
HAL Id: hal-04609272
https://hal.science/hal-04609272

Submitted on 12 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Differentiability and Optimization of Multiparameter
Persistent Homology

Luis Scoccola, Siddharth Setlur, David Loiseaux, Mathieu Carrière, Steve
Oudot

To cite this version:
Luis Scoccola, Siddharth Setlur, David Loiseaux, Mathieu Carrière, Steve Oudot. Differentiability
and Optimization of Multiparameter Persistent Homology. ICML 2024 - The Forty-first International
Conference on Machine Learning, Jul 2024, Wien, Austria. �hal-04609272�

https://hal.science/hal-04609272
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Differentiability and Optimization of Multiparameter Persistent Homology

Luis Scoccola * 1 Siddharth Setlur * 2 David Loiseaux 3 Mathieu Carrière 3 Steve Oudot 4

Abstract
Real-valued functions on geometric data—such
as node attributes on a graph—can be optimized
using descriptors from persistent homology, al-
lowing the user to incorporate topological terms in
the loss function. When optimizing a single real-
valued function (the one-parameter setting), there
is a canonical choice of descriptor for persistent
homology: the barcode. The operation mapping
a real-valued function to its barcode is differen-
tiable almost everywhere, and the convergence
of gradient descent for losses using barcodes is
relatively well understood. When optimizing a
vector-valued function (the multiparameter set-
ting), there is no unique choice of descriptor for
multiparameter persistent homology, and many
distinct descriptors have been proposed. This calls
for the development of a general framework for
differentiability and optimization that applies to
a wide range of multiparameter homological de-
scriptors. In this article, we develop such a frame-
work and show that it encompasses well-known
descriptors of different flavors, such as signed
barcodes and the multiparameter persistence land-
scape. We complement the theory with numerical
experiments supporting the idea that optimizing
multiparameter homological descriptors can lead
to improved performances compared to optimiz-
ing one-parameter descriptors, even when using
the simplest and most efficiently computable mul-
tiparameter descriptors.

*Equal contribution 1Mathematical Institute, Univer-
sity of Oxford, UK 2Department of Mathematics, ETH
Zürich, Switzerland 3DataShape, Centre Inria d’Université
Côte d’Azur, France 4GeomeriX, Inria Saclay and École
polytechnique, Paris, France. Correspondence to: Luis
Scoccola <luis.scoccola@maths.ox.ac.uk>, Siddharth Setlur
<ssetlur@student.ethz.ch>.

1 Introduction
Context. Persistent homology (PH), the main tool of topo-
logical data analysis (TDA), produces a descriptor in the
form of a barcode for real-valued filtering functions, i.e.,
real-valued functions on graphs (more generally, simpli-
cial complexes) that assign higher values to edges than to
their vertices (more generally, monotonic with respect to
the face order). PH has found a variety of applications in
machine learning (ML), notably: as a featurization tech-
nique encoding complementary information to traditional
descriptors (see, e.g., (Hensel et al., 2021) for a survey),
offering stability guarantees with respect to perturbations of
the data (Cohen-Steiner et al., 2007), and the possibility for
end-to-end feature learning (Hofer et al., 2020b; Carrière
et al., 2021); as a topological regularizer for constraining
models to follow some prescribed topology in order to avoid,
e.g., overfitting (Chen et al., 2019; Moor et al., 2020); and
as a topological layer in neural networks for enhancing net-
work performance (Carrière et al., 2020; Zhao et al., 2020a;
Kim et al., 2020). A sound mathematical foundation for
this type of applications, and for barcode optimization in
general, was developed in (Carrière et al., 2021).

Recent contributions in the area of TDA for ML have demon-
strated empirically the added value, in terms of learning
performances, of replacing real-valued filtering functions
by Rn-valued filtering functions in the pipelines involv-
ing PH; see, e.g., (Carrière & Blumberg, 2020; Demir et al.,
2022; Loiseaux et al., 2023b; Chen et al., 2023). However,
in contrast to the usual real-valued setting, there does not
exist—and, due to fundamental algebraic reasons, there can-
not exist (Carlsson & Zomorodian, 2009; Bauer & Scoccola,
2023)—any discrete descriptor like the barcode that com-
pletely encodes the PH of Rn-valued filtering functions. As
a consequence, the aforementioned contributions resorted to
a variety of incomplete descriptors, such as multiparameter
persistence landscapes (Vipond, 2020) and generalizations
(Xin et al., 2023), signed barcodes as measures (Loiseaux
et al., 2023b), multiparameter persistent images (Carrière &
Blumberg, 2020; Loiseaux et al., 2023a), or multiparameter
persistence kernels (Corbet et al., 2019).

