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Abstract

In this paper, we address an integrated operating room planning and scheduling problem that includes, with
fine detail, constraints commonly encountered in practice (i.e., sequence, capacity and due date constraints)
and for human resources other than surgeons, i.e., nurses. A new model of the sequence-dependent operating
room cleaning times that arise because of surgeries with different infection levels is considered. To solve
this difficult integrated planning and scheduling problem, we devise a branch-and-price-and-cut algorithm
based on the time-indexed formulation of the problem. The basic column generation scheme relies on a
label-correcting algorithm that we purposely developed for solving the pricing problems that are modeled
as single operating room scheduling problems with time-dependent costs and sequence-dependent cleaning
times. The pricing problems are strongly NP-Hard. The efficiency of the label-correcting algorithm is
ensured by dominance rules among labels and by two algorithms for computing the upper and lower bound
of labels. An effective cutting procedure, inspired by Benders’ decomposition and based on duality theory
for linear programming, is developed for tightening the linear relaxation of the problem. With instances
from the literature and that we generated, we conduct a numerical study to demonstrate the computational
effectiveness of the solution method.

Keywords: operating room scheduling, operations research in healthcare, column generation, labeling
algorithm, Benders’ cuts, branch-and-price-and-cut

1. Introduction

In this work, we extend the integrated operating
room planning and scheduling (IORPS) problem
of [17] to include resource constraints for human re-
sources (HR) other than surgeons, i.e., nurses. We
consider the same ILP problem modeling proposed
in [17] extending it with the HR constraints for
the nurses availability; moreover, we develop a new
model of the sequence-dependent operating room
(OR) cleaning. This optimization problem supports
decisions made on a weekly basis on the schedule of
surgeries for the next week. The health condition
of the patients and the availability of surgeons are
the main constraints involved in this decision pro-
cess. However, a surgery team with specific skills
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is required to conduct each surgery. In general, ex-
cept the surgeon, the members of the surgery team
can be decided on the fly since the required skills
are shared by several operators. However the lack
of operators with the required skill at the needed
time may delay the operations and imply surgeries
rescheduling.

To solve such a difficult problem, we devise a
branch-and-price-and-cut algorithm. The column
generation (CG) underlying the algorithm is based
on the time-indexed MILP formulation of the prob-
lem and the pricing problem is solved through a
label correcting algorithm we purposely developed.
The algorithm for pricing new columns exploits the
reformulation of the problem as the search of path
over graph. This pricing problem reformulation is
inspired by the work [31] where the a similar ap-
proach is developed for solving a single machine
scheduling problem through CG. The CG is speed
up with dominance rules partly inspired by those
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of [17]. The more an algorithm is fast for comput-
ing surgery schedules, the more it appeals to health-
care professionals. They prefer short time comput-
ing methods to generate several schedules (or like
to be able to) before fixing the final one. The need
for recomputing schedules may arise for different
reasons, e.g., sudden changes in the list of patients.
Moreover, CG is generally faster than other solu-
tion approaches to recompute surgery schedules af-
ter some data has changed.

The main contribution of this work is a novel
Benders’ cutting procedure that we developed for
tightening the problem LP relaxation computed
through CG. Such a cutting procedure is inspired
by three-phase algorithm proposed in [7] where the
classic Benders’ decomposition is combined with
CG to solve the problem of the simultaneous assign-
ment of locomotives and cars to passenger trains.
The three-phase algorithm has been applied also
for the simultaneous scheduling of aircraft and
crew [8, 25, 26]. The basic idea of the algorithm
of [7] consists in deriving a Benders’ subproblem
for each resource other than that considered the
master resource, e.g., in [8] Benders’ cuts gener-
ated solving the subproblem for scheduling crews
are added to the master problem for scheduling air-
craft. In this work, ORs are master resources and
surgeons and nurses are slave resources. Differently
form the cited literature, the Benders’ cutting pro-
cedure that we devise in this paper in not the clas-
sic one, i.e., the master resource solution enforced
into the subproblem is partial and no constraint is
dropped from the problem model of the master re-
sources.

This work has some limitations. We do not
consider uncertainty of surgery durations. Mod-
els including uncertainty and stochastic optimiza-
tion methods are powerful tools to cope with un-
certainty if the available information on surgery
durations is weak. In this work, we assume that
enough information is given for an accurate estima-
tion of surgery durations as surgeons are already
assigned to surgeries, this is shown to reduce uncer-
tainty [19]. We consider a single linear objective for
the optimization problem. The solution algorithm
that we develop is tested with instances requiring
to maximize the total revenue of scheduled surg-
eries or the total surgery time of scheduled surg-
eries. There are no changes to apply to the prob-
lem model or the algorithm. Only the problem data
have to change to consider one of the two objectives.
Our formulation of the problem objective can be

easily adapted to other objectives, e.g., maximiz-
ing the total score of scheduled surgeries to prior-
itize urgent surgeries, i.e., those with an assigned
high score. Similarly, the throughput of the ORs
can be maximized by assigning to every surgery a
score equal to 1. For considering other optimization
objectives like surgery tardiness or the optimiza-
tion of multiple objectives, the problem model and
the solution algorithm have to be modified. We do
not consider HRs other than surgeons and nurses.
Other HRs involved in running the operating the-
ater and the surgery exist (e.g., anesthesiologists,
post-anesthesia care unit HRs, etc.). This work is
limited to surgeons and nurses because other HRs
that can be relevant (e.g., anesthesiologists) can be
modeled in the same way we modeled surgeons and
nurses through constraints. HRs like those of the
post-anesthesia care unit are not considered as we
assume that the post-anesthesia care unit does not
limit surgery in any way. In the remainder of this
section, we introduce the relevant literature and
provide an exhaustive positioning of the paper.

Surgery scheduling is usually treated as an op-
erational problem with a planning horizon span-
ning one or several days. As pointed out in [4],
surgery scheduling involves two main decisions: (1)
the assignment of surgical cases to OR sessions (ad-
vanced scheduling) and (ii) surgical case sequencing
for ORs (allocation scheduling). Some papers focus
only on advanced scheduling (e.g., [16] and [10])
or allocation scheduling (e.g., [3] and [32]) because,
at the cost of suboptimal solutions, the two deci-
sions can be taken sequentially in different deci-
sion epochs. Relevant papers dealing with both the
advanced and allocation scheduling solved sequen-
tially are [20] and [11]. Some recent works focus
on advanced and allocation scheduling as an inte-
grated problem to overcome the suboptimality of
sequential decisions. In these works, the problem
is generally presented as IORPS; relevant papers
are [23, 24, 5] and [17]. A multi-operating theater
(OT) variant of the IORPS problem is proposed
in [29)].

In [23], a variant of the general IORPS problem
considering surgery waiting lists with up to 1000
surgeries and 6 ORs is solved by combining an in-
teger programming (IP) solver and an improvement
heuristic. The problem spans a planning horizon of
one week and includes sequence constraints and ca-
pacity constraints for ORs and surgeons, due date
constraints for surgeries, and some practical con-
straints for the starting time of surgeries and the



assignment of surgical specialties to ORs. A higher
OR utilization rate is targeted by the problem ob-
jective, and the obtained solutions increase the OR,
utilization rate up to 40% with respect to hospi-
tal planning. The quality of solutions delivered by
the IP solver is good, and the improvement heuris-
tic further improves solutions by a few percentage
points; however, the IP solver computation time is
large in most cases (on the order of hours). While
the results are promising, there is room for improve-
ment in the solution approach. To solve the same
problem proposed in [23], the same authors have de-
veloped in [24] a structured genetic algorithm able
to quickly improve the best solution obtained in the
previous work, but the quality of the improvement
is in a limited range (few percentage points).

The instances used in [23] and [24] are also used
in [28] to test the performances of a branch and
check algorithm that combines constraint program-
ming and integer linear programming. The so-
lution approach proposed in [28] outperforms the
commercial solver running a pure integer program-
ming model and appears competitive against the
approach combining integer programming and the
genetic algorithm of [24].

In [5], the same IORPS problem of [23, 24] is
decomposed in advanced (master) and allocation
(sub) problems. An IP solver-based algorithm rely-
ing on generalized disjunctive programming (GDP)
modeling of master and subproblems is applied for
the problem solution. The mixed-integer linear pro-
gramming (MILP) convex hull reformulation of the
GDP model of both the advanced and allocation
problem is given, and a hybrid continuous-time for-
mulation with multiple time-grid (one per OR) and
general precedence sequencing variables is adopted
for the allocation problem. The authors promote
the hybrid formulation (see [6]) as the best solution
for the allocation problem. The obtained solutions
quality is good, but the computation time is large
(more than an hour).

An advanced branch-and-price-and-cut
(B&P&C) algorithm is proposed in [17] for a
IORPS problem considering sequence constraints
for infectious/noninfectious surgeries and capacity
constraints for surgeons. The CG algorithm is
based on the time-indexed formulation of the OR
scheduling problem proposed in [23, 24], the CG
decomposition and the master problem formu-
lation are inspired by [10], but subproblems are
modeled by means of constraint programming and
consider fine details of OR schedules. Dominance

rules for columns and an infeasibility-detection
algorithm are developed to speed up the column
generation, and the cutting procedure is based on
lifted minimal cover inequality constraints (see [15]
and [1]). Numerical results show the efficacy of the
dominance rules and of the infeasibility-detection
algorithm. The B&P&C algorithm outperforms
the benchmark commercial solver, but the compu-
tation time is very large (on the order of hours) for
tested medium-sized instances (6 ORs and up to
120 surgeries).

A logic-based Benders’ decomposition (LBBD)
(see [18]) is applied in [29] to solve a multi-OT
IORPS problem integrated with the surgeon-to-
surgery assignment. The available OR capacity
is spread over some hospitals, and surgeries are
assigned to surgeons according to patients’ pref-
erences. The decomposition master problem in-
tegrates advanced scheduling and surgeon assign-
ment, and the subproblems are the OR allocation
scheduling tasks. Numerical experiments reveal
that Benders’ decomposition methods are promis-
ing for IORPS problems and that computation
times are not excessively large for medium-sized in-
stances. The same solution approach of [29] is ap-
plied to a single-hospital IORPS problem, the paper
focuses on the economic advantages of optimized
solution.

In [28], the LBBD approach of [29] is adapted to
solve the instances of [17]. The authors compare
the LBBD and a branch-and-check algorithm (very
close to the LBBD but using constraint program-
ming) against the B&P&C of [17] and the com-
mercial solver running three different models: a
pure MILP model, a pure constraint programming
model, and one mixing constraint programming and
MILP. Such a computational study did not reveal
one of the models as strictly superior. The pure
constraint programming model provides the smaller
gap on average, but the pure MILP solves to opti-
mality more instances. Independently of the run
model, the commercial solver seems to be, by far,
less effective than the ad-hoc algorithms as LBBD
and B&P&C. Compared to the B&P&C of [17], the
LBBD provides smaller optimality gaps for some in-
stances, but larger for some others. The B&P&C
seems to be more effective for large instances with
several ORs and the LBBD more competitive for in-
stances with few ORs and short duration surgeries.
the two solution approach appears of comparable
quality.

Nevertheless, few papers consider HR other than



surgeons. In [27], the authors address an IORPS
problem with HR constraints, in which the mod-
eling is inspired by resource-constrained project
scheduling and a time unit of 15 minutes for the
time discretization is adopted; the MILP formula-
tion is effective only for very small-sized instances,
and a heuristic algorithm is proposed for solving
relatively large-sized instances (7 ORs and up to 80
surgeries). In [30], two IP-based heuristic methods
are proposed to solve an IORPS problem involv-
ing HR constraints within restrained computation
times at the expense of lower quality solutions; the
time is discretized in very large units (30 minutes)
to tackle large-sized instances with up to 11 ORs
but no more than 90 surgeries.

The IORPS problem addressed in this paper in-
cludes constraints that are the most common in the
literature for this kind of problem and provides an
attempt for synthesizing state-of-the-art modeling
of this kind of problem. Surgery due dates are hard
constraints, as in [27, 23] and [17], as are readiness
dates, as in [27].

In the instances that we consider, only a part of
the surgeries has the due date in the time horizon of
the problem. So, it is unlikely that the problem is
infeasible because of the due date constraints. As a
last resort, if the problem is infeasible, one or more
surgeries with a strict due date can be removed to
obtain a feasible problem and executed in the emer-
gency ORs of the operating theater [22]; but this is
a matter that is up to the clinical evaluation of sur-
geons.

The surgeon availability is given as in [27, 23]
and [17], and the OT upstream and downstream
resources do not bind the scheduling of surgeries,
as in [27, 23] and [17]. The scheduling of surgeries
is instead constrained by the availability of special-
ized HRs other than surgeons, i.e., nurses, as in [27]
and [30]. As in [17], OR cleaning times depending
on the sequence of surgery infection types are en-
forced and a very small unit for the time discretiza-
tion is adopted. We assume that an OR cannot
be shared by several specialties on the same day as
in [23, 24], a practical constraint not well covered
by the existing literature.

As argued in [17], time-indexed models, such as
those of [23] and [27], are frequently used. Con-
tinuous time models involving big-M constraints,
e.g., [33], usually provide weaker linear program-
ming (LP) relaxation and slow down the optimiza-
tion time. The time-indexed formulation is also
used in this paper.

