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Abstract

HTN planning is a widely used approach for solving
planning problems by breaking them down into smaller
sub-problems. This approach is often motivated by the
ability to add constraints between tasks, which can
guide the search towards a solution and improve per-
formance by reducing the search space. In this paper,
we identify a common pattern in PO HTN planning
that can lead to a pathological explosion of the search
space, resulting in a significant decrease in computa-
tional performance. However, this is not a fatal issue.
Alternative HTN models can be used to reduce the
search space. We propose two models that maintain
the expressiveness of the original problem while reduc-
ing the number of possible decompositions. Our results
demonstrate improved computational performance on
IPC benchmarks.

Introduction
Task planning is a fundamental problem in Artificial
Intelligence, with applications in robotics, logistics, and
many other domains. The problem consists of finding a
sequence of actions that completes a given goal, while
respecting a set of constraints.

One of the approaches to planning is Hierarchical
Task Network (HTN) planning (Erol, Hendler, and Nau
1994), where actions are hierarchically organized into
tasks, which can be refined into subtasks or actions, and
so on. This hierarchical structure allows the problem to
be described at various levels of abstraction, ranging
from highly abstract tasks to directly executable ac-
tions.

One common motivation for using HTN planning is
the promise of increased performance as the hierarchy
is expected to restrict the search space and guide the
planner towards a solution. In the case of Partial Order
(PO) HTN planning, where several tasks may interact
in the achievement of their respective goals, we show
that on the contrary, the hierarchy can be extremely
detrimental to the search.

After a brief introduction to the HTN formalism, this
paper identifies a pattern that is ubiquitous in PO HTN
planning benchmarks, and that leads an explosion of
the search space of PO HTN planners. While there is

no general approach to solve this issue, we propose new
models that reduce the number of possible decomposi-
tions, and show that they improve the computational
performances on the International Planning Competi-
tion (IPC) 2020 HTN tracks.

HTN Planning
This section provides a brief introduction to the HTN
planning problem as described by Höller et al. (2020).

An HTN planning problem can be notably described
using the HDDL language (Höller et al. 2020), an exten-
sion of PDDL (McDermott et al. 1998), or the ANML
language (Smith, Cushing, and Frank 2008).

Assume that L = (P, T, V, C) is a quantifier- and
function-free first order predicate logic. T is finite set
of type symbols. C is a finite set of typed constants.
V is a finite set of typed variables. P is a finite set of
predicate symbols, each associated to a list of parameter
variables from V .
Definition 1 (State). A state is the representation of
the world at a given time, defined by a ground (variable-
free) conjunction of literals over L. The set of all pos-
sible states is denoted by S.
Definition 2 (Primitive Task). A primitive task (or
action) is an operation that can be executed directly,
defined by the tuple a = (name, pre, eff) where:
• name is its unique task name, a first-order atom

such as move(s, d) consisting of the action name
followed by parameters.

• pre is its precondition, a conjunction of first-order
literals over L.

• eff is its effect, a conjunction of first-order literals
over L. We split it into positive (eff+) and negative
(eff−) effects.

Remark. We also refer to pre and eff as pre(a) and
eff(a) when referring to a specific action a. All vari-
ables used in pre(a) and eff(a) must be parameters of
the action. Finally, an action is said ground if all its
parameters are constants from C.
Definition 3 (Executable Action). Given a state s ∈
S, a ground primitive task a is executable in s if and
only if its precondition is satisfied by s:

ξ(s, a) = s |= pre(a) (1)



Definition 4 (State Transition). Given a state s and
an executable action a, the state transition function
γ(s, a) is the result of executing the action a in s. It
is defined by the following formula:

γ(s, a) =
(
s \ eff−(a)

)
∪ eff+(a) (2)

Remark. The extension of ξ and γ to a sequence of
actions are defined recursively by:{

ξ(s, ⟨a1, . . . , an⟩) = ξ(γ(s, a1), ⟨a2, . . . , an⟩)
γ(s, ⟨a1, . . . , an⟩) = γ(γ(s, a1), ⟨a2, . . . , an⟩) (3)

Definition 5 (Compound Task). A compound task
(or abstract task) is simply a task name, i.e., a first-
order atom such as goto(p) consisting of the actual
task name followed by parameters.
Definition 6 (Task Network). A task network over a
set of task names X is a tuple tn = (I, ≺, α, C) where:
• I is a possibly empty set of task identifiers. They

are used to distinguishing between tasks that occur
multiple times in the task network.