In order to generalize the use of these incomplete descriptors
to other applications in machine learning, it is necessary to
extend the existing optimization framework to them. To
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the best of our knowledge, this has not been done yet, but
we expect to see it happen in the near future. However,
the diversity of the proposed descriptors is likely to induce
the parallel development of multiple competing, specialized
frameworks, depriving the field of a general, unified theory.

In order to prevent this undesirable situation we aim at
developing optimization frameworks for classes of descrip-
tors instead of single descriptors. The problem is then to
find the right level of abstraction to prove a differentiability
and convergence result, that is, a general enough – yet still
easily checkable – set of assumptions, under which these
seemingly very different invariants can be proven to be dif-
ferentiable with gradient descent convergence guarantees.

The present paper is a first attempt at this, focusing on the
class of descriptors characterized as being semilinearly de-
termined on grids. A formal statement of this condition is
given in Section 3 (Definition 3.17), but intuitively, it means
that the descriptor, viewed as a map from the space Filn(K)
(of Rn-valued filtering functions on a fixed simplicial com-
plex K) to a Euclidean space RD factors through a simple
linear space consisting of inclusions of grids in Rn, where
it behaves semilinearly (in the sense of piecewise affinely).
This property is directly inspired from the well-established
fact that the PH of real-valued filtering functions itself can
be computed over finite integer grids, and behaves affinely
with respect to grid inclusions: indeed, the barcodes pro-
duced by the persistence algorithm (Edelsbrunner et al.,
2002; Zomorodian & Carlsson, 2005) depend affinely on
the input function values as long as the pairing of the sim-
plices in K remains fixed, and the pairing itself is entirely
prescribed by the pre-order on the simplices induced by
the function values. While we cannot assert that all future
descriptors for Rn-valued filtering functions will satisfy our
condition, we show that currently known descriptors of very
different flavors, such as the signed barcodes as measures
and the multiparameter persistence landscapes, do.

Theoretical contributions. Theorem 1.1, below, sum-
marizes our contributions regarding general homological
descriptors of multiparameter filtrations (Theorem 3.19
and Proposition 3.20). It generalizes the existing optimiza-
tion framework for barcodes of real-valued filtering func-
tions (Carrière et al., 2021) to descriptors of Rn-valued
filtering functions that are semilinearly determined on grids.

Theorem 1.1. Assume given a simplicial complex K,
a number of parameters n ∈ N≥1, and a descriptor
α : Filn(K) → RD. If α is semilinearly determined on
grids, then it is a semilinear map, with explicit Clarke subd-
ifferential. If furthermore α is included in an optimization
pipeline of the following form, where Φ is a parametrized
family of fitrations and where E is some loss function:

Rd Φ−−−→ Filn(K)
α−−−→ RD E−−−→ R,

such that the composite objective function L := E ◦ α ◦ Φ
is locally Lipschitz, and the maps Φ and E are definable
over a common o-minimal structure, then, under the usual
assumptions of the stochastic subgradient method (Assump-
tion B.1), almost surely, every limit point of the iterates of
the stochastic subgradient method is critical for the objec-
tive function L, and the sequence of values of L converges.

For illustrative purposes, Theorem 1.1 is stated for a pipeline
using a single (topology-based) loss. Several generalizations
are possible and we comment on these in Remark B.3.

To illustrate the flexibility of our approach, we apply
our framework to two widely different topology-based
descriptors: the signed barcodes as measures (Loiseaux
et al., 2023b) derived from the Hilbert function (Oudot &
Scoccola, 2024) and the multiparameter persistence land-
scape (Vipond, 2020). As in the one-parameter case, these
descriptors take values in infinite dimensional spaces, and
thus we prove semilinearity for suitable finite dimensional
representations of them (see Appendix D for details).
Theorem 1.2. The sorted Hilbert decomposition and the
evaluated multiparameter persistence landscape are semi-
linearly determined on grids.

The locally Lipschitzness condition of Theorem 1.1 can then
be satisfied using Proposition E.4, in the case of the Hilbert
decomposition signed measure, and the stability theorem in
(Vipond, 2020), in the case of multiparameter persistence
landscapes.