From a practical point of view, failures to ac-
count for the most important features of the IORPS
with HR constraints constitute the main obstacle to
the implementation of surgery planning/scheduling
algorithms in many hospitals. Such a problem is
hard to solve, even in its simplified version with-
out HR constraints. Simple scheduling algorithms
usually fail to provide good (or even just feasible)
solutions and lead to a reduced quality of service
(e.g., unmatched patient due dates) and direct or
indirect economic losses (unused capacity, unsched-
uled surgeries, etc.). Weak (incomplete) schedul-
ing (done manually, for example) frequently pro-
duces infeasible schedules because not all relevant
details are considered and material or human re-
source clashes of surgeries can arise.

The remainder of this paper is organized as fol-
lows. In Section 2, the IORPS with HR constraints
problem is described. The master problem formula-
tion of the column generation decomposition is pre-
sented in Section 3 and that of one of the pricing
problems in Section 6. The label-correcting algo-
rithm we develop for solving the pricing problems
is described in Section 6.2, and the cutting proce-
dure we develop to improve the master problem LP
relaxation is elaborated in Section 4. The B&P al-
gorithm and the branching rules are described in
Section 5. The computational experiments through
which we test the effectiveness of the developed al-
gorithms are described in Section 7 with the report
of the numerical results. The label-correcting al-
gorithm, the Benders’ cutting procedure and the
evidence of their effectiveness, even for real-world-
sized instances, represent the main contributions of
this paper.

2. Problem Statement

In this work, we address the problem of surgery
scheduling for an OT composed of several ORs and
a planning horizon of several days. The schedul-
ing of ORs is constrained by the availability of two
types of skilled HRs required for the execution of
surgeries, i.e., surgeons and nurses. The surgeon
availability is characterized by a maximum daily
time for surgery, whereas nurses are available ac-
cording to a calendar. Every surgeon and every
nurse belongs to a surgical group (SG), and an SG
is a collection of surgical specialties characterized
by surgical similarities (e.g., head surgery, chest
surgery, etc.). The surgeries to schedule are selected



from a wait list. Each surgery is characterized by
the surgical specialty, the duration, the infection
type, the number of nurses required, the revenue,
the release date and the due date. Surgeries with
different infection types were first studied in [3], and
then in [17], information on surgery infection types
was required for correct scheduling of OR cleaning
times. Revenue is a financial measure, but with-
out changing the problem nature, it can be easily
replaced by another measure such as a score calcu-
lated according to a set of criteria (e.g., priority)
or simply the surgery duration as in [17]. Surgeries
with the due dates falling in the planning horizon
are mandatory surgeries; these are surgeries that
must be scheduled in the planning horizon, whereas
other surgeries may be scheduled or not. The fol-
lowing assumptions hold throughout the paper.

1. The duration of each surgery is deterministic.

2. Every surgery is already assigned to a surgeon.

3. The maximum opening time of the ORs is eight
hours and there is no OR or nurse overtime.

4. There is no fixed OR opening cost.

5. The ORs composing the OT are identical with
respect to the surgery execution.

6. OT upstream and downstream resources do
not constrain the OR scheduling.

7. Nurses can only assist in the execution of surg-
eries of their own SG.

8. Nurses are trained to assist the execution of
surgeries as either scrub or circulating nurses.

9. An obligatory cleaning time (OCT) of the OR
may be required between two surgeries of a
different infection type, where the OCT de-
pends exclusively on the immediately preced-
ing surgery. Moreover, we assume that:

(a) a surgery infection type is characterized
by an infection level,

(b) infection types can be sorted according to
the infection level,

(c) OCTs are required to switch from infec-
tion types of higher infection levels to
those of lower infection levels and

(d) given any pair of infection types with in-
fection levels f and f’ such that f >
f/ and OCT(f,f’) being the OCT re-
quired to switch from infection level
f to f’, it holds that OCT(f,f") <
> g=fo.pr—10CT(g,9+1). This is a spe-
cial case of the triangular inequality, i.e.,
it is more efficient (faster) to downgrade

the OR infection level from f to f’ di-
rectly with a unique OCT than by pass-
ing through the intermediate steps with a
sequence of OCTs.

As in many works cited in Section 1,e.g., [17, 23,
24, 6], Assumption 1 holds as the problem is already
very hard to solve in its deterministic formulation;
exact methods are able to solve with sufficient so-
lution accuracy only very small instances of IORPS
problems in the case of uncertain duration of surg-
eries [2]. Assumption 2 reflects the common prac-
tice of many hospitals. Assumption 2 is consistent
with the practice of a wide range of hospitals, from
university hospitals where each surgeon has her/his
study cases to private hospitals where freelance sur-
geons perform surgeries on their patients. Eight
hours is the regular open time for elective surgeries
in many hospitals, and marginal costs of surgery,
such as overtime or OR openings, are considered in
some papers. However, we do not consider marginal
costs, i.e., Assumption 3 and Assumption 4, for
the following reasons: (1) OR or nurse overtime
is an undesirable event that may occur in the OT
but should be avoided as much as possible; it thus
seems unreasonable to schedule some overtime in
advance as a regular practice, and (2) the marginal
cost of allowing an OR to remain open is mainly
given by its staffing. If the surgical staff is given
(i.e., the cost for staffing is already incurred), the
remaining marginal cost is very low and negligible
and given by surgical consumables. In regard to As-
sumption 5, only a few papers consider the opposite
case of different OR equipment, and this does not
provide a significant contribution. Assumption 6 is
realistic for many hospitals. Assumption 7 is very
realistic because nurses are usually assigned to an
SG in the long term and are trained to assist only
surgeries of their SG, whereas only veteran nurses
have sufficient experience to assist, within a short
time horizon (the same day or week), the execution
of surgeries belonging to different SGs. Assump-
tion 8 follows the common practice of many hospi-
tals. Assumption 9 is as in [17] and is very realistic
and necessary, but done in isolation as presented
in [17], it is not sufficient for achieving full consis-
tency with real-world functioning of ORs and OCT
scheduling.

We extend Assumption 9 with Assumptions 9a,
9b, 9c¢ and 9d; otherwise, by neglecting Assump-
tions 9a-9d, it leads to surgeries with “cleaning
power”, which is a paradox. To better clarify, con-



sider the schedule of three surgeries i1, io and i3 in
the same OR with OCT (i1,i2) = OCT(i2,i3) =0
but OCT (i1,43) > 0 which does not meet Assump-
tions 9c. The sequence i; < i3 < i3 contains no
OCT at all, and the insertion of i3 between i; and
i3 has necessarily the paradoxical “cleaning power”
on the OR.

The problem objective is the maximization of the
total revenue of scheduled surgeries. A solution of
the problem is obtained with the following deci-
sions: (1) to assign SGs to ORs on a daily basis,
(2) to select the surgeries to schedule, (3) to assign
every selected surgery to an OR and (4) to assign
a starting time to every selected surgery. These de-
cisions are all correlated with respect to the prob-
lem objective, and an integrated decision is required
to avoid suboptimal solutions. A feasible problem
solution must respect the constraints that follow.
Mandatory surgery must be scheduled only once in
the planning horizon, and other surgeries may be
scheduled at most once. A surgery can be sched-
uled for any day between its release date and due
date, but not before/after its release/due date. The
total daily OR opening time and the daily maxi-
mum surgery time of surgeons cannot be exceeded.
The required number of nurses have to be available
for the execution of each surgery. Surgeries cannot
overlap in the same OR, and surgeries of the same
surgeon cannot overlap. For every OR and day,
only surgeries of the assigned SG can be scheduled
in the OR. OR cleaning must be scheduled accord-
ing to the OR sequence of surgeries and their in-
fection type. No cleaning is required between two
cases with no infection or the same type of infec-
tion. In Table 1, we report the notations for the
problem we describe.

The MILP of the problem, given in Appendix,
is essentially the same as that of many other works
on similar subjects, e.g., [17, 23, 24], but with addi-
tional constraints for HRs other than surgeons (i.e.,
nurses).

3. Column Generation Master
Problem

In this section, we present the master problem
(MP) of the column generation reformulation of the
IORPS with HR constraints problem. In such an
MP, a variable (i.e., a column) stands for a schedule
of one OR and one day in the planning horizon.

Let T'K be the set of all OR schedules and subset
Ff C I'X be the set of feasible schedules for day
j e J. Let rf{ be a binary value that takes value
1 if surgery 4 belongs to schedule v € I'K and ri}t
be a binary value that takes value 1 if surgeon a is
occupied with surgery at time ¢ in schedule v € T'%.
Let also C., be the revenue of schedule y € I'; this
is the sum of the revenues of surgeries belonging to
the schedule. Value p is the total surgery time for
surgeon a in schedule v € ', and value n;”t is the
number of nurses of SG m occupied with surgery at
time ¢ in schedule v € T'. The decision variable
¥, takes value 1 if the schedule v € I‘]K is selected
for day j (0, otherwise). The OR master problem
(ORMP) formulation reads:

max Z Cy0, (1)
yel' K
subject to
Z Z rid, =1 (i € laa), (2)
jeJ 'yGF;K
S v, <1 (i €I\ laa), (3)
jedJ ’YGFJK
Zri;tmgl (acA;jed;teT), (4)
veFf
> P30, < Ty (acA;jed), (5
veFf

Z n?tﬁ’y < |Bm;

vEFf
(meSG;jed;teT), (6)
YOSl (e, (7)
yery
9, € {0;1} : vy € TK] (8)

The objective function (1) maximizes the total
surgery revenue for surgeries scheduled in the plan-
ning horizon. Counstraints (2) and (3) enforce
that mandatory surgeries are scheduled once in the
planning horizon and nonmandatory surgeries are
scheduled at most once in the planning horizon.
Constraints (4) enforce that surgeries of the same
surgeon do not overlap: a surgeon can execute only
one surgery at a time. Constraints (5) enforce that



Notation

Sets

A Surgeons

B Nurses

I Surgeries

J Days in the planning horizon

K Operating rooms

SG Surgical groups

T Time slots in a day

F OR cleaning times

Subsets

B, Nurses of SG m € SG

B, Nurses of SG m € SG available on day j € J

Lgq Mandatory surgeries

I, Surgeries of surgeon a € A

I, Surgeries of SG m € SG

1; Surgeries that can be scheduled for day j € J

I Surgeries of SG m € SG that can be scheduled for day j € J

K; Operating rooms open on day j € J

Parameters

Tyj Maximum surgery time of surgeon a € A for day j € J

C; Revenue for surgery i € 1

rd; Release date of surgery i € I

dd; Due date of surgery i € T

i Duration of surgery i € I

OCT(i,i’)  Duration of the OCT to execute after surgery 7 and before surgery i’
The equivalent of OCT(f;, fi)

n; Required number of nurses to assist the execution of surgery i € I

fi The infection level of surgery ¢

Table 1: Problem notation

the maximum daily time of surgery is not exceeded
for every surgeon and day in the planning horizon.
Constraints (6) enforce that, for every SG, day and
time, the number of nurses occupied with surgery
never exceeds the number of available nurses for the
given SG and day. Constraints (7) enforce that at
most |K;| OR schedules are selected for every day
in the planning horizon. The domain of variables
is defined by (8).

The LP relaxation of formulation (1)-(8) is solved
by means of column generation techniques given the
large, potentially huge, number of variables (feasi-
ble schedules) v € I'. Column generation tech-
niques tackle such huge numbers of variables con-
sidering a restricted number of variables, the subset
'K ¢ TK. The MP including only the restricted

set of variables T'¥ is the restricted master problem
(RMP). Let ORRMP be the OR restricted MP.

The master problem of the column generation
scheme presented in this section is essentially the
same as that of [17]; we added the resource con-
straints (6) for the nurse availabilities. In [17],
the formulation of the master problem is solved by
means of column generation (as in our work) and by
resorting to a constraint programming (CP) model
for solving subproblems. Since computational ef-
ficiency is crucial for generating new columns, we
preferred to devise a label-correcting algorithm for
solving subproblems, see Section 6.2, because we
think that such an approach is likely faster than
CP for generating new columns. It is also known
that CP suffers from significant overhead times for



the model solutions, as in integer linear program-
ming (ILP), and thus, it may not be the best for
the generation of columns.

4. Benders’ Cutting Procedure

In this section, we describe the Benders’ cutting
procedure that we developed for tightening the LP
relaxation of model (1)-(8). This cutting proce-
dure is inspired by the cutting phase of the three-
phase algorithm proposed in [7] for the simultane-
ous assignment of locomotives and cars to passenger
trains. In [7], the classic Benders’ decomposition
is combined with column generation to decompose
and efficiently solve the problem. The same three-
phase algorithm is successfully applied for the si-
multaneous scheduling of aircraft and crew as well;
see [8, 25, 26]. Both the simultaneous assignment of
locomotives and cars to passenger trains and the si-
multaneous scheduling of aircraft and crew present
a formulation that uses a type of column variable
for each resource. In both cases, once Benders’
decomposition is applied, the master problem and
the subproblem have column variables of/for, re-
spectively, only one type/resource, and the applied
Benders’ decomposition is also a decomposition by
resources.

The cutting procedure that we developed is in-
spired by Benders’ decomposition and developed
around the idea of a master resource and some slave
resources. Each resource type has its own prob-
lem, and the solution of the master problem (that of
the master resource) is enforced in the subproblems
(those of slave resources) for generating cuts. ORs
are the master resource, and surgeons and nurses
are slave resources. Our approach differs from a
classic Benders’ decomposition because the OR. so-
lution that we enforce is partial. For generating
cuts, we determine computationally efficient to en-
force in subproblems the sole surgery selection given
a complete schedule for the ORs; this is at the price
of retaining resource constraints for surgeons and
nurses in the master problem formulation. Through
the generation of cuts and the convergence of the
master problem and subproblems on a common se-
lection of surgery and objective function value, the
LP relaxation of the problem is tightened.