• ≺ is a strict partial order over I.
• α : I → X maps each task identifier to a task name.
• C is a set of constraints over the task parameters.
Remark. For easier comprehension, we will refer to a
task network without constraints (i.e., C = ∅) and with
total ordered tasks as the set tn = {t1 ≺ . . . ≺ tn}.
Definition 7 (Method). A decomposition method rep-
resents a way to achieve a compound task. It is defined
by the tuple m = (c, tn) where c is the compound task
name and tn is a task network describing the subtasks
needed to achieve the compound task.
Definition 8 (Decomposition). Decomposition is the
process of replacing a compound task of a task net-
work by another task network. Given a decomposition
method m = (c, (Im, ≺m, αm)) and a task network
tn1 = (I1, ≺1, α1) such that Im ∩ I1 = ∅ (that can be
done by renaming), the task network tn2 = (I2, ≺2, α2)
is a decomposition of a task identifier i ∈ I1 by m if
and only if:

α1(i) = c
I2 = (I1 \ {i}) ∪ Im

≺2 = (≺1 ∪ ≺m

∪ {(i1, i2) ∈ I1 × Im | (i1, i) ∈≺1}
∪ {(i1, i2) ∈ Im × I1 | (i, i2) ∈≺1})
\ {(i′, i′′) ∈ I1 × I1 | i′ = i or i′′ = i}

α2 = (α1 ∪ αm) \ {(i, c)}
(4)

Definition 9 (Executable Task Network). Given a
state s and a ground task network tn, the task network
tn is executable in s if and only if:
• the constraints of C are respected.
• there exists a sequence ⟨i1, . . . , in⟩ of its task iden-

tifiers, with n = |I|, respecting ≺ such that
⟨α(i1), . . . , α(in)⟩ is executable in s.

Definition 10 (Planning Domain). A planning domain
is a tuple D = (L, TP , TC , M) where:
• L is a predicate logic.
• TP and TC are sets of primitive and compound tasks.
• M is a set of methods with compound tasks from TC

and task networks over the names TP ∪ TC .
Definition 11 (Planning Problem). A planning prob-
lem is a tuple P = (D, sI , tnI , g) where:
• D is a planning domain.
• sI ∈ S is the initial state, a ground conjunction of

positive literals over the predicates.
• tnI is the initial task network.
• g is the goal, a first-order formula over the predi-

cates.
Definition 12 (Solution). Given a planning problem
P = (D, sI , tnI , g), where D = (L, TP , TC , M), a task
network tnS = (IS , ≺S , αS) is a solution of P if and
only if:
• there is a sequence of decompositions from tnI to

tn = (I, ≺, α), such that I = IS , ≺⊆≺S , and α =
αS .

• tnS is executable in sI and its execution leads to a
state s such that s |= g.

Motivating Example
Let us consider a simple navigation problem consisting
of a truck that must go to a given position. The aim for
the truck is to go from the position p1 to the position
p5 using the roads defined in Figure 1.

Problem Formalization
Let us first correctly formalize this problem.

Predicate Logic The predicate logic is defined by
the tuple L = (P, T, V, C) where:
• T = {T, P}, T represents a truck and P a position.
• C is composed of one truck t1 and five positions

from p1 to p5.
• P = {at(t, p), road(s, d)}, with at representing

that the truck t is at the position p and road the
existence of a road between the positions s and d.

• V is the set of variables appearing in the next defined
actions, tasks, and methods.