Analogous results can be obtained for other invariants, such
as for instance signed measures derived from the rank in-
variant (Definition A.3).

See Figure 8 for a dependency graph of the main definitions,
results, and experiments in the paper, and Table 2 for a
notation table.

Practical contributions. Examples 3.22 and 3.23, in Sec-
tion 3.3, give concrete instantiations of our theory suited for
end-to-end optimization using signed barcodes as measures.
In Section 4 we report on numerical experiments showcas-
ing these and other pipelines, on both synthetic and real data.
The main conclusion is that, for machine learning purposes,
multiparameter homological descriptors tend to outperform
their one-parameter counterpart.

Related work. As already mentioned, and to the best of our
knowledge, the general problem of establishing the differen-
tiability and gradient descent convergence of multiparameter
persistence has not been addressed in the literature so far.
Concurrent work (Mukherjee et al., 2024) addresses this
problem in the special case of GRIL (Xin et al., 2023), a
generalization of the multiparameter persistence landscape,
and develops a specific, yet elementary, optimization frame-
work for GRIL.
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Figure 1. An example, from (Loiseaux et al., 2023b), of a filtered
simplicial complex, the Hilbert function of its 0th persistent homol-
ogy, and the corresponding Hilbert decomposition signed measure.

The one-parameter case is well studied (Carrière et al., 2021;
Leygonie et al., 2023; 2022), with applications including
shape matching and classification (Hofer et al., 2017; Poule-
nard et al., 2018), representation learning (Hofer et al.,
2019), graph classification (Hofer et al., 2020b; Horn et al.,
2022a; Zhao et al., 2020b), and regularization (Chen et al.,
2019; Hofer et al., 2020a); see also Sections 3.2.3 and 3.3.1
of (Hensel et al., 2021) for an overview, but note that, at this
point, any list will necessarily be incomplete.

2 Background
This section can be skipped and only referred to as required,
depending on the background of the reader. For clarity
and conciseness, we do not give full details of some con-
structions that are not used in the main results of this paper
(see Appendix A for more background). Whenever we skip
details we warn the reader and provide a precise reference.

Basic notation. If n ≥ 1 ∈ N and X is a finite set, we let
(Rn)X denote the set of functions X → Rn, which is a real
vector space of dimension n× |X|.

Simplicial complexes. A finite simplicial complex K con-
sists of a finite set X and a collection K ⊆ parts(X) \ {∅}
of non-empty subsets X with the property that {x} ∈ K
for every x ∈ X , and if σ ∈ K and τ ⊆ σ, then τ ∈ K.
Let i ∈ N; the i-simplices of K are the sets σ ∈ K such
that |σ| = i+ 1. In particular, the 0-simplices correspond
exactly to the elements of the underlying set X . For this
reason, it is common to denote a simplicial complex by K,
leaving the underlying set X implicit.

Note that any simplicial complex K is automatically a par-
tially ordered set where τ ≤ σ ∈ K precisely when τ ⊆ σ.
This order is known as the face order of K.

Example 2.1. Any finite, simple, undirected graph G is
equivalently a simplicial complex with 0-simplices the ver-
tices of G, 1-simplices the edges of G, and no higher-
dimensional simplices.

Filtrations. Let K be a finite simplicial complex.
Definition 2.2. Let n ∈ N. An n-filtration on K consists of
a function f : K → Rn, which is monotonic with respect
to the face order of K and product (partial) order on Rn.

Unraveling definitions, an n-filtration is a function f : K →
Rn mapping simplices of K to vectors in Rn, with the
property that for each pair of simplices σ ⊆ τ ∈ K and 1 ≤
i ≤ n, we have fi(σ) ≤ fi(τ), where fi : K → R denotes
the ith coordinate of f . See Figure 1 for an illustration.

We let Filn(K) denote the set of n-filtrations of K. Note
that Filn(K) ⊆ (Rn)K .
Example 2.3. Let G be an undirected graph and let f ′ :
vert(G) → Rn be any function. One can extend f ′ to a
filtering function f ∈ Filn(G) by mapping a 0-simplex
{x} (corresponding to a vertex x) to f ′(x) ∈ Rn, and a 1-
simplex {x, y} (corresponding to an edge between x and y)
to (max(f ′(x)1, f

′(y)1), . . . ,max(f ′(x)n, f
′(y)n)) ∈ Rn.

This is an instance of a lower-star filtration (Edelsbrunner &
Harer, 2008), a common construction in TDA.