The ORMP of Section 3 is the master problem
of the cutting procedure and the two Benders’ sub-
problems are the surgeon subproblem (SSP) and the
nurse subproblem (NSP). The SSP schedules surg-

eries for each surgeon and day in planning horizon.
The NSP schedules surgeries for each nurse and day
in planning horizon. At each iteration, for both the
SSP and the NSP, the selection of surgeries is con-
strained by the current LP solution 157 :y eTX
of the ORMP. Each time a Benders’ subproblem is
solved, a new cut can be added to the ORMP. The
Benders’ cutting procedure stops when the objec-
tive function of both the SSP and the NSP equal
that of the ORMP, i.e., the objective functions of
the three problems have converged on the same
value. In Figure 1, we present the flow diagram
of the Benders’ cutting procedure in relation to the
basic column generation algorithm.

In Section 4.1, we report the formulation of the
surgeon subproblem (SSP) and, in Section 4.2, that
of the nurse subproblem (NSP). In Section 4.3,
we report the restatement of the ORMP with in-
cluded the formulation of the Benders’ cuts gener-
ated through the SSP and NSP.

4.1. Surgeon subproblem

Let I' be the subset of feasible schedules of surgeon
a € Afor day j € J and T'” be the set of all feasible
schedules of all surgeons A. Let also C be the total
revenue of schedule 4 € I'* defined as the sum of
the revenues of surgeries belonging to the schedule.
Decision variable (, defines whether the schedule
v € T4 is selected or not. Given nonnegative values
¥, such that v € T'K satisfying constraints (2)-(7),
the SSP reads:

max Z Cy¢y 9)
yer4
subject to
)P PLTED PETA
JEJ yETS yerK

(a€e Ayiel,), (10)

DRSS!

'yEI“;

(ae€ A;jeld), (11)

¢, >0:yelA (12)

A solution of the SSP defines a schedule of surgery
for every surgeon and day in the planning horizon.
The SSP objective (9) maximizes the total revenue
of the surgeries scheduled in the planning horizon.
Constraints (10) bound the selection of each surgery
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Figure 1: Column generation with Benders cutting procedure

in the range [0; > cpx 70,]. Constraints (11) en-
force that at most one schedule is selected for each
day and each surgeon.

Note that to enforce that mandatory surgeries
must be scheduled is not necessary for the SSP
and constraints on mandatory surgeries are thus re-
laxed. To enforce the equality in Constraints (10)
for mandatory surgeries is not necessary because
the selection of surgeries in the SSP is the same as
the ORMP when the two objective functions have
converged on the same value with the Benders’ cut-
ting procedure. Given ., : v € I' a solution of (2)-
(7) such that the value of the SSP objective function
equals that of the ORMP, it holds that

Z Z rigv = Z rfﬁw

JEJ ETY ~yETK

(a€ A, 1el,)

Let A9 and A'Y) be the dual variables for con-
straints (10) and (11), respectively. The dual prob-

lem of the SSP reads:

min Z Z riﬁn, /\1(_10) + Z/\((lljl) (13)
i€l \yelK a,j
subject to
STl a0 > ¢
(velj,jed acA), (14)
MWO>0:iel, AP >0 ¥ aj (15)

The formulation of the Benders cut derived from
the SSP dual problem is reported in Section 4.3.

4.2. Nurse subproblem

Let Ff ™ be the set of nurse schedules feasible for

day j € J and surgical group m € SG. Let I'® be



the set of all nurse schedules. Decision variable ., :
v E Ff ™ defines the number of nurses of surgical
group m € SG with schedule v € Ff’" forday j € J
in the problem solution. Let C. : v € I'B be the
schedule total revenue deﬁr_led as: e e /n;. For
given nonnegative values 9., : v € I'K satisfying
Constraints (2)-(7), the NSP reads:

max Z Crp (16)
~yel'B
subject to
YDA peT)
weFfm yerk

(i € Iy, m € SG), (17)

Z ¢y < |Bmjl

B
’YGFj m

(me SG; jeJ), (18)

0, >0:y€TE. (19)

A solution of the NSP defines a nurse schedule se-
lection for every SG and day in the planning hori-
zon. The NSP objective (16) maximizes the total
revenue of the scheduled surgeries. Constraints (17)
enforce that if a surgery is scheduled for the ORMP,
the surgery can be scheduled at most for the re-
quired number of nurses of its SG. Constraints (18)
enforce that the number of times that a schedule
is selected cannot be greater than the number of
available nurses of the related SG. Constraints on
mandatory surgeries are relaxed also in the NSP,
this is because when the Benders’ cutting proce-
dure stops, it holds that

Z rf'ygo,y =n; Z rfyﬁ,y

B K
versm ver!

Let A and A(®) be the dual variables for Con-
straints (17) and (18), respectively. The dual prob-
lem of the NSP reads:

min Z n; Z r,"yﬁ,y /\517)4-
i€l yel'K
> 1Bl ALY (20)

meSG jeJ

(m € SG, i € Iy,).

subject to

1 17 18
ST A0 > o,
i€l
(meSG, jeJ yelim), (21)

MP>0 v, AP >0 vmj o (22)

The formulation of the Benders’ cut derived from
the NSP dual problem is reported in Section 4.3.

4.3. ORMP restatement and cutting
procedure

From dual problems (13)-(15) and (20)-(22), two
types of Benders’ cuts to add to the ORMP are
derived.

Let A denote the polyhedron defined by Con-
straints (14) and (15) of the SSP; let also Pa and
RA be the set of extreme points and extreme rays
of A, respectively. Note that, because of relaxed
Constraints (10) on mandatory surgeries, the SSP
is always feasible, and the set Ra of extreme rays is
therefore empty. Let 2 denote the polyhedron de-
fined by Constraints (21) and (22) of the NSP; let
also P and Rz be the set of extreme points and
extreme rays of the E, respectively. The NSP is
always feasible because of relaxed Constraints (17)
on mandatory surgeries, and the set Rg of extreme
rays is therefore empty.

Let zp € R be an auxiliary real variable to ex-
press the total revenue of scheduled surgeries. The
ORMP, i.e., formulation (1)-(8), can be restated for
the Benders’ cutting procedure as:

max zop (23)
subject to
(2),(3).(4),(5),(6), (7)
Z Z Cﬂ"fﬂ% —20=0 (24)
it yelK
Z Z )\Elo)rf/ﬁw — 20> — Z )\gljl)
i yelK a,j

(MG AODY € pa), (25)

ST A, 2> = 3 Byl ALY
m,j

i yelK

(AU A8y e pg),  (26)



2 >0, ¥,€][0;1]:vyelK. (27)
Constraint (24) limits the zy variable to total rev-
enue of scheduled surgeries expressed as a func-
tion of variables 6., : v € I'’; this constraint al-
lows to start the Benders’ cutting procedure with
an already good LP relaxation of the ORMP. Con-
straints (25) and (26) are the optimality Benders’
cuts generated by solving the SSP and the NSP,
respectively.

The optimality Benders cuts, Constraints (25)
and (26), are not generated exhaustively. The Ben-
ders’ cutting procedure generates only a subset of
cuts sufficient to obtain an optimal solution. Feasi-
bility Benders’ cuts are never generated at all given
the emptiness of Ra and Rz; we therefore omit the
formulation of feasibility cuts. At each iteration of
the algorithm, the relaxed ORMP is solved includ-
ing the subset of cuts generated until the current
iteration, i.e., Py C Pa and PL C Ps.

5. Branch and Price

To obtain an optimal, or at least high-quality, inte-
ger solution of the ORMP, we developed a branch-
and-price (B&P) procedure. Given 9., >0:v € I'K
the current LP solution of the ORMP, the B&P
branching is based on the following rules:

1. branch on the total number of surgeries sched-
uled per SG in the planning horizon;

2. branch on whether a surgery is scheduled for a
given day and time or not.

Branching rules 1 and 2 are applied hierarchically
and according to the numerical order; rule 2 is ap-
plied if, with rule 1, the branching cannot be further
applied.

To apply the branching rule 1, given m’ € SG,
the surgical group with the most fractional number
of surgeries scheduled in the current ORMP solu-
tion (i.e., with the fractional part of the number
closest to 0.5), one of the following two constraints
has to be added to the ORMP:

Do Sy Do, (29
i€l vel K _iEIm/ ~yETK
Yood o= Y Y, (29)
i€l,,r yeTK i€l yerk
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Let € be the set of all possible cuts of form (28)
or (29) that can be generated.

To apply the branching rule 2, we branch on the
most fractional scheduled time of a surgery in the
current solution, i.e., given rf‘yjt a binary value that
takes value 1 if surgery i is scheduled for day j
and time ¢ in schedule v, one of the following two
constraints has to be added to the ORMP:

DDRCINE B SR B
yeTK |yeTK ]

Z rfftﬂv = Z Tfyjt@v . (31)
yETE yETK

Note that 0 < 37 px rfyjtﬁv < 1 for every t € Ty,
j€ Jand i € I. Let ¥ be the set of all possible
constraints of this type that can be generated.

Constraints in 2 are effective for improving the
column generation upper bound and detecting the
problem infeasibility of a given B&P node, and con-
straints ¥ drive the search of an integer solution for
the restricted ORMP. An integer solution for each
node of the B&P is computed by enforcing inte-
grality constraints to the column variables added
to the ORRMP and by solving the ORRMP. The
best integer solution of the ORRMP found until
the current iteration of the B&P provides a lower
bound on the optimal solution of the problem and
allows an early pruning of B&P nodes.

6. Column Generation Sub-

problem

The three problem formulations presented in Sec-
tion 4 imply column generation for their solution.
In this section, we describe the solution method
that is applied for solving the pricing problems of
the ORMP. The pricing problems of the SSP and
the NSP are simplified versions of ORMP ones. So,
we describe the solution method of the OR pricing
problem (ORPP) and, when necessary, we point out
what changes hold for solving the surgeon pricing
problem (SPP) or the nurse pricing problem (NPP).

In Section 6.1, we define the ORPP as an exten-
sion of the rainbow path (RP) problem, see [21],
that we call the maximum revenue RP with
resource constraints (MRRPRC) problem, since
searching for the OR schedule with maximum re-
duced cost is equivalent to searching for the MR-



RPRC over a graph. In Section 6.2, we describe the
RP algorithm developed for solving the MRRPRC
problem.

6.1. Description of the MRRPRC

Let G = (V, E) be a directed acyclic graph (DAG),
where V is the set of nodes and E is the set of
arcs. There is a node v; for each possible starting
time t = 0, ..., T of every surgery and three types of
arcs: surgery arcs, idle time arcs and OR-cleaning
time arcs. There is a surgery arc (i,v;) of length
p; that reaches node v, for every surgery ¢ € I
and feasible starting time t. There is an idle time
arc from vy to vey for every time period ¢t < T —
p;. There is an OR-cleaning time arc from v; to
virocT(s,s) for every pair of infection levels (f, f/)
such that OCT(f, f’) > 0 and time period t < T —
OCT(f, f'). Every surgery arc that corresponds to
the same surgery has the same color i € I. Idle
time and OR-cleaning time arcs have no color.

Let d,; > 0 be the consumption of resource (sur-
geon) a € A along any arcs of color 4, it corresponds
to the surgery duration (arc length) d,; = p;. For
every resource a € A, the capacity @, is defined.

Note that, in this MRRPRC problem, the graph
is acyclic (any path is elementary by graph con-
struction) and pairs of nodes are linked by many
arcs instead of single arcs (as often encountered in
column generation).

Let A be the vector of dual costs of constraints
from (2) to (6) of the master problem formulation
plus the Benders cuts’ constraints, (25) and (26),
the branching constraints (30) or (31) and (30)

r (31). For each element of A, the constraint ref-
erence is in superscript and the constraint indices
are subscripts, e.g., )\52’3) are the dual costs of Con-
straint (2) or (3) depending on whether the surgery
1 € I is mandatory or not, respectively. Let z;; be
a binary decision variable that takes value 1 if arc
(4, v¢) is selected (0 otherwise). The reduced cost of
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a schedule v € I'X is given by

t+p;—1
(2.3),,
Cy =2 2 N wa =323 37 Ajea
ZGI tET lEI tET t'=t
- § § /\a i PiTit
ZEI tET
t+pi—1
E :E : § : (6)
— )‘mijt’nixit
i€l teT; t'=t

SR Y Y A,

i€1; t€T; VEPK

=20 AR A g,

iEIJ' tETj Vepé

_ Z A(28:29) Z Z -

we) i€l teT);

(30.31) %)
- Z /\wt >‘
(i,4,t)€ P’

(32)

that is separable according to starting times of surg-
eries; the part of the reduced cost depending on
surgery ¢ € I and time ¢ € Tj is given by

t+pi—1
2,3) 5)
wit:cl-—)\g Z )\ —)\( .iDi
t=t
t+p;i—1
25) 4 (10
D S DR I
t=t vEP) (33)
_ Z )\26 niA 17 Z /\(2829
I/EP_" we]
(30,31)
- Z Aije it
(i/,5,t) €W i/ =i
and the reduced cost can be written as
7
Z Z Wit Tt — )\; )- (34)
i€l teT;
Every surgery arc thus has revenue w;,,) = wi-

Idle time and OR-cleaning time arcs have revenue
equal to zero.