Primitive Tasks There are two primitive tasks:
• move(t, s, d), that moves the truck t from the

position s to the position d if there is a road.
– pre(move) = at(t, s) ∧ road(s, d)
– eff(move) = at(t, d) ∧ ¬at(t, s)

• noop(t, d), that does nothing and is only applica-
ble if the truck t is at the position d.
– pre(noop) = at(t, p)
– eff(noop) = ∅.
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Figure 1: Graph of the navigation problem. The truck
can move from one position to another using the roads.
It is initially at the position p1 and must go to the
position p5.
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Figure 2: Hierarchical model of the goto task. There are
two methods to achieve it: (i) do nothing if the truck
is already at the given position, (ii) move to a nearby
position, and then goto the given position again.

Compound Tasks & Methods We define a sin-
gle compound task, goto(t, d), that recursively moves
the truck t to the position d. Two methods can achieve
this task as shown in Figure 2:
• do nothing if the truck is already at the given posi-

tion: m-noop = {noop(t, d)}.
• move to a nearby position, and then go to the given

position again:
m-rec = {move(t, s, n) ≺ goto(t, d)}.

Domain The domain is simply defined by:
D = (L, {move, noop} , {goto} , {m-rec, m-noop}).
Problem The initial state is defined such that the
truck is at the position p1 and the roads match the
graph in Figure 1:
sI = at(t1, p1) ∧ road(p1, p2) ∧ . . .
The initial task network is composed of n identical and
unordered goto(t1, p5) tasks, without constraints.
Finally, the problem is defined by P = (D, sI , tnI , ∅).

Pattern Identification
This recursive representation of the goto task is com-
mon in hierarchical planning community. It is found in
many domains, such as Factory, Transport, or Minecraft
Player of the HTN track of the IPC.

Consider the problem with three goto(t1, p5) in
the initial task network with the respective identifiers
g1, g2, and g3. In essence this means that three different
tasks request the objective of bringing the truck to p5.

The shortest solution is composed of two move actions
m1 and m2, for instance going through p3 with m1 :
move(t1, p1, p3) and m2 : move(t1, p3, p5). Note
that we do not explicitly consider noop actions in the

g1 g2

m2m1 m3

(a) g1 decomposes all ac-
tions.

g1 g2

m2m1 m3

(b) Decomposition is
shared.

Figure 3: Considering two identical goto tasks (g1, g2),
and an optimal solution with three move actions. Two
possible decompositions of the initial task network that
lead to the same solution plan. There are 8 possible
decompositions in total.

solution as they are artifact of the hierarchical encoding
to break the recursion and could be replaced by method
preconditions in the HDDL formalism.

In order for this ⟨m1, m2⟩ action sequence to be con-
sidered a solution, it must be decomposable from the
initial task network. Intuitively, each of the three (in-
distinguishable) top level tasks can be decomposed into
this sequence. Interestingly, in the absence of ordering
constraints, m1 and m2 may be decomposed from dif-
ferent top-level tasks. For instance, we may have for in-
stance g1 moving the truck from p1 to p3 and g3 from
p3 to p5.1 This situation is illustrated in Figure 3.

Let us now consider the number of decomposition
paths that lead to this particular optimal solution.
The planner will first decompose a goto task gi (i ∈
{1, 2, 3}) into the move action m1 and contribute a fresh
goto task g4 to the task network. Then, it will decom-
pose a goto task gj (j ∈ {1, 2, 3, 4} \ {i}) into the move
action m2 and another goto task g5. Finally, it will de-
compose all goto task gk (k ∈ {1, 2, 3, 4, 5}\{i, j}) into
the noop action.

Because at each step the planner can choose any task
to decompose, the number of possible decompositions
depends on the number of tasks in the task network.
In our example, each move action can be decomposed
from any of the three goto tasks, resulting in 32 = 9
possible decompositions.