(Persistent) homology. For detailed introductions to one-
and multiparameter persistence, see, e.g., (Edelsbrunner &
Harer, 2008) and (Botnan & Lesnick, 2023). Fix a field F
for the rest of this paper, let i ∈ N, and let K be a simplicial
complex.

The ith homology of K with coefficients in F is an F-vector
space Hi(K); see, e.g., (Fomenko, 1994) for a precise
definition with illustrations. Informally, the dimension of
Hi(K) counts the number of independent i-dimensional
holes of K; as an example, the dimension of H0(K) equals
the number of connected components of K.

The homology construction is functorial, which in particular
implies that if K ⊆ K ′ are simplicial complexes, there
is an F-linear map Hi(K) → Hi(K

′) of F-vector spaces.
Then, given f ∈ Filn(K), we can filter K as follows: for
r ∈ Rn, let Kf

r := {σ ∈ K : f(σ) ≤ r} ⊆ K. Since f is a
filtration, it’s clear that Kf

r ⊆ Kf
s whenever r ≤ s ∈ Rn,

where, again, ≤ denotes the product (partial) order on Rn.
This allows for the following construction. For convenience
of notations later on, we let Hi(f)(r) := Hi(K

f
r ).

Definition 2.4. Let f ∈ Filn(K) and let i ∈ N. The ith
multiparameter persistent homology of f , denoted Hi(f),
consists of the collection of vector spaces {Hi(f)(r)}r∈Rn

and the linear maps {φf
r,s : Hi(f)(r) → Hi(f)(s)}r≤s∈Rn ,

known as the structure maps.

See Figure 1 for an illustration.

Let f ∈ Filn(K). The ith Hilbert function of f is the
function Hil(Hi(f)) : Rn → Z defined as the pointwise
dimension of Hi(f), that is

Hil(Hi(f))(r) := dim(Hi(f)(r)).
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See Figure 1 for an illustration.

The ith rank invariant of f is the function rk(Hi(f)) :
{(r, s) ∈ (Rn)2 : r ≤ s} → Z defined as the rank of
the structure maps of Hi(fi), that is

rk(Hi(f))(r, s) := rk(φf
r,s).

The rank invariant has no less information than the Hilbert
function: rk(Hi(f))(r, r) = Hil(Hi(f))(r) for r ∈ Rn.

A key motivation for using homology-based descriptors
is that they are automatically isomorphism-invariant (Ap-
pendix A.3), meaning that they do not depend on, e.g., arbi-
trary labelings of data.

Discrete signed measures. We define discrete signed mea-
sures, which are needed for the definition of the Hilbert
decomposition signed measure (Loiseaux et al., 2023b).

If M is a metric space, the set of discrete measures on M ,
denoted DM(M), is the set of all finite, positive, integer
linear combination of Dirac masses on M . The set of dis-
crete signed measures on M , denoted DSM(M), consists
of the set of finite, non-necessarily positive, integer linear
combinations of Dirac masses on M . As usual, one can
endow the set of discrete signed measures on M the optimal
transport distance (Appendix A.1.1), denoted OT, which
is an extended metric. If µ ∈ DSM(M), we let µ+ and
µ− denote its positive and negative part of µ, respectively,
according to its Jordan decomposition (see, e.g., p. 421 of
(Billingsley, 1995)).

Homological descriptors of multiparameter filtrations.
A descriptor of filtrations of K consists of a set A and a
function Filn(K) → A.

We now define the Hilbert decomposition signed measure
(originally introduced in (Loiseaux et al., 2023b)), which is
a descriptor of multiparameter filtrations. This descriptor
completely characterizes the Hilbert function of a filtration
as a discrete signed measure on Rn; this is remarkable, since
the Hilbert function is an element of the space of functions
Rn → R, an infinite dimensional space. For the defini-
tion of the rank decomposition signed measure, a stronger
descriptor that strictly generalizes the one-parameter bar-
code, and that completely characterizes the rank invariant
of filtrations, see Appendix A.2.

Definition 2.5. Let f ∈ Filn(K) and let i ∈ N. The ith
Hilbert decomposition signed measure is the unique measure
µHil
Hi(f)

∈ DSM(Rn) such that, for all r ∈ Rn,

dim(Hi(f)(r)) = µHil
Hi(f)

({s ∈ Rn : s ≤ r}) .