The problem objective is to identify the RP from
v to v that satisfies resource constraints and max-
imize the revenue. The MRRPRC can be described
with the following MILP:

E Wit Tqt — E

(i,v¢)EE meSG

)
-~ (35)



subject to
doowa— Y, ww=0
(i,v¢)EE (i,u)EE
(ve € V\{vo,vr}), (36)
Z Tit = 17 (37)
(’i,vo)GE
Z Tit = 17 (38)
(i,’UT)EE
Sat + dg; < Sait+p; T M(l - xit); (39)
Sat < Qaa (40)
Y um <1, (41)
meSG
Z Z Tit < Ym (m € SG), (42)
i€l (i,v)EE
dooap <1 (i eI, (43)
(i,u1)EE
Z Torgr <1 —
(i o) EEYSE
((i,z") el:i#i, v € V), (44)
l'ztE{O,l} VZGIJ,tGT] (45)

Binary decision variable y,, takes value 1 if arcs of
colors belonging to SG m can be selected (0 oth-
erwise). Variable s,; measures the consumption of
resource a reaching node v;. The objective func-
tion (35) maximize the revenue, i.e., search for the
best paths. Constraints (36)-(40) are those for re-
sources. Constraints (41) and (42) enforce that only
colors of the selected SG can be selected. Con-
straints (43) enforce that paths have to be rainbow
paths. Constraints (44) enforce infection level con-
straints on the sequence of surgery and OR cleaning
arcs. With (45), the domain of variables z;; is de-
fined.

The revenue w;; of the surgery arcs (i,v;) have a
simpler formulation in the SPP graph and the NPP
graph, these are w;; = cif)\glo) and wy = cif/\gn),
respectively. The objective function becomes

11
max E Wit Lit — )\((lj )
(i,v0)EE

(46)
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for the SPP and

18
max g Wit Tt — )\gnj)
(i,00)EE

(47)

for the NPP.

In both the graph of the SPP and the NPP, there
are no OR-cleaning time arcs and path coloring
Constraints (41) and (42) have to be removed from
the model. Even if there is no term that is a func-
tion of the time index ¢ in the formulation of the
surgery arc revenue w;, the proposed graph mod-
eling is effective as it allows considering constraints
on surgery scheduling, i.e., constraints in W.

In the context of column generation, the MR-
RPRC optimization can be terminated as soon as
some feasible paths are found, namely, paths that
for the ORPP, satisfy

Z Wit it — )\§7) >0,
(i,vr)EE

(48)

i.e., columns with a strictly positive reduced cost.
As any feasible schedule can be represented as a
path in the graph, the absence of such a rainbow
path means that there exist no variables with a pos-
itive reduced cost with the given set of dual vari-
ables. A condition similar to (48) can be derived
for the SPP and the MPP from objectives (46)
and (47), respectively.

Proposition 1. The MRRPRC problem is strongly
NP-Hard.

PROOF. We prove the theorem by reducing the U
problem to the MRRPRC problem. Problem U is
a variant of the single-machine scheduling problem
with electricity costs, and it is proven to be strongly
NP-Hard by reduction of the 3-PARTITION prob-
lem; see [9]. Problem U is as follows. Jobs J must
be processed nonpreemptively at a uniform speed
over a time horizon of distinct and contiguous time
periods P = {1,...,|K|}. Let a; and dj be, respec-
tively, the starting time and the duration of time
period k € P. Each time period k£ € P has an elec-
tricity price ¢ per unit of energy. Each job j € J
has processing time p; and a power demand g;. It is
assumed that processing times and the duration of
time periods are given as integers. The relationship
between processing time and power demand is arbi-
trary. We can create an instance of the MRRPRC
problem from any instance of the U problem as fol-
lows. Let djie = [t;t +p; — 1] N [ak, ap + di — 1]



be the processing time of job j that overlaps time
period k if the job starts at time ¢. For each job
j € J, asurgery ¢ with execution time p; = p; and
revenue wi; = C' — ), -5 crqjdjpe is created given
C a constant value such that C' > 3, - crqjdjxe
for every j € J and t € T.

6.2. Rainbow path algorithm

The idea of modeling the problem as the search of
paths over a graph is inspired by [31] where the
Dantzig-Wolfe decomposition combined with col-
umn generation is applied to compute the LP re-
laxation the time-indexed formulation of a single-
machine scheduling problem. The LP relaxation is
given by the optimal linear combination of gener-
ated pseudoschedules (columns). In [31], a pseu-
doschedule is a machine schedule in which a job
can appear more than once. The approach of [31]
has the advantage of polynomial time for computing
pseudoschedules by means of Dijkstra’s algorithm
since the column generation subproblem is modeled
as a shortest path search. As we are interested in
searching in reasonable time problem integer solu-
tions, and not only the LP relaxation, in this work,
we extend the germinal idea of [31] to the search of
true schedules as a feasible selection of true sched-
ules is an integer problem feasible solution. For this
purpose, we introduce colored arcs in the problem
graph at the price of upgraded problem complexity.
The MRRPRC problem is an NP-Hard problem.

The authors of [17] resort to a column generation
algorithm with an NP-Hard pricing problem for
generating true schedules. There, such an NP-Hard
pricing problem is solved through CP to generate
as many optimal columns as possible at the price of
relatively high computation times. We think that
generating true schedules is winning for fast detect-
ing high-quality integer problem solutions and that
dynamic programming, in reason of potential com-
putational efficiency, is more promising than CP
that offers the mere advantage of generating a large
number of optimal columns. Beyond these con-
siderations, some of the dominance and optimality
rules that are developed for improving the label-
correcting algorithm we present in this section are
derived from those developed by [17] for reducing
the number of optimal columns generated at each
call to CP.

Problem (35)-(45) can be decomposed by build-
ing a graph for each SG, which allows removing
coloring Constraints (41) and (42); consequently,
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the algorithm for the paths search is simpler. The
search of the best path through the different SG
graphs can be optimized by means of simple prun-
ing strategies avoiding the full exploration of each
SG graph; details are in Section 6.2.5. The de-
scription in this section is intended for solving the
MRRPRC problem over a single SG graph.

Let a simplified notation be used for describing
the algorithm: let set I,,; € I be denoted (with
an abuse of notation) with its membership set I.
In this section, there is no need to differentiate.
Surgeries provided as input of the RP algorithm are
those that can be scheduled for day j and belong
to SG m.

The algorithm that we developed to solve the
MRRPRC is a label-correcting algorithm. Such an
approach is an extension of the Ford-Bellman al-
gorithm to take into account resource constraints
and is quite common for vehicle routing problems
with resource constraints, e.g., papers [12] and [14]
in the context of column generation. Labels de-
pict paths and indicate the resource consumption
of paths. Labels are generated throughout the al-
gorithm and are sorted out as node attributes. Each
node has its own set of labels that stands for the in-
coming paths that terminate with the node. Nodes
in the graph are iteratively evaluated extending ev-
ery incoming label toward every possible successor
node. The algorithm terminates when no new la-
bels are created. In Section 6.2.2, some dominance
rules to limit the proliferation of labels are intro-
duced. A detailed description of the algorithm is
reported in Section 6.2.5.

The algorithm that we developed implements a
breadth-first search, as do most labeling algorithms.
Such a strategy has the benefit of a quick generation
of a diversified set of paths searching the optimal
one, but it can be longer than depth-first search in
finding a path reaching the destination node. To
overcome this potential weakness of the breadth-
first search, a heuristic algorithm for extending any
new label (path) until the destination node vy is
developed; the heuristic algorithm is described in
Section 6.2.3. The computation of an upper bound
for the best RP is explained in Section 6.2.4. With
upper and lower bounds, pruning strategies can be
implemented to further limit the proliferation of la-
bels.



6.2.1. Label definition and extension func-
tion

Let L be the label standing for a path from the ori-
gin node vy to node v;. A label is defined by the
following attributes: ¢; the terminal node time in-
dex, W, the path revenue, C', the path coloration,
Sar the consumption of each resource a € A and
fr the label infection level. Note that the infection
level is also a resource for labels. The label con-
sumption of resource f is increased or decreased
according to the label extension: any time a path
is extended with a surgery arc or an OR cleaning
arc, the infection level f; of the label is updated
accordingly, i.e., lifted, lowered or kept unchanged.

For the label extension function, with an abuse of
notation, let index ¢ denote not only a color ¢ € I
but also an OR cleaning ¢ € F or an OR idling
as well. A new label is created accordingly with
the label extension function Extend : L — L' The
label function, in the right-hand side, defines the
attribute update operations of the label extension
and the related constraints/conditions. In order,
the constraints/conditions are: the revenue has to
be maximized, the color of the extending arc has
to not already belong to the label or the extending
arc has to be OR cleaning or OR idling, there is no
constraint for the time-index update, the remaining
capacity of resource a € A has to be sufficient and
the arc infection level has to be the greater of or
equal to that of the label if the extending arc is a
surgery arc or, if it is OR cleaning, the infection
level of the label to downgrade f;, has to equal that
foreseen for the OCT(f', f;), i.e., f' = fr. Note
that the label infection level remains unchanged if
the extending arc is an OR-idling arc.

6.2.2. Dominance rules

The optimal solution of the MRRPRC problem can
be found by considering for the label extension only
nondominated labels (paths) and colors. In the fol-
lowing, we define some dominance rules to apply
for limiting the proliferation of labels.

Proposition 2. Given labels L and L' reaching the
same node vy, label L' dominates label L if Wi, >
WL, CL/ Q CL and fL’ S fL'

PRrROOF. Let L” be a complete extension of L to
node vr. The extension of L' to node vy through
the same surgery arcs extending L is feasible since
all colors in Cp» \ Cy, are reachable for L', i.e.,
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(Cor\CL)NCrL =0, frr < fr and S, < S, for
any a € A. The revenue of the extended path from
label L' equals W, +Wp» — W, and therefore, L’
dominates L.

Let w7 = max{w; : t = t,...,T} and wH" =
min{w;; : t = t,...,T} be, respectively, the maxi-
mum and the minimum revenue among arcs of color
i from node v; to node vp.

Proposition 3. Given label L of node v; and the
two feasible extensions L' and L" obtained extend-
ing L with an arc of color i' and i", respectively,
label L' dominates label L" if

min max

TR > e
2. pi + OCT < p;» and

3. dgir + dgir > Qa —Su, Ya € A dyy >
0Adgyr > 0;

1. w

and color il\is thus not optimal for extending label
L. Value OCT is an upper bound on the additional
pre/post OR cleaning time required if an arc of color
i" s substituted with an arc of color i’_given the
infection level fr,. Possible values for OCT > 0 are

reported in Table 2.

PrOOF. Let L* be a complete extension of L” to
node vp. According to condition 3, both colors 7’
and i” cannot appear in the extension of L, and
the extension of L’ to node vy through the same
surgery arcs extending L is thus feasible since all
colors in Cp« \ C» are reachable for L', i.e., (Cp«\
Cr)NCr = 0, and S,z < Sup~ for any a € A.
By condition 2, the surgery arc of color i can be
replaced in label L* with a surgery arc of color ', by
condition 1, the label revenue is improved to at least

Wi« + wi™ — wiie® and therefore, L' dominates
L.

Proposition 4. Given label L of node vy, resource
a € A and color set Iz, C I, such that I,;NCr, = 0
and dg; < Qq — Sar for every i € I,r, given color
i € I,;, and set D; of colors that dominate color
i with respect to conditions 1 and 2, color i is not
optimal for extending label L if it holds that

4. dai + Zi’eDiﬂfQL dai/ > Qa — PalL-

2In the table, OCT(L,i') and OCT(L,i") are the OR
cleaning times required to add a surgery arc, respectively, of
color i’ or i", given the label infection level fr,.



Wi = Wi + wy,

Cr =Cp Ui,

L' = Extend(L) =t =tr + pi,

SaL/ = SaL + dai7

fu = fi,

PROOF. Let L* be a complete extension of L to
node vy that includes color i. Because of condi-
tion 4, L* can never include the entire color set D;,
i.e., D; \ (Cr» N D;) # 0 always. Thus, by con-
dition 2, the surgery arc of color can be replaced
with an arc of a color i’ € D; \ (Cr- N D;) and, by
condition 1, the revenue of label L* is improved to
at least Wr« + wlt™ — w™. Color i is therefore
not optimal for extending label L of node v;.

Proposition 5. Given label L and color set I, C I
such that I; N Cr = 0 and do; < Qg — Sar, Vi €
I, a € A, given color i € Iy, and set D; of colors
that dominate color i with respect to conditions 1
and 2, color i is not optimal for extending label L
if it holds that

5. pi+ Zi’eDime py >T —t.

PROOF. Let L* be a complete extension of L to
node vp that includes color ¢. Because of condi-
tion 5, L* can never include the entire color set D;,
i.e., D; \ (Cp» N D;) # 0 always. Thus, by con-
dition 2, the surgery arc of color can be replaced
with an arc of a color ¢’ € D; \ (Cr- N D;) and, by
condition 1, the revenue of label L* is improved to
at least Wr- + wit™ — wl. Color i is therefore
not optimal for extending label L of node v;.

