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Abstract: In the context of discrete-event systems (DES), the terms detection and diagnosis
refer to two distinct stages of handling faults and anomalies. Both steps are critical for ensuring
the reliable and safe operation of complex systems. In this paper, we propose the use of
autoencoders for fault detection in an automated production system with sensors and actuators
delivering discrete binary signals that can be modeled as DES. We train an autoencoder
exclusively on data representing normal behavior. The model learns to encode typical patterns
and reconstruct input data with low loss. A predetermined threshold, determined by the
characteristics of the training data, is set for the reconstruction error. During normal behavior,
the autoencoder is expected to achieve low reconstruction error below this threshold. When a
fault occurs, the autoencoder strives to accurately reconstruct faulty data, leading to a higher
error. The detection of a reconstruction error exceeding the threshold signals a potential fault
in the system. The results of applying our method to the Factory IO software sorting system
demonstrate the significant contribution and the interest of this method for detecting faults.

Keywords: Autoencoder, Fault detection, Automated Production System, Deep Learning,
discrete-event systems.

1. INTRODUCTION

Productivity reductions, delays, and system disruptions
are all potential outcomes of system faults. To preserve the
functionality and dependability of production systems, it
is necessary to develop efficient fault detection techniques.
A fault is a deviation that can cause a system to derive
from its expected behavior, which could potentially lead
to accidents and damage to equipment and people. In this
study, we are interested in Automated Production Systems
(APS) fault detection. The literature proposes different
approaches dealing with this problem (Ghosh et al. (2020))
and distinguishes three classes according to the dynamics
of the APS: the class of continuous systems, the class
of discrete-event systems (DES) and the class of hybrid
dynamic systems (HDS). In this paper, we focus on APS
with sensors and actuators delivering logical signals, which
fall under the DES.

1.1 Motivation

In previous works (Saddem and Baptiste (2022, 2023)),
we have proposed a supervised learning method: recurrent
neural networks (RNN) with short-term and long-term
memory (LSTM) based models to predict the plant state:
normal or faulty and diagnoses what fault has happened
in case of fault in a DES plant. The diagnosis system
is considered as a multi-class classifier that predicts the
plant state: normal or faulty and diagnoses what fault
has happened in case of fault. However, the classification
produced by RNN is not yet easy for a human operator

to explain. In this paper, we propose an unsupervised
learning method based on autoencoders for fault detection
in APSs of DES class. The next section provides a brief
literature review of the context background. Section 2
delves into the fundamentals of Machine Learning (ML),
followed by an introduction to encoders. Section 3 presents
our approach. In section 4 we describe an example of an
APS on which we will rely to illustrate our approach and
we present the results. Finally, we conclude the paper with
some prospects in section 5

1.2 Brief literature review

The state of the art in fault detection for DES continues to
evolve with the integration of advanced technologies, in-
cluding ML, big data analytics, and IoT sensors. DES diag-
nosis approaches can be categorized into three main fami-
lies based on the reasoning mode: model based, knowledge-
based, and data-based approaches. Model based ap-
proaches (Sampath et al. (1995); Debouk et al. (2000);
Zaytoon and Lafortune (2013); Alzalab et al. (2021)) are
efficient when there is sufficient knowledge of the system
but require accurate and costly analytical models. Knowl-
edge based approaches (Subias et al. (2014); de Souza
et al. (2020)) exhibit high diagnosis capacity but face
challenges in formalizing and updating expert knowledge.
Data-based approaches Venkatasubramanian et al. (2003);
Han et al. (2018); Saddem and Baptiste (2023) do not
necessitate knowledge of internal workings and do not need
an explicit formal model, relying on historical data and
ML techniques for fault diagnosis. Despite not requiring

17th IFAC Workshop on Discrete Event Systems
April 29-May 1, 2024. Rio de Janeiro, Brazil

Copyright © 2024 the authors. Accepted by IFAC for
publication under a Creative
Commons License CC-BY-NC-ND.

228



explicit models, they demand a data preparation step to
extract relevant information for formatting in line with the
chosen ML technique.