This result is trivially generalizable to n goto tasks
and k move actions, resulting in nk possible decomposi-
tions. For instance, in the case of six goto tasks and ten
move actions, the planner must consider 610 = 60466176
possible decompositions.

HTN planners typically explore the set of possible
decompositions of the initial task network until one is
found that is both primitive and executable (i.e., a so-
lution). As a result this redundancy of decomposition
paths is likely to translate as a redundancy in the search
space of HTN planners.

Empirical Tests
To illustrate the impact of this pattern on the computa-
tional performance of a planner, we conducted a simple

1This only requires the noop actions to appear last in the
plan, which is not prevented by any ordering constraints.



experiment on the domain of the example.
We used the PandaPi planner (Holler 2023), a state-

of-the-art PO HTN planner, on the IPC 2023 HTN
track, without timeout on 10 instances. For the i-th
instance, we considered i identical goto(t1, p5) tasks
in the initial task network. For each instance, the short-
est plan contains exactly two move actions and i noop
actions.

The results are shown in Figure 4. The five first in-
stances are solved in less than 1 second, while the last
instance is solved in 15 minutes.
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Figure 4: Planning time of PandaPi as a function of
the number of identical goto tasks in the initial task
network. In all cases, the shortest plan requires 2 move
actions.

Representativity of the Use Case
While this pattern may appear artificial, we argue that
is in fact pervasive in PO HTN planning benchmarks.
Consider the logistic problem of moving packages from
one location to another, as in the Transport domain of
the IPC 2020 HTN track.

This is generally represented with a deliver task
whose main method (i) move the truck to the package,
(ii) load the package onto the truck, (iii) move the truck
to the destination, and (iv) unloads the package at the
destination. The first and third steps are typically done
with a goto task similar to the one we showed.

If we consider the problem of moving three packages
initially at location X to a location Y and assume that
the truck has sufficient capacity to hold them all, the op-
timal plan would involve moving the truck to X, loading
all packages in X, moving the truck to Y and unloading
package at Y. Exactly as in our motivating example, the
actions necessary to move the truck from X to Y could
be decomposed from the three goto tasks introduced
by the step (iii).

This is representative of sharing common steps of
the plan among potentially concurrent top level tasks.

While the initial task network would likely never involve
the same task multiple times, the decomposition of the
common steps of the plan would lead to the same issue
as the one we identified in our use case.

New Models
As shown in the previous section, the hierarchical model
of the goto task shown in Figure 2 results in an expo-
nential number of possible decompositions. This neg-
atively impacts the computational performance of the
planner, making the problem intractable for large in-
stances.

This section describes two alternative models to the
one shown in Figure 2, but with a smaller number of
possible decompositions.

Mutex Decomposition
The explosion in the number of possible decompositions
is primarily due to potential interference between sev-
eral tasks for the purpose of producing a sequence of
actions, as illustrated in Figure 3b. The idea in this al-
ternative model is to forbid such interference by (i) forc-
ing each goto task to lock the truck before producing
any move, and (ii) only allowing it to release the lock
once it has reached its target.

To achieve that, the goto task of the previous
model is renamed to goto-exec and a new goto(t,
d) compound task is added. The aim of the renamed
goto-exec task is to force the planner to completely
decompose the goto-exec task into a sequence of move
actions that reaches its target d. The new goto task
is used to keep the expressiveness of the domain un-
changed.

To ensure that only one goto-exec task is decom-
posed at a time, a mutex predicate mutex(t) is added
to P . This mutex predicate is manipulated by two new
actions, set-mutex and release:
• set-mutex(t) sets the mutex predicate.

– pre(set-mutex) = ¬mutex(t)
– eff(set-mutex) = mutex(t)

• release(t) releases the mutex predicate.
– pre(release) = mutex(t)
– eff(release) = ¬mutex(t)

Finally, the goto task can be decomposed by two
methods:
• do nothing if the truck is already at the given posi-

tion: m-noop = {noop(t, d)}.
• set the mutex predicate, effectively go to the given

position, and release the mutex predicate: m-goto =
{set-mutex ≺ goto-exec ≺ release}.