6.2.3. Heuristic RP and best RP lower
bound computation

Given label L that stands for a path reaching node
vy, the lower bound LB(L) of L is computed by
means of a greedy procedure. The path is itera-
tively extended with feasible surgery arcs as long
as some arcs are selectable or the destination node
vr is not reached. The label extension function is
defined by (49). At each iteration, the most promis-
ing arc for the label extension is selected according

to
>2

Wit ( Wit
max
Di Wiy

arg max (50)

(4,0¢)
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i.e., the marginal revenue of selecting a surgery arc
of color i for time ¢ is pondered with the squared
ratio of selecting a surgery arc of color ¢ for time ¢ to
the optimal time selection of a surgery arc of color
1. This rule for a greedy arc selection provides the
best results among other possible rules we tested
through numerical experiments.

If no surgery arc can be selected, the current label
is extended with idle time arcs to reach vr. Note
that OR cleaning arcs are not considered in this
heuristic.

6.2.4. Best RP upper bound computation

For the upper bound calculation of a label, we de-
veloped a method based on the well-known algo-
rithm for the LP relaxation of the multidimensional
0-1 knapsack problem (MKP), see [13].

Given a label L and its infection level fr, the LP
solution of the MKP is computed for every infection
level from fri = min{f; : ¢ ¢ Cr} to fr. For
every infection level f € [fmin; fr], the knapsack
to fill has a dimension for each resource (surgeon)
a € A with capacity Q, — S,z and a dimension for
the residual distance to reach the destination node
vr with capacity d(ve, vp) = T—t—OCT(L, f). To
fill the multidimensional knapsack, there is an item
for each color i ¢ Cp, : f; > f with volume equal to
the arc length p; and revenue equal to wl;4* with
t' =1+ OCT(L, f) (the maximum arc revenue of
arcs of color ¢ from vy to vr). Let thus UBf(L) be
the LP solution for MKP computed for label L and
infection level f. The upper bound for label L is
finally UB(L) = max{ UBy(L) : f € [fmin: 1] }

6.2.5. Description of the algorithm

Let G, : m € SG be the graph of SG m. Let
also LBy(Gy,) and UBy(Gy,) be, respectively, the
lower bound and the upper bound calculated over
graph G,, given the empty label Ly. Upper bound
LBy(G,,) and and lower bound UBy(G,,) are valid
bounds for the best rainbow path that can be found
over graph G,,. The upper bound UBy(I) =



fi' vS. fL fi’ vSs. fill fi// vSs. fL ocT
fio < fL fir < fir fir < fL OCT(L,i")— OCT(L,i")
fi/ < fL fil < fi// fi// > fL OCT(L, i/) — OCT(Z”7 )
fir > fL fir > fin fir < fL OCT(i/, L) — OCT( L0
fir > fL fir > fin fir > fL OCT(Z’, L) — OCT(’L”7 )
fo<fo fo<fir for=1JL OCT(L,i")
fo>fo  fe>fr  fir=1L OCT(i', L)

Table 2: Value for OCT bound OCT

max{UBy(G,,) : m € SG} is thus a valid upper
bound on the best RP that can be found through
the SG graphs created providing to the algorithm as
input the set of surgeries I. In the following, we de-
scribe the algorithm for searching the best RP over
SG graphs such that UBy(G,,/) > max{LBy(G,,) :
m € SG}; other graphs are pruned.

Let A; be the set of labels of node v; (i.e., the
set of paths reaching and terminating with node
v;) and A be the set of all created labels. Let
UB and LB be the global search upper and lower
bound, respectively. Function FAOE is a set fil-
tering function retaining as output the set of arcs
that are feasible and optimal for extending the la-
bel provided as input. The arc feasibility is defined
by constraints of function (49) and the optimality
by Propositions 3, 4 and 5 defined in Section 6.2.2.
Function Extend is the label extension function as
defined with expression (49), and LBproc is the
heuristic RP algorithm described in Section 6.2.3.
Function EFF is a set filtering function retaining
as output the set of nondominated labels passed as
input.

The RP algorithm evaluates graph nodes accord-
ing to their topological order, i.e., from the source
node vy to the sink node vr. Each node v; is
evaluated extending every nondominated label that
reaches the node with any feasible outgoing arc. La-
bels with an upper bound lower than the best found
RP that reaches the sink node v are pruned. The
algorithm returns the set of nondominated RPs that
start from node vy, reach node vy, and cannot be
further extended. Algorithm 1 provides the pseu-
docode of the RP algorithm.

In the context of column generation, the RP algo-
rithm can be terminated early, as soon as the size
|Ar| of rainbow paths reaches a given value. We
found to explore all the SG graphs with a strictly
positive upper bound UBy(G,,) > 0 (those that
may generate some columns with a positive reduced
cost) more efficient; this is even the case if the up-
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Algorithm 1 Rainbow Path algorithm

1: procedure RP()

2: LB + —;

3 UB < +o0;

4: Ay = {0} Vv, € V;

5: Ao = {Lo};

6.

7 forv, e V:t=0,..,T do

8 A+ < set of v, labels;

9: for all L € A; do
10: if UB(L) > LB then
11: E} + FAOE(L, E,,);
12: for all (i,v:) € Ef do
13: L' + Extend((i,v:), L);
14: L" + LBproc(L');
15: LB + max{LB; Wpn};
16: Ay EFF(Ay UL);
17: A EFF(AT U L”);
18: At — At \ {L},
19: UB + max{UB(L) : L € A};
20:
21: return {L € Ay : W > LB};

per bound UBy(G,,) is dominated by an already
found lower bound LBy(Gyy) : m' # m; the col-
umn generation is otherwise longer. In Algorithm 1,
we omit implementation details about the column
generation condition for termination and the search
through the SG graphs to facilitate pseudocode
clarity and readability as much as possible.

7. Computational Results

In this section, we validate through a set of com-
putational experiments the effectiveness of the algo-
rithms that we developed, namely, the basic column
generation, the column generation with Benders’
cuts and the branch-and-price-and-cut. We test the
algorithms with a set of instances that we generated
based on data from the CHUSE (University Hospi-



tal of Saint-Etienne, France). The instance genera-
tion procedure is described in Section 7.1. We also
test the algorithms with the instances used in [17].
The CHUSE database tracks the surgical activity
of several years.

Through the experiments, we first show the ef-
ficiency of the label-correcting algorithm used for
solving the column generation pricing problems; the
algorithm is described in Section 6.2. The effec-
tiveness of the Benders’ cutting procedure devel-
oped for tightening the LP relaxation of the prob-
lem computed by column generation is then eval-
uated, and the quality of the branch-and-price-
and-cut algorithm for the search of integer prob-
lem solutions is compared with results of [17].
We also benchmarked our branch-and-price-and-
cut with the results obtained with a commercial
IP solver (CLPEX).

All the algorithms are coded in C++ and resort
to the IBM ILOG CPLEX APIs (version 12.8) for
LP and ILP routines. All the experiments are run
with a processor Intel Xeon E7-8890 v3 at 2.50
GHz.

7.1. Instances

In all the instances that we generated, the plan-
ning horizon is five days (a regular work week) and
duration and times are expressed in time slots of
5 minutes. In the CHUSE database, the surgery
duration, the surgical specialty and the number of
nurses that assisted a surgery are known for ev-
ery surgery. The CHUSE database records do not
provide all the problem data; therefore, we com-
plemented database records with randomly gener-
ated data. Even though not tracked in the CHUSE
database, missing problem data are available infor-
mation at the problem decision epoch.

For every surgery, the release date is drawn uni-
formly in the interval [0; |J| — 1] and the due date is
drawn uniformly in the interval [ReleaseDate; 14].
This rule follows the suggestion of [17] and [10], the
authors of the two papers generate their instances
drawing surgery due dates uniformly in the interval
[1;14]. Two infection types are considered, infec-
tious and noninfectious; the infectious type is ran-
domly assigned to surgeries with probability % A
surgery can be normal or expensive. The average
reimbursement is estimated, in France, at €3,375.00
for normal surgeries and at €7,830.00 for expen-
sive surgeries. The expensive type is randomly as-
signed to surgeries with probability equal to a ratio
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we arbitrarily defined for every surgical specialty.
The surgery reimbursement is drawn from a nor-
mal distribution with a mean equal to the reim-
bursement average value for the surgery type and
standard deviation equal to % of the mean (because
the standard deviation is unknown); values lower
than €500.00 and greater than €24,000.00 are dis-
carded; we choose the normal distribution and the
limit values for the surgery reimbursement arbitrar-
ily. Values of the ratio of expensive surgeries are re-
ported in Table 3 for each surgical specialty, column
e.s. ratio. In Table 3, we also reported the surgi-
cal group of the specialty (SG), the average surgery
duration for the specialty (ave.), the percentage of
surgeries with a duration lower than 60 minutes (<
60), lower than 90 minutes (< 90) and lower than
150 minutes (< 150), and the number of surgeries
in the database for each surgical specialty.

Inputs for the instance generation are as follows:
the desired number of surgeries, the desired number
of surgeons, the selected SGs (then the surgical spe-
cialties), and the CHUSE database. It holds that
the number of surgeons is always greater than the
number of surgical specialties related to the selected
SGs.

To generate an instance, a surgeon can be as-
signed to one and only one surgical specialty, one
surgeon is assigned to every surgical specialty un-
til all specialties have one surgeon assigned, and
the remaining surgeons are then assigned to a spe-
cialty randomly selected. The number of days that
a surgeon is available in the planning horizon is
drawn from a triangular distribution with min. =1,
maz. =5 and mode = 1, the weekdays (from Mon-
day to Friday) when the surgeon is available are
randomly selected, and the surgeon maximum daily
time is drawn for every selected day from a trian-
gular distribution with min. = 4, maz. = 8 and
mode = 4. Parameters of the two triangular dis-
tributions are estimated using the data available in
the CHUSE database.

Surgeries are selected by iterating over surgeons.
At each iteration, a given number of surgeries be-
longing to the surgeon specialty are randomly se-
lected in the CHUSE database; this selection of
surgeries is repeated until the desired number of
surgeries belong to the instance. The number of
surgeries to select at each iteration is calculated,
for every surgical specialty, as 1 plus the rounding
of the ratio between the average surgery duration
multiplied by a scalar greater than 1 and the av-
erage surgery duration of the given specialty. This



SG specialty e.s. ratio Duration surgeries
ave. <60 <90 <150
OM maxillofacial 65.00 101.4 547 46.42 88.83 5937
oM otolaryngology 15.00 103.9 4.86 41.29 88.31 10372
NR Neurosurgery 85.00 134.8 0.72 1576  65.13 9525
ORTR bone 50.00 1125 261 34.02 81.73 18901
(A% cardiovascular 75.00 133.8 0.87 20.85 64.74 7156
INF pediatric 50.00 103.5 4.81 44.12 87.22 11326
DIG alimentary canal 20.00 121.7 235 29.25 73.78 8185
GYURA  urology 20.00 97.6  6.16 50.58 91.11 6847
GYURA gynecology 20.00 113.0 449 3548 80.20 6973
GTPOT oncological pneumology 40.00 83.9 899 62.23 99.32 1480
GTPOT  general and thoracic surgery 45.00 1174 280 30.76 77.93 12692
AMB daily 5.00 86.6 8.89 59.56 98.41 7275
OPT ophtalmonlogy 15.00 92.7 6.45 50.86 96.42 7292

Table 3: Expensive surgery ratio for specialties

value is larger for surgical specialties with a preva-
lence of short surgeries and smaller for specialties
with a prevalence of long surgeries; the scope of
this value is to allow the generation of more bal-
anced instances in terms of total surgery time of
the different surgical specialties.

The number of nurses belonging to each SG m is
computed as

max {m, max{n; : i € Im}} (51)
where T, is the regular daily work time for nurses
belonging to SG m. One day off, randomly selected
in the planning horizon, is assigned to every nurse.
For the other days, the cut off time of the regular
work time is calculated as the OT opening time
(conventionally 0) plus T},,. The value of T, of 480
minutes is set for every m € SG.

We generated three instance sets, denoted with
capital letters S, M and H. For instances of set S, the
selected surgeries belong to two SGs, OM and OPT,
surgery durations are in the interval [40 minutes,
150 minutes] and the number of surgeries belonging
to an instance is 60, 80 or 100; three surgeons and
two equivalent ORs are available for surgery. For
instances of set M, the selected surgeries belong to
four SGs, OM, OPT, NR and INF, surgery dura-
tions are in the interval [40 minutes, 240 minutes]
and the number of surgeries is from 60, 80 or 100;
nine surgeons and six equivalent ORs are available
for surgery. For instances of set H, surgeries be-
long to ten SGs (all considered SGs) and there are
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160 surgeries with durations in the interval [40 min-
utes, 240 minutes]; twenty-four surgeons and twelve
equivalent ORs are available for surgery. We gen-
erated five instances for each problem setting in S
and M, and ten instances for set H.