2. PRELIMINARIES

2.1 Machine learning models steps

In this paper, we propose a new solution for online fault
detection of APSs that have discrete dynamics. ML models
typically involve a series of steps or phases in their devel-
opment and deployment (Xie et al. (2021)). These steps
can be summarized as follows:

i Data Collection: Gathering relevant and high-quality
data is the first step. This data serves as the founda-
tion for training and testing the ML model. It may in-
volve data from various sources, including databases,
sensors, etc.

ii Data Preprocessing: Cleaning and preparing the data
to ensure it is suitable for training. This may involve
handling missing values, normalizing data, encoding
categorical variables, and other data transformations.

iii Feature Engineering: Selecting or creating the most
informative features for the model. Feature engineer-
ing aims to improve the model’s performance by
providing relevant informations to the learning algo-
rithm.

iv Model Selection: Choosing the appropriate ML algo-
rithm or model architecture for the task. This decision
depends on the problem nature, the available data,
and the desired outcome.

v Model Training: Using prepared data to train the
chosen model. During this phase, the model learns the
underlying patterns and relationships in the data.

vi Model Evaluation: Assessing the model’s performance
using various metrics, such as accuracy, precision,
recall, or mean squared error, depending on the
specific problem. This step helps determine if the
model is performing well and if adjustments are
needed.

vii Hyperparameter Tuning: Fine-tuning the model’s hy-
perparameters, such as learning rates or regulariza-
tion parameters, to optimize its performance.

viii Model Validation: Ensuring the model’s generaliza-
tion ability by testing it on a separate dataset (vali-
dation set) not used during training. This helps detect
issues like overfitting.

ix Model Deployment: Integrating the trained model
into a production environment or application where
it can make predictions on new, unseen data.

x Monitoring and Maintenance: Continuously monitor-
ing the model’s performance in the real-world applica-
tion, and updating it as needed to account for concept
drift or changes in the data distribution.

xi Interpretability and Explainability: Understanding
and explaining how the model makes predictions,
which is crucial for building trust and compliance in
some applications

These steps represent a high-level overview of the ML
model development process. The specific details and it-
erations can vary based on the complexity of the problem
and the chosen ML approach. In this paper, we use au-
toencoders.

2.2 Autoencoder

An autoencoder (Fig 1) is an artificial neural network
architecture. It is designed to learn efficient representa-
tions of data, typically for dimensionality reduction, fea-
ture learning, or data compression tasks. Autoencoders
consist of an encoder and a decoder, and they work by
attempting to reconstruct their input data. The input
data is first passed through an encoder, which reduces
the dimensionality of the data and produces a compressed
representation, often referred to as a bottleneck or latent
space. The compressed representation in the latent space
encodes essential features of the input data. This space is
typically of much lower dimension than the input data,
capturing the most salient information. The compressed
representation is then passed through a decoder, which
attempts to reconstruct the original input data from this
reduced representation. The goal during training is to
minimize the reconstruction error, which is the difference
between the input and the reconstructed output.

Fig. 1. Auto-encoder schematics

Autoencoder’s objective is to minimize the difference be-
tween the input data and the data reconstructed by the
decoder. This is typically achieved by using a loss function
to measure the reconstruction error. During training, the
autoencoder adjusts its weights and biases to minimize this
error, thus learning a compact representation of the data.
Autoencoders have various applications, including dimen-
sionality reduction, feature learning, anomaly detection,
Image Denoising, Data Generation, etc.

3. PROPOSED APPROACH

3.1 Automated Production System

An APS system consists of three parts: the operative part
(OP), the control part (CP) and the Human Machine
Interface (HMI) (Fig 2). The OP part represents all ma-
terial resources that physically operate on the plant. The
CP is the set of information processing and acquisition
means that ensure the piloting and control of the process.
There are two types of Information exchanges between the
CP and the OP. The CP sends orders to the actuators
and pre-actuators of the OP to obtain the desired effects.
The OP sends sensors values to the CP. HMI allows the
communication between the CP and the human opera-
tors. Human operator gives instructions via the HMI and
receives from CP various signals such as light indicators,
sound indicators, messages displayed on the screens, etc.
Most of APS’s that have sensors and actuators delivering
binary (On/Off) signals, are controlled by Programmable
Logic Controllers (PLC) that perform three successive
operations: a) Reading the inputs, which consists in the
recording of the states of sensors. b) Executing the pro-
gram. C) Updating the outputs (actuators). These opera-
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Fig. 2. Structure of an APS

tions are cyclically, i.e., one cycle after the other. Detection
task consists in cyclically reading the sensors values and
the CP’s orders, and analyzing them in order to detect
faults. Four faults are possible for each APS component:
stuck to 0; stuck to 1; an unexpected move from 0 to 1
and an unexpected move from 1 to 0.