The final hierarchy of the domain is shown in Figure 5.
The two new actions are used to ensure that the truck

will not be moved by another goto-exec task while it
is already moving. Because a precondition of the noop
action is for the truck to be at the given position, the
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Figure 5: Mutex model of the goto task.
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Figure 6: Considering two identical goto tasks, and an
optimal solution with three move actions. There are only
2 possible decompositions in total.

mutex will be released only when the truck is effectively
at the given position. Therefore, the next goto tasks
will immediately be decomposed into the noop action if
it was identical to the previous one.

With this model, the expressiveness of the domain is
kept unchanged and, modulo the mutex actions, the set
of solutions is the same.

Consider our motivating example of n identical goto
tasks that should be used to produce a sequence of k
move actions. Here, the number of possible decompo-
sitions is in O(n): the planner may only choose which
of n goto tasks to use to produce the full sequence, as
illustrated in Figure 6.

(Partial) Task Insertion
As the root of the problem comes from the fact that the
move actions may be contributed by several concurrent
tasks in the initial task network, one solution may be
to decouple the introduction of the move actions from
the top-level objective tasks.

One way to do this would be by adopting the task-
insertion variant of HTN planning, where primitive
tasks may be introduced independently of any top-level
task at arbitrary points of the solution (Alford, Bercher,
and Aha 2015). If we were to discard the goto task
entirely, this would allow the move actions to be in-
troduced on-demand to establish the preconditions of
actions requiring the truck to be at a given location.
Task-insertion however is not without tradeoffs as the
freedom of inserting arbitrary tasks in the plan nullifies
the ability of HTN models to restrict the set of admis-

sible solutions.
Instead, we propose to mimic the notion of task-

dependency of FAPE (Bit-Monnot et al. 2020). FAPE
distinguishes task-dependent actions that may only
be introduced through a decomposition and task-
independent actions that may also be inserted indepen-
dently of the hierarchy. This enabled FAPE to consider
a continuum between generative and HTN planning,
where only a subset of the actions are allowed to be the
subject of task insertion.

In this model we want to reproduce a similar behav-
ior, where (i) the move actions can be inserted arbitrar-
ily, and (ii) a goto(t, p) task only imposes a condition
that at(t, p) holds.

To encode this in a conventional (i.e., without task-
insertion or task-dependency concepts) HTN model, we
introduce a new compound task free-move(t) that can
be decomposed with two methods:
• m-move = {move(t, s, d) ≺ free-move(t)}, that

moves the truck between two arbitrary positions s
and d and repeats. Here, s and d are unconstrained
parameters of the method.

• m-stop-free = {}, which ends the recursion.
To ensure that the freedom of movement is effective,

it is necessary to include the free-move task in the ini-
tial task network for each truck object. For our example,
free-move(t1) is added in the initial task network.

To avoid relaxing its post-conditions, the goto task is
kept in the domain but can only be decomposed by the
single method m-noop. Because this method contains
only the noop action, the goto task will be decom-
posed into the noop action, effectively doing nothing
but checking if the truck is at the required position.

The final hierarchy of the domain is shown in Fig-
ure 7.

free-move

m-stop-free m-move

move free-move

goto

m-noop

noop

Figure 7: Task insertion model of the goto task.

Because each goto task is decomposed into a sin-
gle action noop, the number of possible decompositions
of n tasks goto is constant. Moreover, the number of
possible decompositions of the free-move task is also
constant because it is the only one introducing the se-
quence of move actions needed to achieve the optimal
plan and verifying the preconditions of the goto tasks.
Therefore, the number of possible decompositions for
this optimal action sequence is constant and equal to 1.

With this model, the set of solutions differs as the
model is strictly more permissive. Any solution of the
original model is also a solution of this one, but, because
of the freedom of movement, it may be the case that
“useless” move actions are inserted in the plan. It should



nevertheless be noted that any optimal (i.e., shortest)
plan of the original model is also an optimal plan of this
model.