The selection of SGs of sets S and M is driven
by the purpose of designing a stress test for the
developed algorithms, given that, as reported in
Section 7.3, instances with only short surgeries are
more difficult to solve. We verified with preliminary
numerical experiments that other possible (equiva-
lent) selections of SGs give similar results and lead
to the same conclusions. For instances in S and M,
we generated instances with an OR capacity lower
than the expected total surgery time calculated as
the product of the average surgery duration with
the number of surgeries. The number of surgeons
is chosen to obtain a tight total surgeon capacity
with respect to the OR capacity. The 65 instances
used in [17] are divided into three sets — A, B and
C — reflecting different situations. For all these in-
stance sets, there are no nurses, the revenue of each
surgery is equal to the surgery duration and the OT
management policy is open block, no SGs have to
be assigned to ORs (there is virtually only one SG).
In set A, surgeons are the more binding resources
for scheduling the surgeries, and instances count
from 40 up to 120 surgeries with only medium-long
durations from 120 minutes up to 240 minutes. In-
stance set B differs from set A only with respect to
the number of ORs open each day; in this set of
instances, the OR capacity is also binding. In set



C, both surgeons and ORs are binding resources,
the number of surgeries is from 60 up to 100 and
surgery durations are in the interval [40 minutes,
150 minutes]. For further details, see [17].

7.2. Parameters

In the experiments we ran, we put a time limit of
3 hours for the total time of each run and a time
limit of 2 minutes for the LB computing (solving
the restricted master problem with integer vari-
ables). The target number of columns to add to
the RMP at each iteration is defined by a function
of the number of surgeries in the instance. This
function is max{4; 27905111} and, for the values 40,
60, 80, 100, 120 and 160 of |I|, produces the series
{32,16,8,4,4,4}. All the experiments are run as
single-thread processes; there is no parallelism for
both our code and calls to the commercial solver.

7.3. Results

In this section, we report numerical results for the
experiments we ran for the 40 instances that we gen-
erated and the 65 instances by [17]. In all the tables
we present, the results for instances of sets A, B and
C are reported as average values. This is not only
because the number of instances is very large but
also because it provides a quick comparison with
the results reported in [17], that are reported as
average values.

7.3.1. Instance benchmarking: constructive
heuristic algorithm

To test the effective hardness of evaluated instances,
we developed a simple constructive heuristic algo-
rithm. The heuristic algorithm keeps a priority
queue of unscheduled surgeries, the surgery prior-
ity is assigned according to the early due date rule
and, for equal due dates, surgeries with higher rev-
enue have higher priority. Days in the planning
horizon are evaluated in a rolling horizon fashion,
and surgeries are scheduled greedily by processing
the priority queue. Given the surgery ahead of
the priority queue, the first starting time that fits
the required capacity of the assigned surgeon, OR
and required nurses is selected for scheduling the
surgery, the concerned resource capacity is blocked
from the surgery starting time to the surgery com-
pletion time and the surgery is removed from the
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queue. A surgery cannot be scheduled before its
release date or after its due date.

The solution quality of the simple heuristic algo-
rithm that we developed to benchmark the hardness
of the instances is by far inferior to that of the exact
optimization algorithms we devised. The heuristic
dramatically fails to find a feasible solution that
schedules the whole set of mandatory surgeries for
many instances; this happens for 80% of instances
of set S and for 100% of instances of all the other
sets, i.e., sets M, H, A, B and C. For instances of
set S, the average gap of the heuristic solution to
the best known integer solution is 43%, and the
minimum and the maximum are 25% and 58%, re-
spectively. For instances of set M, the average gap is
22%, the minimum 9% and the maximum 32%. For
instances of set H, the average gap is 31%, the min-
imum 20% and the maximum 44%. For instances
of set A, B and C, respectively, the average gap is
12%, 10% and 3%, the maximum 20%, 19% and
13% and the minimum gap is 6% for set A and 0%
for both sets B and C.

7.3.2. Basic CG

In Table 4, the basic CG algorithm is evaluated. We
reported the LP relaxation computed by CG (rev.
LP), the solution of the ORRMP with integer col-
umn variables (rev. IP) and the percentage gap of
the TP solution with respect to the LP relaxation
(gap). We also reported the time of the basic CG
algorithm (time LP), the time spent solving the
ORRMP (time MP), the time spent for the CG,
i.e., for solving the pricing problems, (time CG)
and the time spent solving the ORRMP with inte-
ger column variables (time IP). We finally report
the iteration count of the basic CG algorithm (iter.
CG) and the number of columns added to the OR-
RMP (columns). For instance sets A, B and C, in
column Rev. IP, we reported between parenthesis
the number of instances for which an integer solu-
tion is found by the algorithm; each row shows the
average value for the given set.

Table 4 provides evidence that, for instances with
only short surgeries (set S), most of the computa-
tion time is spent for the CG. This CG time de-
creases for instances with also longer surgeries, sets
M and H. For set M, the time spent for the OR-
RMP solution and the CG is relatively balanced
(the same order of magnitude). For set H, the time
spent for the CG is significantly smaller than the
time spent solving the ORRMP, in most of the cases



Instance rev. rev. gap time time time time iter.  columns

LP 1P LP MP CG 1P CG
(%) [sec.] [sec.] [sec.]  [sec.]
S60-1 117618 113604 3.41 19.2 4.5 14.4 0.1 95 752
S60-2 159934 149562 6.49 94.2 58.7 35.6 0.9 896 3141
S60-3 149045 145260 2.54 299.7 36.8 262.9 0.3 309 1817
S60-4 161093 161093 0.00 24.9 2.9 21.7 0.0 108 591
S60-5 111489 104192 6.55 2.1 0.5 1.3 0.0 31 214
S80-1 171743 170226 0.88 238.7 122.3 116.4 1.0 1355 3072
S80-2 145758 143487 1.56 140.5 19.4 121.1 0.1 306 1227
S80-3 136392 129849 4.80 35.9 13.6 22.4 0.2 318 956
S80-4 138825 121656  12.37 21.1 3.7 17.3 0.1 108 547
S80-5 160769 157079 2.30  1599.2 166.4  1432.7 1.3 803 2748
S100-1 148556 132610 10.73 270.3 21.8 248.5 0.1 727 1192
S100-2 154182 152521 1.08 502.0 24.8 477.2 0.1 493 960
S100-3 75948 73556 3.15 10.8 1.3 9.5 0.0 176 216
S100-4 168372 164986 2.01 897.0 130.6 766.4 0.2 1598 2183
S100-5 169078 160515 5.06 477.6 10.7 466.8 0.1 402 721
M60-1 179959 179489 0.26 5.4 2.1 3.3 0.1 91 413
M60-2 224376 213885 4.68 58.9 39.2 19.7 2.8 401 1561
M60-3 181254 180460 0.44 4.3 1.3 2.9 0.0 46 262
M60-4 220481 211937 3.88 37.5 21.7 15.7 0.5 316 1315
M60-5 227003 209209 7.84 9.4 3.6 5.8 0.0 131 462
MS80-1 257464 235575 8.50 19.6 10.7 8.9 0.1 161 803
M80-2 206327 187989 8.89 112.8 42.2 70.6 1.1 771 1551
M80-3 236646 227641 3.81 144.7 67.4 77.3 1.0 1016 2001
MS80-4 284881 280529 1.53 64.0 30.7 33.3 0.4 646 1334
M80-5 179000 145472 18.73 471.7 258.2 213.5 9.0 1126 3647
M100-1 296298 280485 5.34 481.4 266.3 215.0 1.5 1591 2957
M100-2 292928 277942 5.12 90.8 43.8 47.1 0.4 1056 1313
M100-3 263210 242692 7.80 151.9 84.3 67.6 0.6 946 1583
M100-4 216244 193964  10.30 212.0 130.3 81.7 0.7 1181 1848
M100-5 281826 268728 4.65 131.5 73.4 58.1 0.2 906 1375
H160-1 630674 593505 5.89 1186.2 1112.9 73.4 23.5 406 11286
H160-2 605497 558853 7.70 326.6 254.7 71.9 9.6 161 7749
H160-3 588978 542703 7.86 1391.6 991.7 399.9 94.3 2001 4867
H160-4 711602 667348 6.22 404.7 342.9 61.8 4.3 246 7597
H160-5 627127 577052 7.98 298.6 222.1 76.5 3.3 196 4343
H160-6 529833 496900 6.22 712.2 414.8 297.4  109.2 86 12255
H160-7 499528 459498 8.01 68.6 51.7 16.9 0.4 76 1514
H160-8 601766 574734 4.49 54.2 39.0 15.2 0.5 76 1133
H160-9 549814 537190 2.30 246.3 195.9 50.3 2.8 136 4554
H160-10 525786 506039 3.76 148.8 119.2 29.6 2.0 181 4405
Set
A40 1431 1394(5) 2.59 3.4 1.8 1.2 0.3 47 641
A60 2020 1859(5) 7.96 24.9 18.3 6.6 37.3 143 1170
A80 2307  2104(5) 8.80 334.7 203.2 131.5 22.2 761 2605
A100 2401 2103(5) 1241 658.5 372.8 285.7 68.8 1231 2820
A120 2423  2161(4) 11.03 521.3 261.5 259.8 18.2 948 2314
B40 1371 1355(5) 1.12 6.2 3.7 2.4 5.4 37 762
B60 1866  1824(5) 2.28 61.4 22.0 39.4 14.2 131 1274
B80 2205  2096(5) 4.92 183.6 105.6 78.0 56.6 344 1941
B100 2416  2176(5) 9.87 1532.8 673.3 859.6 108.6 1956 3788
B120 2480 2172(5) 12.40 1630.5 568.4 1062.1 108.1 1657 3526
C60 576 500(5) 13.19 39.1 16.8 22.4 2.8 74 1136
C80 792 35.0 17.8 17.2 0.2 102 780
C100 978 13.4 8.5 5.0 0.1 123 576
Table 4: Evaluation of the basic CG Algorithm

smaller by one order of magnitude; this is because The same relation between the time of the ORRMP

of the longer CG convergence due to the large num- solution and the CG time is evidenced through the

ber of surgeries and ORs in the instances of set H. results for sets A, B and C.
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The average computation time for a call to CG
can be calculated, for each instance, by dividing the
time CG by iter. CG. As expected, the shorter the
surgeries are, the longer this average time for a CG
call is. The comparison between set S and M is
emblematic. The average of this average time for
a call to CG is 0.45 seconds for instances of set S
and 0.07 seconds for instances of set M. The maxi-
mum average time for a call to CG is, respectively,
1.78 seconds for instances of set S, 0.19 seconds for
instances of set M.

The gap of the IP solution with the LP relax-
ation of the basic CG algorithm seems not to be in-
fluenced by the instance characteristics of size and
surgery durations for the instances that we gener-
ated: the gap is in the range of 0.0% and 18.7%.
For sets of instances by [17] — A, B and C — the
gap is in the range of 0.3% and 15.5%.

The number of columns generated is quite low for
every set of instances. It is reasonably larger for set
H, with many surgeries and many ORs available. It
is also larger for instances of sets A, B and C, as
expected, because of the open block strategy.

7.3.3. CG with Benders cuts

In Table 5, the CG with the Benders’ cuts algo-
rithm is evaluated. As in Table 4, we report values
of the LP relaxation, of the integer solution and of
the relative gap: (rev. LP), (rev. IP) and (gap),
respectively. We report the total time of the CG-
with-Benders’-cuts algorithm spent for computing
the LP relaxation (t#me LP); this time includes the
time spent solving the SSP (time SSP) and the NSP
(time NSP). We finally report the total number of
columns added to ORRMP (columns), the number
of cuts generated by solving the SSP and the NSP,
(cuts SSP) and (cuts NSP), respectively. As in Ta-
ble 4, for instance sets A, B and C, in column Rev.
IP, we report between parenthesis the number of in-
stances for which an integer solution has been found
by the algorithm.

The results in Table 5 show the efficacy of Ben-
ders’ cuts in closing the IP optimality gap by im-
proving the quality of the LP relaxation. For most
of the small instances, sets S and M, the optimality
of the IP solution is proven by applying the Ben-
ders’ cutting procedure. For large instances (set
H), the quality of the LP relaxation is significantly
improved by Benders’ cuts, but there are no IP so-
lutions with proven optimality.

Although a remarkable improvement of the LP
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relaxation is attained, between 0% and 14% with
an average of 3%, the Benders’ cutting procedure
requires a computation time that is not negligible.
For instances of set S, the average time spent for
solving the SSP and the NSP is, respectively, 16%
and 13% of the total CG-with-Benders’-cuts time,
6% and 7% for instances of set M, respectively, and
2% (for both SSP and NSP) for instances of set H.

7.3.4. Branch-and-price-and-cut

Table 6 reports results for the IP commercial solver
(CPLEX) and the branch-and-price-and-cut algo-
rithm; the table is divided into two subtables, (IP
Solver) and (Branch-and-Price-and-Cut). We re-
ported, for both the IP solver and the B&P&Cut
algorithm, the LP relaxation and the IP solution
that result at the end of the IP optimization, (rev.
LP) and (rev. IP), respectively. For the IP solver,
we reported the percentage gap (gap) of the IP so-
lution with respect to the LP relaxation and the
optimization time (time IP). For the B&P&Cut al-
gorithm, we reported the percentage gap (gap), the
optimization time at which the gap is reached (time
gap) and the total optimization time (total time)
that also includes the total time spent solving the
ORRMP with integer column variables (time IP).
For instance of sets A, B and C, in the column Rev.
1P, for both the IP solver and the branch-and-price-
and-cut, we reported between parenthesis the num-
ber of instances for which an integer solution has
been found by the algorithm.

