrait of the new network trajectories for γ = 5.

VI. CONCLUSION

This paper studied heterogeneous networks in the
presence of input perturbations. We proposed a framework
to guarantee GUUB and GUB. These conclusions were key
to ensure global practical synchronization. The presented
results show that it is possible to handle bounded input
perturbations, that can affect the entire network, by making
only a single agent robust enough. These results will be
extended to more general weakly-connected graphs, and a
fully distributed design of γ will be investigated to achieve
any desired practical-synchronization bound δ.
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Fig. 5. The behavior of the synchronization errors. In the bottom figure
γ = 5, in the middle figure γ = 15, and in the top figure γ = 50.
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nization with diffusive couplings,” Automatica, vol. 53, pp. 235–243,
2015.

[4] E. Panteley and A. Lorı́a, “Synchronization and dynamic consensus
of heterogeneous networked systems,” IEEE Trans. on Automatic
Control, vol. 62, no. 8, pp. 3758–3773, 2017.

[5] M. Mirabilio and A. Iovine, “Scalable stability of nonlinear intercon-
nected systems in case of amplifying perturbations,” in Proc. IEEE
American Control Conf., San Diego, CA, USA, 2023, pp. 3584–3589.

[6] N. Chopra, “On ultimate boundedness of delay synchronization al-
gorithms for semi-passive systems,” in 2010 48th Annual Allerton
Conference on Communication, Control, and Computing (Allerton),
2010, pp. 1663–1668.

[7] A. Pogromsky, “Passivity-based design of synchronizing systems,”
International Journal of Bifurcation and Chaos, vol. 8, 02 1998.

[8] A. Y. Pogromski and H. Nijmeijer, “Cooperative oscillatory behavior
of mutually coupled dynamical systems,” IEEE Trans. on Circuits and
Systems I: Fundamental Theory and Applications, vol. 48, no. 2, pp.
152–162, 2001.

[9] M. Maghenem, E. Panteley, and A. Lorı́a, “Singular-perturbations-
based analysis of dynamic consensus in directed networks of hetero-
geneous nonlinear systems,” IEEE Transactions on Automatic Control,
vol. 69, no. 7, pp. 4475–4490, 2024.

[10] A. Y. Pogromsky, T. Glad, and H. Nijmeijer, “On diffusion driven
oscillations in coupled dynamical systems,” International Journal of
Bifurcation and Chaos in Applied Sciences and Engineering, vol. 9,
no. 4, pp. 629–644, 1999.

[11] E. Steur, I. Tyukin, and H. Nijmeijer, “Semi-passivity and synchroniza-
tion of diffusively coupled neuronal oscillators,” Physica D: Nonlinear
Phenomena, vol. 238, no. 21, pp. 2119–2128, 2009.

[12] M. U. Javed, J. I. Poveda, and X. Chen, “Excitation conditions for
uniform exponential stability of the cooperative gradient algorithm
over weakly connected digraphs,” IEEE Control Systems Letters,
vol. 6, pp. 67–72, 2021.

[13] X. Li and P. Rao, “Synchronizing a weighted and weakly-connected
kuramoto-oscillator digraph with a pacemaker,” IEEE Trans. Circ.
Syst. I: Regular Papers, vol. 62, no. 3, pp. 899–905, 2015.

[14] O. T. Odeyomi, “Truth prediction by weakly connected agents in
social networks using online learning,” in International Symposium
on Networks, Computers and Communications, 2020, pp. 1–5.

[15] I. G. Polushin, D. Hill, and A. L. Fradkov, “Strict quasipassivity and
ultimate boundedness for nonlinear control systems,” IFAC Proceed-
ings Volumes, vol. 31, no. 17, pp. 505–510, 1998.

[16] Z. Qu, Cooperative control of dynamical systems: applications to
autonomous vehicles. London, UK: Springer Verlag, 2009.


	Introduction
	Problem setting
	Boundedness properties
	Practical Synchronization
	Numerical Example
	Conclusion
	References