Experiments
To compare the computational performances of the
three models, we conducted experiments on our simple-
goto domain and some domains of the IPC’s HTN track.
Each domain is duplicated and modified to have four
different versions:
• original: the original domain.
• common: the domain with the common decomposi-

tion model, i.e., the one shown in the Motivating
Example section.

• mutex: the domain with the mutex model.
• insert: the domain with the task insertion model.

Domains
We conducted experiments on the following domains,
which are available in the IPC’s HTN track (except for
our example domain). They have been chosen to show
the impact of the models on different types of realistic
problems.
Goto Simple The goto simple domain is the one de-
scribed since the beginning of this paper. The original
and the common versions are the same as the one of
the motivating example, with an exponential number of
possible decompositions. For an instance i (1 ≤ i ≤ 30),
the initial task network is composed of 10 ∗ i tasks
goto(t1, p5) and the truck t1 is initially at p1.
Goto Complex The goto complex problem is a more
complex version of the goto simple problem. The do-
main is the same as the goto simple domain, but the
initial task network is composed of 10∗i tasks goto(t1,
p5), 10 ∗ i tasks goto(t1, p3), for an instance i. It is
used to show the impact of nested high-level tasks on
the computational performances of the planners.
Factories The original version of the factories-simple
domain (Sönnichsen and Schreiber 2021) is the one
from the IPC’s HTN track. It describes the problem
of constructing a factory from different resources, each
resource needing to be produced from another less-
advanced factory. To bring the resources from one fac-
tory to another, a truck is used, and its movement is
described by the same goto task as in the goto simple
domain. Therefore, the common version is the same as
the original one (only the common version will be dis-
played in the future results) and the mutex and insert
versions are easily built as described above.
Rovers The original version of the rovers domain
(Pellier and Fiorino 2021) is the one from the IPC’s
HTN track. It describes the problem for a set of rovers
to navigate and collect data on another planet, before
communicating the collected data to the scientists. In
this version, the navigation of the rovers is described

by a navigate-abs task that can be decomposed by
three methods: (i) do nothing, (ii) navigate to the
given position, (iii) navigate to an intermediate po-
sition, and then navigate to the destination. Interest-
ingly, the task is not recursive and the rover can only
navigate to a location separated by at most one interme-
diate position. This is however not an issue because the
instances are built such that if the rover needs to go to
a location separated by more than one intermediate po-
sition, it will need to do another task, e.g., collect data,
before going to the final destination. Thus, because the
navigate-abs is in the task network of several meth-
ods, the rovers can accomplish its mission. The common
version is built by replacing the methods of the original
navigate-abs task in order to make it recursive. The
mutex and insert versions are then built as described
above based on the common version.

Transport The original version of the transport do-
main (Behnke, Höller, and Biundo 2018) is the one
from the IPC’s HTN track. It describes the problem
of transporting packages from one location to another
using a truck. The truck is capable of carrying multiple
packages at once, under a certain limit, and the move-
ment of the truck is described by the get-to task that
can be decomposed by three methods: (i) do nothing,
(ii) drive to the given position, (iii) get-to an inter-
mediate position, and then drive to the destination.
In the common version, the second method is removed
because it is redundant with the third one, and the
subtasks order of the third method is changed to drive
then get-to (we use a right recursion instead of a left
one). The mutex version is build as described above.
The insert version is obtained by removing all methods
of the original get-to task except the one that does
nothing and adding a free-drive as described above.

Planners
We have selected three planners with different resolu-
tion strategies to compare the computational perfor-
mances of the different models. This way we can show
the impact of the models on different strategies.