Table 6 reveals that the branch-and-price-and-
cut algorithm that we developed outperforms the
IP commercial solver. Our algorithm is capable of
finding the same or a better integer solution and
stops the optimization because of the tight prob-
lem bounding provided by the computed LP relax-
ation. The IP commercial solver fails to identify an
integer solution for large instances — set H, A120,
B100 and B120 — and its performance decreases
as the instance size (number of surgeries) increases,
i.e., very poor quality integer solutions and opti-
mality gaps significantly larger than those found by
the branch-and-price-and-cut. Computation times
for the IP commercial solver are of the same order
of magnitude of the branch-and-price-and-cut over
instances of sets S and M. Computation times of
the IP commercial solver grow significantly as the
number of ORs available for the surgery scheduling
increases.

Most of the improvement of the LP relaxation is



Instance rev. rev. gap time time time time columns cuts cuts

LP IP LP SSP NSP IP SSP  NSP
(%) [sec.] [sec.] [sec.] [sec.]

S60-1 114168 114168 0.00 46.6 10.8 3.8 0.1 762 8 0
S60-2 149562 149562 0.00 238.0 2.5 6.0 1.7 4328 4 4
S60-3 147640 145260 1.61 377.2 26.7 15.2 0.4 1859 4 0
S60-4 161093 161093 0.00 27.6 1.3 1.3 0.0 591 0 0
S60-5 104192 104192 0.00 50.9 19.9 21.0 0.0 225 12 9
S80-1 170226 170226 0.00 473.4 23.2 18.2 2.1 3801 3 1
S80-2 143487 143487 0.00 372.4 11.6 8.0 0.4 1513 3 3
S80-3 129849 129849 0.00 240.2 35.9 166.4 0.2 957 2 0
S80-4 121656 121656 0.00 42.8 12.0 9.0 0.1 547 1 0
S80-5 158740 157079 1.05 1844.4 27.6 2.3 2.4 3306 10 3
S100-1 132610 132610 0.00 815.2 3754 88.1 0.2 1228 7 1
S100-2 152521 152521 0.00 1381.8 246.4 218.6 0.3 1057 22 21
S100-3 73613 73556 0.08 44.4 12.5 4.5 0.1 262 7 0
S100-4 164986 164986 0.00 1712.2 68.1 54.4 0.4 2342 4 4
S100-5 160515 160515 0.00 5979 116.6 11.7 0.1 723 1 1
M60-1 179489 179489 0.00 39.5 9.4 3.0 0.1 419 28 0
M60-2 215312 213885 0.66 191.5 2.6 3.8 13.3 1854 16 13
M60-3 180460 180460 0.00 8.9 1.2 1.6 0.0 271 2 0
M60-4 211937 211937 0.00 56.1 0.7 1.1 0.8 1813 2 1
M60-5 209209 209209 0.00 19.7 2.4 2.3 0.1 469 4 3
MS80-1 241332 235830 2.28 52.3 9.8 4.3 0.1 854 8 2
M80-3 190041 187989 1.08 229.1 8.5 10.6 2.4 1944 6 5
M80-3 227641 227641 0.00 258.3 10.8 13.9 1.3 2117 14 5
MS80-4 280529 280529 0.00 93.2 1.7 3.4 0.6 1632 4 5
M80-5 154405 145472 5.79 679.3 3.2 17.3 3.3 3957 3 5
M100-1 280485 280485 0.00 1214.9 8.1 39.1 2.9 3802 4 5
M100-2 277942 277942 0.00 162.5 8.2 29.5 0.6 1335 9 8
M100-3 243422 242692 0.30 208.8 3.7 10.0 0.9 1738 3 3
M100-4 193964 193964 0.00 200.3 3.9 5.4 0.6 1911 7 4
M100-5 268728 268728 0.00 192.1 3.3 6.1 0.4 1706 7 6

H160-1 605472 593505 1.98 3445.0 13.1 24.0 44.9 12653 15 13
H160-2 589814 560313 5.00 2617.7 17.5 32.3 36.3 11493 18 16

H160-3 549797 542703 1.29 2848.4 22.1 55.9 47.4 5031 29 28
H160-4 677788 669817 1.18 3151.8 16.8 33.5 55.4 11147 21 19
H160-5 605431 577052 4.69 1175.1 19.6 38.0 12.9 6725 12 14
H160-6 501733 494598 1.42 10635.6 27.5 28.1 110.1 12329 55 36
H160-7 483005 459498 4.87 637.9 32.8 28.9 1.0 2115 36 8
H160-8 586054 574734 1.93 121.4 10.8 7.2 0.6 1160 9 5
H160-9 539154 537190 0.36 10880.5 71.8 71.9 40.2 7894 105 29
H160-10 521027 506039 2.88 1678.3 14.5 14.0 36.6 7183 25 20
Set

A40 1407 1394(5) 0.94 4.9 0.6 0.0 0.5 642 1 -
A60 1964  1876(5) 4.43 48.9 3.3 0.0 42.3 1321 4 -
A80 2198  2113(5) 3.82 660.9 18.4 0.0 53.6 3420 19 -
A100 2321  2180(5) 6.07 2632.5 33.5 0.0 109.1 5227 24 -
A120 2364  2201(4) 7.98 3377.2 75.5 0.0 67.5 5539 31 -
B40 1365  1355(5) 0.68 9.1 0.6 0.0 4.7 776 2 -
B60 1859  1824(5) 1.91 90.3 2.9 0.0 25.2 1323 4 -
B80 2143 2093(5) 2.31 574.1 21.7 0.0 76.5 2859 19 -
B100 2389  2222(5) 6.93 6101.5 58.3 0.0 1175 6666 29 -
B120 2399  2223(5) 7.33 9937.2 112.5 0.0 1179 8010 60 -
C60 576 500(5) 13.19 40.6 0.9 0.0 2.8 1136 0 -
C80 792 36.3 1.0 0.0 0.2 780 0 -
C100 978 16.2 1.0 0.0 0.1 576 0 -

Table 5: Evaluation of the Benders’ cutting procedure

given by the Benders’ cuts added at the root node gap in both the directions, i.e., tightening the LP
(see Table 5), but the branch-and-price-and-cut is relaxation and improving the IP solution quality.
even effective for further closing the IP optimality Such further gap closing for the LP relaxation is not
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IP Solver Branch-and-Price-and-Cut

Instance rev. rev. gap time rev. rev. gap time time time
LP 1P P LP P gap total 1P

(%) [sec.] (%) [sec.] [sec.] [sec.]

S60-1 114168 114168 0.00 23.3 114168 114168 0.00 46.4 46.4 0.1
S60-2 149562 149562 0.00 57.8 149562 149562 0.00 240.3 240.3 1.7
S60-3 145260 145260 0.00 441.4 145260 145260 0.00 431.7 431.7 0.9
S60-4 161093 161093 0.00 27.2 161093 161093 0.00 27.8 27.8 0.0
S60-5 104192 104192 0.00 379 104192 104192 0.00 62.7 62.7 0.0
S80-1 170226 170226 0.00 68.9 170226 170226 0.00 471.1 471.1 2.1
S80-2 143490 143487 0.00 309.7 143487 143487 0.00 296.3 296.3 0.4
S80-3 129849 129849 0.00 11.4 129849 129849 0.00 240.6 240.6 0.2
S80-4 121656 121656 0.00 209.7 121656 121656 0.00 41.9 41.9 0.1
S80-5 158182 157079 0.70  10800.1 157079 157079 0.00 3842.0 3842.0 11.2
S100-1 132610 132610 0.00 200.9 132610 132610 0.00 660.4 660.4 0.2
S100-2 152521 152521 0.00 456.1 152521 152521 0.00 1383.3 1383.3 0.3
S100-3 73559 73556 0.00 62.3 73556 73556 0.00 69.0 69.0 0.2
S100-4 164986 164986 0.00 203.8 164986 164986 0.00 1709.4 1709.4 0.4
S100-5 160515 160515 0.00 175.8 160515 160515 0.00 597.2 597.2 0.1
M60-1 179489 179489 0.00 74.4 179489 179489 0.00 31.7 31.7 0.1
M60-2 213885 213885 0.00 550.6 213885 213885 0.00 215.9 215.9 15.5
M60-3 180460 180460 0.00 94.0 180460 180460 0.00 9.0 9.0 0.0
M60-4 211937 211937 0.00 225.7 211937 211937 0.00 72.3 72.3 1.1
M60-5 209209 209209 0.00 74.8 209209 209209 0.00 19.9 19.9 0.0
MS80-1 235830 235830 0.00 137.2 235830 235830 0.00 61.0 61.0 0.3
MS80-2 188002 187989 0.01 9536.3 187989 187989 0.00 209.5 209.5 3.2
MS80-3 227641 227641 0.00 728.6 227641 227641 0.00 198.6 198.6 1.0
MS80-4 280529 280529 0.00 133.7 280529 280529 0.00 121.7 121.7 0.7
MS80-5 154405 154405 0.00 3657.1 154405 154405 0.00 878.9 878.9 17.3
M100-1 280485 280485 0.00 557.8 280485 280485 0.00 1259.3 1259.3 2.9
M100-2 277942 277942 0.00 1761.1 277942 277942 0.00 162.5 162.5 0.6
M100-3 242692 242692 0.00 666.9 242692 242692 0.00 234.7 234.7 2.5
M100-4 193964 193964 0.00 986.6 193964 193964 0.00 276.6 276.6 0.7
M100-5 268728 268728 0.00 453.9 268728 268728 0.00 242.7 242.7 0.5
H160-1 605433 593505 1.97 4037.1  10855.5 1155.8
H160-2 588932 560313 4.86 10748.2 12168.7 372.7
H160-3 548329 542703 1.03 4320.8 10815.7  3032.2
H160-4 677788 669817 1.18 3161.3 108224 1952.3
H160-5 605431 577052 4.69 1117.4 10831.5 1735.4
H160-6 501733 494598 1.42 10787.2 11093.4 235.7
H160-7 483005 459498 4.87 386.9 10813.6 509.9
H160-8 586054 583984 0.35 9160.9 10811.8 554.8
H160-9 539158 537190 0.37 10861.5 10861.5 40.5
H160-10 520908 509640 2.16 3569.8 10847.0 2385.8
A40 1403 1403(5) 0.00 692.8 1403 1403(5) 0.00 102.7 102.7 18.9
A60 1965  1960(5) 0.25 6559.3 1962 1944(5) 0.89 7859.6  10807.2  7740.2
A80 2241  1539(5) 31.34  12709.7 2196  2135(5) 2.73 5731.4 10823.3 5737.3
A100 2287 1339(1) 41.45 35356.5 2321 2196(5) 5.34 7181.0 10902.5 4937.0
A120 2364  2207(5) 6.61 7874.9 10997.1 2981.1
B40 1364  1361(5) 0.23 4682.8 1361 1360(5) 0.07 477.9 4698.4 762.7
B60 1849  1823(5) 1.37 8273.8 1854  1835(5) 1.00 5245.3 10809.3 4959.4
B&0 2191 1376(5) 37.23  16244.4 2142 2121(5) 0.96 38779 10837.8 7233.4
B100 2387  2247(5) 5.83 8530.6  10925.6  2403.9
B120 2399  2242(5) 6.54 11129.5 11205.2 453.7
C60 576 576(5) 0.00 3190.6 576 574(5) 0.31 6592.1 9570.6 3371.4
C80 792 760(5) 4.02 11987.1 792 686(5) 13.34 4400.6  12217.4  2787.8
C100 978 360(5) 63.16  19969.2 977 733(4) 24.31 7585.7 10803.8 1333.4

Table 6: Evaluation of the Branch-and-Price-and-Cut Algorithm

greater than the 2.28% over all the sets of instances, branch-and-price-and-cut algorithm, but only av-
and for the integer solution, it can be even 13%. erage values for each set of instances. These are
as follows: the number of columns added to the

In Table 7, we report some further details of the W
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ORRMP (columns), the iteration count (iter.), the
number of created nodes (nodes) and the number
of closed nodes (nodes closed).

Set columns  cuts cuts iter. nodes nodes

SSP  NSP closed
S60 1553 6 3 1 1 1
S80 2114 5 2 2 2 1
S100 1122 9 5 1 1 1
M60 965 10 3 1 1 1
M80 2181 7 4 3 3 1
M100 2098 6 5 1 1 1
H160 11502 13 8 117 86 0
A40 739 1 - 68 131 1
A60 2189 11 - 637 1245 0
A80 3767 24 346 674 0
A100 5734 49 - 85 166 0
A120 5816 51 - 110 211 0
B40 9773 4 - 607 1045 2
B60 2588 42 - 799 1563 0
B80 3339 45 - 347 681 0
B100 7058 43 - 24 48 0
B120 8037 62 - 5 10 0
C60 4231 0 - 239 463 1
C80 4372 0 - 677 1353 0
C100 2957 0 - 1186 2367 0

Table 7: Evaluation of the Branch-and-Price Algorithm

7.3.5. Assessing the value of the hybrid open
block strategy for surgeons

It may be argued that the OT policy scheduling
that does not consider an OR-to-surgeon assign-
ment on a daily basis (at least) is not so common
and unreasonably upgrades the problem complex-
ity; note that we define the open block strategy as
“hybrid” because, in our model, surgeons are con-
strained to use only ORs assigned to their SG. To
step forward and better explain why we considered
this OT scheduling policy, we remark that: (1) the
policy is adopted by CHU hospital, (2) the policy
is considered in [17] and (3) the numerical experi-
ments we ran show that there is a significant gain
in allowing more than one surgeon to use the same
OR on the same day and for surgeons to be able to
use more than one OR on the same day.