3.2 proposal

Our approach consists of two phases: offline phase and
online phase. Offline phase includes data collection, data
preprocessing and autoencoder training. For data collec-
tion, we use data acquisition application developed in
(Saddem and Baptiste (2022)), to retrieve data from a
PLC and save the input and output data in a database. For
data preprocessing, we format the data to rows as shown in
Fig 3. Then, we divide data into two sets: training data set
and validation data set. Autoencoder is trained on training
data set by minimizing the reconstruction error between
the input data and the corresponding reconstructed out-
put. Validation data set is used to monitor the model’s
performance during training and to tune hyperparameters
or early stopping criteria. The reconstruction error on the
validation set gives an indication of how well the model is
generalizing to data it hasn’t seen during training. There is
no traditional test set for evaluating the final performance
of an autoencoder.

Fig. 3. Representation of a timed input vector

Collected data is unbalanced, some components keep true
or false value most of the time. The model may be biased
toward the most common value for his prediction. To
counter this undesirable effect, a weighted binary cross-
entropy (WBCE) loss function was used. This function
considers this unbalanced representation and can compen-
sate it. For time prediction, which is a classical regression
problem, we have used the Mean Squared Error (MSE)
function. Let define:
N : number of plant components

Npast: number of past observations to be given to autoen-
coder.
WP : weights for the positives (true or 1) value for a feature.
WN : weights for the negatives (false or 0) for a given
feature.
For each component, its WP and WN associated weights
are proportional to the inverse frequency of the presence of
1 and 0 in the dataset. Let consider x a plant component.
Let n0 and n1 be the numbers of occurrences of 0 and 1
for x in the dataset. Then WP (x) and WN (x) were defined
as follows:

WP (x) =
n0 + n1

2n1
and WN (x) =

n0 + n1

2n0
(1)

Equation (2) presents the loss used for the training.

Loss(y, ŷ) = (1− λ).WBCE(yc, ŷc) + λ.MSE(yT , ŷT ) (2)

With :

• WBCE(yc, ŷc) = − 1
N.Npast

∑N
i=1

∑Npast

j=1 WP (i)yi,j
log(ŷi,j) +WN (i)(1− yi,j)log(1− ŷi,j)

• MSE(yT , ŷT ) =
1
N

∑Npast

t=1 (yt − ŷt)
2

• ŷ the prediction vector,

• ŷc the component prediction vector,

• ŷT the time prediction vector,

• λ ∈ [0, 1] is a parameter that allows to modulate the
contribution ofMSE regardingWBCE to the overall
loss.

We only train the autoencoder on data of normal behavior.
The autoencoder learns to encode the normal patterns in
the data and reconstruct them with low loss. The loss
threshold is determined based on the characteristics of the
training data. During normal behavior, the autoencoder
should reconstruct the input data with low loss. The
reconstruction error is expected to be below the threshold.
When a fault occurs, the autoencoder might struggle to
reconstruct the faulty data accurately, resulting in a higher
reconstruction error. If the reconstruction error exceeds
the predetermined threshold, it signals a potential fault in
the system. The choice of the threshold is crucial and may
require tuning based on the characteristics of the normal
behavior and fault tolerance. Accuracy is a metric used to
evaluate the performance of a ML model. It is a measure
of how well the model correctly predicts the outcome for
a given set of data. In Table 1 we have illustrated the
accuracy measure on a simple three components system
to explain it. In blue, the good prediction, in red the false
prediction.

Table 1. Accuracy Measures

Measure Ground Truth ⇒ Prediction

[0,1,0]⇒[0,1,0]
[0,1,1]⇒[1,1,0]
[1,1,0]⇒[0,0,0]

accuracy 1 vector/3
33%
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4. APPLICATION

4.1 Use case description

We applied our approach to the box sorting system, a
virtual system simulated using the 3D simulation software
Factory IO (Riera and Vigário (2017)) (Fig 4). The ob-
jective of the box sorting system is to bring boxes from
an entry conveyor to an exit conveyor by sorting them
according to their heights. The system has 16 sensors (c0 to
c15) to determine boxes size (small or large), the box entry
or exit in different conveyors (feeding, intermediate and
evacuation) or turntable, and various dashboard buttons
(Fig 5). It has also 7 actuators (A0 to A6) to activate the
various conveyors and the turntable.

Fig. 4. Sorting by height plant

Fig. 5. Location of the various sensors and actuators in
Sorting by height plant

A present gantry on the entry conveyor is composed of
two sensors c1 and c2 at different heights. If c2 undergoes
a rising edge the box is considered high enough and will
be sent to the left by the rotary conveyor. If only c1
undergoes a rising edge, then the box will be sent to the
right. The rotary conveyor is composed of a motor allowing
its rotation at 90 degrees controlled by A4. c4 and c5
report its orientation (0 degree for c4 and 90 degrees for

c5). c6 indicates if a box is loaded on the rotary conveyor.
A2 and A3 allow respectively to move the box forward
and backward on the rotating conveyor when it is in its
initial position. When the rotating conveyor is oriented at
90 degrees, A2 moves the case to the left and A3 moves
the case to the right. All other actuators (A0, A1, A5,A6)
are used to operate the static conveyors. Each conveyor
has a sensor at the beginning and at the end of its path.