Aries Aries (Bit-Monnot 2023) is a planner trans-
forming chronicles (Ghallab, Nau, and Traverso 2004;
Godet and Bit-Monnot 2022) into a Constraint Satis-
faction Problem (CSP) which is then solved by a specific
solver. Because of the recursive nature of the studied do-
mains, the planner needs to instantiate the initial task
network until a maximum depth before the generation
of the CSP. This depth is set to an initial value and
then increased by a fixed step until the planner finds a
solution. For the experiments, we are using the version
v0.3.3 of the planner2.

LinearComplex LinearComplex is the winner of
the IPC 2023 HTN Partial Order Satisficing track. The
main idea of this planner is to first consider the partially

2https://github.com/plaans/aries/tree/v0.3.3



ordered task network as a totally ordered one. For the
experiments, we are using the winning version of the
planner, named LinearComplex-config-sat-1.

PandaPi PandaPi (Holler 2023) is a well known
planner in the hierarchical planning community. It per-
forms a progression search on the task network, and
uses different heuristics to guide the search in the graph.
For the experiments, we are using the version for satis-
ficing partial ordered problems of the IPC 2023, which
is using the FF heuristic (Hoffmann and Nebel 2001).

Metrics
We are using the following metrics to compare the com-
putational performances of the different models and
planners.

Coverage The Coverage evaluates the capability of
the planner to solve different problem instances in a
given domain. It is defined by

Cov = Number of solved instances
Total number of instances ∗ 100 (5)

Time Score The Time Score evaluates the capabil-
ity of the planner to quickly find a first solution, and
matches the one of the IPC agile tracks. The score is
computed based on the time ti in seconds needed to re-
turn the first solution of the instance i and the timeout
T (120 seconds in our experiments).

TSi =
{

1 if ti < 1
1 − log(ti)

log(T ) otherwise (6)

Finally, TS is the mean of all TSi on every instance,
multiplied by 100.

Results
The results of the experiments are shown in Table 1.

As expected, we can notice that the insert model al-
lows Aries and PandaPi to solve many more instances
than the common model.

Surprisingly, the mutex model is not performing well
for the Aries planner, as shown in the Figure 8 for the
Rovers domain. This is due to the fact that the planner
instantiate the initial task network until a maximum
depth before the resolution. In the common model, the
planner can take one move action in each goto task,
while in the mutex model, the planner must take all
move actions in a single goto task. Therefore, Aries
needs to go to a deeper depth to find a solution in the
mutex model than in the common one.

For PandaPi, the mutex and the insert models are
performing better than the common model. While the
improvement of the mutex over the insert is relatively
modest, when the insert model exhibits superior per-
formance, the difference is pronounced. This is clearly
visible in the Figure 10 for the Transport domain.

LinearComplex The LinearComplex planner be-
haves differently from the other planners because it first
interprets a PO HTN problem as a Total Order (TO)
one, therefore prohibiting any interference among goto
tasks in the common model. As a direct consequence,
it does not suffer from the redundancies in the search
space and the common and mutex models have simi-
lar performance. Moreover, the insert model does not
perform well for this planner because it may require in-
terleaving of tasks to produce a solution, which is not
permitted by TO HTN models.

While this choice of interpreting problems as TO
HTN ones appears beneficial for coverage, it should
be noted that potential high-quality solution are ex-
cluded from the resulting search space. For instance in
the Transport domain, a truck can carry multiple pack-
ages at once. However, the TO HTN projection initially
considered by LinearComplex would treat deliveries
one after the other, never transporting more than one
package at a time.
Left vs Right Recursion A realistic domain which
is representative of the pattern we identified is the
Transport domain. The results for this domain are
shown in the Figure 10 for PandaPi. We can see that
the left recursion of the original model has a big nega-
tive impact on the computational performances of the
planner since all instances timed out. Note that this
impact is also visible for LinearComplex as shown
in Figure 9. Interestingly, it is not the case for Aries
which prefers the left recursion of the original model.
This may be explained by the fact that Aries relies on a
plan-space encoding that is naturally backward chain-
ing from the goals towards the initial state. For such
planners, left recursion is better suited as it leaves the
end of the plan untouched. On the other hand, forward
chaining solvers such as PandaPi and LinearCom-
plex perform better with the right recursion of the
common model.
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Figure 8: Rovers domain with Aries.