By enforcing OR-to-surgeon assignment con-
straints, we revealed the following. For instances
of set S, one instance of fifteen becomes infeasi-
ble, for six instances the OR-to-surgeon assignment
has no impact (the optimal solution value does not
change) and the remaining eight instances lose on
average 2.91% of the revenue, where the minimum
and the maximum loss of revenue are 0.49% and
9.04%, respectively. For instances of set M, one in-
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stance of fifteen becomes infeasible, ten instances
are not impacted and the remaining four instances
lose on average 4.17%, where the minimum and the
maximum loss of revenue are 1.52% and 6.21%, re-
spectively. For instances of set H, three instances of
ten become infeasible and for four instances the loss
of revenue is on average the 1.25%, the minimum
and the maximum losses are 0.34% and 2.39%, re-
spectively. For instances of set A, there are nine
instances of twenty-five that become infeasible and
fifteen instances lose on average 3.38% of the rev-
enue, where the minimum and the maximum losses
of revenue are 0.07% and 8.13%, respectively. For
instances of set B, fifteen instances over twenty-five
become infeasible and ten instances lose on aver-
age the 17.74% of the revenue, where the minimum
and the maximum losses of revenue are 10.08% and
24.95%, respectively. All the instances of set C be-
come infeasible.

Note that for one instance of set A and three
instances of set H, the comparison is not possible
because for both models (with and without the OR-
to-surgeon assignment), the integer optimization is
not concluded within the given time-out and the UB
resulting at the end of the B&P&Cut optimization
for the model with the OR-to-surgeon assignment
is greater than the best integer solution found by
the B&P&Cut for the model without the OR-to-
surgeon assignment, so we cannot exclude that the
two models can finally converge to the same optimal
integer solution.

7.3.6. Comparison with the literature

With Table 8, a comparison of the algorithms
that we developed with those of [17] is proposed.
We compare the average values of each instance
set. Subtable Column generation focuses on the
comparison of CG-with-Benders’-cuts with the en-
hanced CG with LCI cuts of [17]. For each set of
instances, we reported the minimum upper bound
(Min. UB) between the two upper bounds com-
puted by the compared algorithms and the percent-
age gap of each one of the two upper bounds with
the minimum; these gaps are (gap CG-BC') for the
CG-with-Benders’-cuts and (gap CG-LCI) for the
enhanced CG with LCI cuts. Subtables BP Upper-
Bound and BP Lower-Bound focus on the compar-
ison of the B&P&Cut that we developed with the
B&P with LCI cuts of [17] (B&P&LCI). In sub-
table BP Upper-Bound, for each set of instances,
we report the minimum UB (Min. UB) between



the two upper bounds computed by the compared
algorithms and the percentage gap of each upper
bound with the minimum; the gaps are (gap BP-
BC) for the B&P&Cut and (gap BP-LCI) for the
B&P&LCI of [17]. Subtable BP Lower-Bound has
the same structure of subtable BP Upper-Bound,
but it is for a comparison of obtained integer solu-
tions; we report the maximum lower bound (Maz.
LB) and the percentage gap of the lower bound of
each algorithm with the maximum, where gaps are
(gap BP-BC) for the B&P&Cut and (BP-LCI) for
the B&P&LCI of [17].

Table 8 shows that our CG-with-Benders’-cuts
provides a better LP relaxation than the CG with
LCT of [17]; this is true for every instance of the sets
A and B, but sets A100 and A120 make an excep-
tion (column CG-BC of subtable Column genera-
tion). For set C, our algorithm provides the same
LP relaxation. A possible explanation for the lower
quality problem LP relaxation that the CG-with-
Benders’-cuts delivers for sets A100 and A120 with
respect to that delivered by the CG with LCI of [17]
is as it follows.

The Benders-like cuts generated through the CG-
with-Benders’-cuts algorithm are constraints on the
aggregated selection of surgeries. Each of these cuts
enforces a superior limit on the objective function
value and such a superior limit is expressed as a
linear combination of surgery selection variables. If
the problem instance has a large number of surg-
eries, with many surgeries that are not mandatory,
a very fractional LP solution of the RMP is more
likely. The approach of [17] is quite different, the
generated LCIs enforce constraints on the number
of surgeries, of the same surgeon, that can be sched-
uled in the same OR and on the same day. It seems
reasonable to argue that such a latter approach can
be more effective for instances with a large number
surgeries that are not mandatory and thus likely
very fractional LP solutions.

The LP relaxation of the problem resulting at the
end of the integer optimization of our B&P&Cut is
better in most of the cases. Even if our B&P&Cut
significantly improves the LP relaxation of sets
A100 and A120, sets A100, A120 and B60 make
an exception and the problem LP relaxation is of a
slightly lesser quality than that of the B&P&LCI.

Integer solutions delivered by our B&P&Cut are
frequently of lesser quality and, in some cases, they
are missing, but it is relevant to point out that,
in [17], the B&P&LCT is executed with a warm start
taking as input a feasible integer solution computed
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with a heuristic procedure, and we did not do that
for executing our B&P&Cut.

If the solution computed with the heuristic that
we developed is used as an initial set of columns for
the CG, there is no significant benefit.

In Table 9, we report from the paper the com-
putation time of the algorithms of [17]. The algo-
rithms are: the CG-enhanced (the CG with dom-
inance rules applied), the CG with LCI and the
B&P with LCI; respectively, columns (CG-Enh),
(CG-LCI) and (BP-LCT). The table reports also
the computation time for our algorithms: CG, CG-
with-Benders’-cuts and B&P&Cut. The times of
our algorithms are scaled as if they are run on the
same processor used by [17] (i.e., an Intel Xeon
X5675 at 3.07 GHz).

The algorithms that we developed are faster on
average than those of [17]. The difference of compu-
tation times is very large for the two CG algorithm
before any cut is applied (our CG versus CG-Enh
of [17]). The difference is reduced once the cuts are
added. The computation of the LCIs of [17] ap-
pears faster than that of the Benders’ cuts we de-
veloped. Comparing the computation times of CG-
with-Benders’-cuts and CG-with-LCIs of [17], for
small- and medium-sized instances of sets A and B,
our algorithm is faster, and for large-sized instances
(100 and 120 surgeries) of the same sets, computa-
tion times are comparable. Over sets C, our algo-
rithm computes the LP relaxation of the problem
in less than 1 minute, whereas the CG with LCI
needs more than 1 hour. According to the numbers
reported in Table 9, our B&P&Cut and that of [17]
compute the UB and the integer problem solution
approximately in the same time.

8. Conclusion

In this work, we defined a IORPS problem includ-
ing, with fine detail, constraints that are common
in practice and in the literature for similar prob-
lems and constraints for HRs other than surgeons
(i.e., nurses). The defined problem has sequence-
dependent OR cleaning times related to consecu-
tive surgeries with different infection levels. The
integrated planning and scheduling is important
because operating theaters working without de-
tailed schedules for the all relevant resources are
frequently perturbed by unexpected resource un-
availability. To solve this hard problem, we have
devised a branch-and-price-and-cut algorithm re-



Column generation

BP Upper-Bound

BP Lower-Bound

Min. gap gap Min. gap gap Max. gap gap

Instance UB CG-BC CG-LCI UB BP-BC BP-LCI LB BP-BC BP-LCI
(%) (%) (%) (%) (%) (%)

A40 1407 0.00 0.28 1403 0.00 0.00 1403 0.00 0.00
A60 1964 0.00 0.56 1962 0.00 0.46 1960 0.82 0.00
A80 2198 0.00 0.32 2196 0.00 0.32 2174 1.79 0.00
A100 2231 4.03 0.00 2297 1.04 0.00 2255 2.62 0.00
A120 2218 6.58 0.00 2298 2.87 0.00 2266 2.60 0.00
B40 1365 0.00 0.15 1361 0.00 0.00 1361 0.07 0.00
B60 1859 0.00 0.05 1853 0.05 0.00 1843 0.43 0.00
B&0 2143 0.00 1.40 2142 0.00 0.89 2132 0.52 0.00
B100 2389 0.00 0.54 2387 0.00 0.59 2337 3.85 0.00
B120 2399 0.00 2.42 2399 0.00 2.42 2355 4.80 0.00
C60 576 0.00 0.00 576 0.00 0.00 574 0.00 0.52
C80 792 0.00 0.00 792 0.00 0.00 713 3.79 0.00
C100 978 0.00 0.00 977 0.00 0.10 860 14.77 0.00
Average 0.82 0.44 0.30 0.37 2.77 0.04

Table 8: Comparison with results form the literature: UBs and LBs comparison

CG CG with cuts BP

Instance CG  CG-Enh CG-BC CG-LCI BP-BC BP-LCI

[sec.] [sec.] [sec.] [sec.] [sec.] [sec.]
A40 3 25 4 35 84 84
A60 20 108 40 129 8800 8659
A80 273 407 538 424 8814 8503
A100 536 1960 2143 2158 8878 9603
A120 425 1337 2750 1055 8955 8295
B40 5 35 7 42 3826 2469
B60 50 137 73 187 8802 8177
B80 150 736 467 1662 8826 9784
B100 1248 2349 4968 4633 8897 14676
B120 1328 4807 8092 5002 9125 13390
C60 32 1964 33 2329 7793 11333
C80 29 3508 29 6034 9949 15580
C100 11 4916 13 4729 8797 15545
Average 316 1715 1474 2186 7811 9700

Table 9: Comparison with results form the literature: computation times

lying on a label-correcting algorithm for solving
the pricing problems and a Benders’ cutting proce-
dure for tightening the LP relaxation of the prob-
lem. The effectiveness of this solution method is
demonstrated through a set of computational ex-
periments. Our algorithm outperforms compet-
ing methods from the literature and the commer-
cial solver (CPLEX). We hope that our devised
Benders’-like cutting procedure can represent a
starting point for future research of problems with
several side resources to consider since the approach
is sufficiently generic to be applied for an arbitrary
number of resources. To this purpose, solving some
technical difficulties is may be required.

Regarding the OR scheduling problem considered
in this work, future research could advance in two
possible directions: (i) to consider some source of
uncertainty and (i) to tackle problems that hierar-
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chically follow the considered OR scheduling. Un-
certain surgery durations and random resource con-
sumptions due to add-on surgical cases that may
show up after the OR scheduling can be considered
as sources of uncertainty. For both cases, the opti-
mization objective may be minimizing the average
shortage of the available resource capacity or the
chance of such shortages. Stochastic optimization
methods are unfortunately able to solve only very
small instances of IORPS problems, and an effort
is required to tackle solution difficulties. Two prob-
lems that hierarchically follow the generation of OR
schedules are the assignment of nurses to surgical
cases and the OR rescheduling problem to include
add-on urgent surgeries that cannot wait until the
next complete OR scheduling.
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APPENDIX

Mixed-Integer Linear Programming Model Decision
variables:

Zijtk, & binary variable that takes value 1 if the
surgery ¢ is scheduled for day j and time ¢ in

OR k.

Ykmjs @ binary variable that takes value 1 if the OR
k is assigned to SG m for day j.

The OR scheduling with HR constraints MILP

reads:
15 3) 3) D) LTI
i€l jeJ teT; keK
Z Z Z Tijek = 1 (i € Iga) (53)
jEJLeT; k€K
Z Z Z Tijek <1 (i € Ine) (54)
jEJteT; keK
t
> D> wmpwk <l
i€l t'=t—p;+1
(teT,jed ke K) (55)
t
S Y Yeums
i€, t'=t—p;+1 keK
(teT, jed acA) (56)
t+p;+OCT (i,i')—1
Z CiirTirjrk < 1 — Tijen
t'=t+p;
((i,i')yeTl:i#i,teT, jeJ ke K) (57)
Z Z PiTijt < Taj (j S J, a € A) (58)
i€l teTy
Z Tijtk < Ykmy
tETj
(tely,jed, meSG, ke K) (59)

28

> Ykmi < K| (e keK) (60)
meSG
t
Z Z NiTijirk < |Bmgl
i€ L, t'=t—p;+1
(teTj,jed ke K) (61)
Tijee =017 >dd; vV j <rd;
(tel,teT,jeJ; ke K) (62)
Tijtk € {0, 1}
(tel,teT,jeJ; ke K) (63)
Ykmj € {0, 1}
(ke K,meSG,jeJ) (64)

The objective function maximizes the total revenue
of surgeries scheduled in the planning horizon. Con-
straints (53) enforce that mandatory surgeries are
scheduled only once in the planning horizon. Con-
straints (54) enforce not mandatory surgeries to be
scheduled at most once in the planning horizon.
Constraints (55) enforce that surgeries do not over-
lap in the same OR. Constraints (56) enforce that
surgeries of the same surgeon do not overlap in the
schedule. Constraints (57) enforce that an OCT is
scheduled between any pair of consecutive surgeries
scheduled for the same OR and day in the planning
horizon if an OCT is required in between. Con-
straints (58) enforce that the daily surgeon maxi-
mum surgery time is not exceeded in the schedule
for every surgeon and day of the planning horizon.
Constraints (59) enforce that only surgeries belong-
ing to same SG can be scheduled for the same OR
and day in the planning horizon. Constraints (60)
enforce that only one SG can be assigned to an
OR for a every day in the planning horizon. Con-
straints (61) enforce that surgeries scheduled do not
require more nurses than those available; this is for
every SG, day and time in the planning horizon.
Constraints (62) enforce that any surgery is sched-
uled not before its release date and not after its
due date. With (63) and (64) variable z;;, and ¥,
domains are defined.
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