4.2 Results

This section resumes the results of the application of
our approach on the plant described previously. We have
chosen Npast = 5 and ignored dashboard and Factory IO
running sensors, to focus on system OP components. The
encoder and decoder are each made up of 3 LSTMs layers,
the latent layer is made up of 8 neurons. We have created a
2 dimensional vector of 95 elements corresponding to a 5-
vector sliding window of past records (Fig 3). Each record
consists of 19 values, including the timestamp, resulting in
a total of 95 tensors. We have also converted the absolute
time into a relative time. After training, we have obtained
the accuracy curves (Fig 6). The training accuracy is
represented in blue, and the validation accuracy is shown
in orange.

Fig. 6. Evolution of the accuracy

After training the autoencoder on data representing nor-
mal system behavior, we have assessed its capability to de-
tect faulty components. To achieve this, we have simulated
various sensor and actuator faults, leveraging Factory IO
to emulate scenarios such as sensors or actuators stucking
at either 0 or 1. The faults are denoted as Fi j, with i
representing 0 for sticking at 0 or 1 for sticking at 1, and j
indicating the specific sensor or actuator. It’s important to
note that we have simulated only one fault at a time. Fig
7 shows losses distributions values for each simulated fault
and the normal data. When the loss value is high, the fault
is easy to detect. If we take a threshold of 0.3 for example,
faults loss value below 0.3, as F0 c5 or F1 A2, are not
detected and those above 0.3 are detected as F1 A4 or as
F1 c10 or as F1 c8. It remains for the operator to deter-
mine the threshold at which the system can be considered
as faulty. We notice that some errors are more significant
in terms of time loss, others in terms of component loss.
To improve detection performance, we could consider the
loss that best identifies the fault between time loss and
component loss.

We have performed a two-dimensional projection of the
compressed representations of our input data, which form
the output of the encoder. Fig 8 illustrates the projection
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Fig. 7. Losses distributions for each fault and normal data
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Fig. 8. Projection of normal and faulty data into the latent
layer

of both normal and faulty data into the latent layer,
which serves to encode crucial features extracted from the
input data. The visualization clearly distinguishes between
normal behavioral data (depicted in black) and faulty data
(depicted in red). These extracted features represent a
compression of the original features into a 2-dimensional
space. However, understanding the relationships among
these features necessitates the application of explicability
and interpretability techniques such as SHAP and LIME.
This area will be explored in the near future. In Fig 8,
observed on the right, certain normal data points (repre-
sented by black dots) reside within regions predominantly
occupied by faulty data. This observation suggests that
the system’s behavior closely resembles normal behavior,
rendering it challenging to discern whether the system
is normal or it is faulty. These instances represent non-
detectable, non-diagnosable faults, posing significant chal-
lenges for fault detection and diagnosis.

5. CONCLUSION

In this paper, we have proposed a new data-driven un-
supervised learning approach for online fault detection
of DES class APSs. This approach is based on the au-
toencoder. The input data is first passed through an en-
coder, which reduces its dimensionality and produces a
compressed representation, referred to as a latent space.
The compressed representation is then passed through a
decoder, which attempts to reconstruct the original input
data from this reduced representation. The reconstruction
error is then used to detect the occurrence of a fault in
the plant. The results of the application of the proposed
method on the sorting system of Factory IO show the
significant contribution and the interest of this method
to detect faults.

Several perspectives are possible. An exhaustive search to
find the optimal value of the hyper-parameters (number
of hidden layers, number of neurons on each hidden layer,
the size of past observations. . . ) could be performed. The
choice of the threshold is crucial and may require tun-
ing based on the characteristics of the normal behavior
and fault tolerance. Cross-validation or using a separate
validation set with known faults can be helpful in deter-
mining an appropriate threshold. We’d like to extend fault
detection to fault diagnosis. We have applied the approach
to a simulated system, an application on real systems
is possible. As part of this project, an extension of the

approach proposed in this paper has been expanded and
applied to hybrid systems. Our objective in near future, is
to provide a comprehensive understanding of the observed
new behaviors in the monitored system to the human
operator, presenting them with insightful ”explanations”
or interpretations. This shift toward intelligent diagnosis
aims to enhance efficiency and efficacy while overcoming
the limitations of traditional solutions.
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