Aries PandaPi LinearComplex

Cov TS Cov TS Cov TS

Goto Simple Common 40.00 26.13 0.00 0.00 100 100
Mutex 0.00 0.00 100 72.95 100 100
Insert 100 100 83.33 54.53 76.67 46.55

Goto Complex Common 26.67 14.07 0.00 0.00 100 98.84
Mutex 16.67 8.65 13.33 7.95 100 99.50
Insert 100 98.53 40.00 26.51 36.67 23.13

Factories Common 5.00 5.00 25.00 22.68 30.00 25.09
Mutex 5.00 4.22 25.00 22.66 30.00 24.46
Insert 5.00 5.00 25.00 18.98 25.00 19.11

Rovers Original 70.00 47.09 20.00 10.43 90.00 83.44
Common 70.00 47.13 20.00 12.65 80.00 67.52

Mutex 40.00 34.83 20.00 19.00 55.00 54.96
Insert 95.00 81.51 20.00 17.87 50.00 50.00

Transport Original 32.50 22.41 0.00 0.00 30.00 24.56
Common 20.00 14.39 10.00 8.36 62.50 60.25

Mutex 17.50 7.60 17.50 11.98 62.50 59.37
Insert 57.50 39.24 20.00 16.28 55.00 45.52

Table 1: Coverage (Cov) and Time Score (TS) metrics for different planners across different domains and model
versions.
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Figure 9: Transport domain with LinearComplex.

Discussion
The identified pattern is not limited to recursive decom-
position of actions as the move one, but can also arise
from the sharing of common steps of the plan among
potentially concurrent top level tasks. This is for in-
stance the case in the Satellite domain of the IPC 2020
HTN track, where the switch-on and calibrate ac-
tions are shared among different tasks. For such cases
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Figure 10: Transport domain with PandaPi. No in-
stance has been solved for the Origin version.

where a single action may be shared, the impact can be
expected to be less dramatic as the number of redun-
dant decomposition would be equal to the number of
tasks requiring it.

Finally, let us brought the attention to a false-sharing
mechanism that may occur with this pattern. List-
ing 1 shows a plan with no shared step to sequentially
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Figure 11: Transport problem with no shared step.

achieve two tasks deliver(p1, C) and deliver(p2,
E), where deliver(p, l) designates the task of de-
livering the package p to the location l, as shown in
the Figure 11. Even if the plan of the Listing 1 has no
shared step, the first and second move actions could be
attributed to a decomposition of the first goto of the
second deliver task.

Listing 1: Plan with no shared step
# Steps 1-4: deliver (p1 , C)
move(t1 , A, B)
load(p1)
move(t1 , B, C)
unload (p1)
# Steps 5-8: deliver (p2 , E)
move(t1 , C, D)
load(p2)
move(t1 , D, E)
unload (p2)

Conclusion
In this paper, we have identified a very common pattern
in HTN models that can lead to an exponential number
of possible decompositions and negatively impact the
computational performance of PO HTN planners.

We have proposed two alternative models to the one
that leads to this pattern. For native PO HTN plan-
ners such as Aries and PandaPi, the model allowing
partial task insertion clearly dominates the others and
vastly increase the performance on the impacted do-
mains. This suggests that a relaxed HTN models that
allow for partial task insertion may be fruitful area for
future work.

A notable result is also the drastic performance dif-
ference of state-of-the-art planners for different encod-
ing schemes. For instance, unlike PandaPi, Aries fa-
vors left-recursive decomposition methods and does not
scale up on the mutex model. The performance of Lin-
earComplex is highly dependent on the absence of re-
quired interleaving between the top-level tasks and thus
does not scale on insert model. Such issues highlight the
fact, at least in PO HTN planning, planner-independent
modeling remains a far-fetched goal.
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