In order to make Rn into a metric space, so that the optimal
transport distance on DSM(Rn) is defined, we use ∥−∥∞.

See Figure 1 for an illustration.

Semilinear functions and o-minimal structures. We now
introduce semilinear and semialgebraic functions. A gen-
eralization of these concepts is that of functions that are
defined over an o-minimal structure. For details about this
theory, we refer the reader to (van den Dries, 1998). We
care about these types of well-behaved functions because
gradient descent can be applied on them with convergence
guarantees (Davis et al., 2020).

A set S ⊆ Rn is semilinear (resp. semialgebraic) if it is
a finite union of sets of the form {(x1, . . . , xn) ∈ Rn :
P (x1, . . . , xn) = 0} with P a polynomial degree ≤ 1
(resp. of any degree), and sets of the form {(x1, . . . , xn) ∈
Rn : P (x1, . . . , xn) > 0}, with P a polynomial degree ≤ 1
(resp. of any degree). If S ⊆ Rn is semilinear (resp. semial-
gebraic), a function ψ : S → Rm is semilinear (resp. semi-
algebraic) if its graph {(x, ψ(x)) : x ∈ S} ⊆ Rn × Rm is
a semilinear (resp. semialgebraic) set. Note that the defini-
tions above also make sense when Rn and Rm are replaced
with any real vector spaces of finite dimension, since any
such vector space can be identified with Rn using an arbi-
trary linear isomorphism, and any choice of linear isomor-
phism leads to the same notions of semilinearity (resp. semi-
algebraicity).

Example 2.6. Any piecewise linear function is semilinear.
For example, any neural network with ReLU activation
functions models a semilinear function. Note, however, that,
in general, semilinear functions need not be continuous.

The stochastic subgradient method. Let L : Rd → R be
differentiable almost everywhere; this is automatically the
case if L is locally Lipschitz, by Rademacher’s theorem (see,
e.g., (Evans & Gariepy, 2015)). The Clarke subdifferential
(Clarke, 1975) of L at z ∈ Rd is

∂L(z) := ConvHull

{
lim
zk→z

∇L(zk) : L diff. at {zk}k∈N

}
and the point z is critical if 0 ∈ ∂L(z).

In the situation above, one can perform the stochastic sub-
gradient method by choosing a learning rate in the form of
a sequence {ak ∈ R}k∈N, a sequence {ζk}k∈N of real ran-
dom variables, and an initialization x0 ∈ Rd, and defining
{xk}k∈N for k ≥ 1 recursively by

xk+1 := xk − ak(yk + ζk),with yk ∈ ∂L(xk).

See Assumption B.1 for standard assumptions about the
choices involved in the stochastic subgradient method, as
taken from Assumption C of (Davis et al., 2020). And see
Remark B.5, which addresses satisfying these assumptions.
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3 Theoretical contributions

3.1 Stratifying the space of multifiltrations

In this section, we partition the space Filn(K) into finitely
many affine regions, which we call cells, and use this to
prove Corollary 3.6, which provides an easily verifiable con-
dition for a function with domain Filn(K) to be semilinear.
We also show that cells are linearly diffeomorphic to open,
convex, semilinear sets of a Euclidean space.

Figure 2 illustrates some of the main concepts introduced in
this section.

3.1.1 CELLS

In order to define cells, we first define grids, a very simple
type of finite poset, and grids obtained from filtrations.

Given m ∈ N, we let [m] = {0 < 1 < · · · < m − 1}
denote the corresponding linear order.

Definition 3.1. A grid G is any product poset G = G1 ×
· · · × Gn, with Gi = [mi] for some m1, . . . ,mn ≥ 1 ∈ N.

Note that, given a function f : X → R, there exists a unique
triple (m ∈ N, ordf : X → [m], ιf : [m] → R) such
that ordf is surjective, ιf is monotonic and injective, and
f = ιf ◦ordf . Indeed, ordf represents the unique linear pre-
order of X induced by Im(f) ⊆ R, so that m = |Im(f)|.
Construction 3.2. Given f : K → Rn, let mi = |fi(K)|.
Let gridf = [m1]× · · · × [mn], and define

ordf := ordf1(K) × · · · × ordfn(K) : K → gridf

ιf := ιf1(K) × · · · × ιfn(K) : gridf → Rn

Note that f = ιf ◦ ordf : K → Rn.

We can now define the cells of Filn(K), which, informally,
are sets of filtrations that induce the same preorder on the
simplices of K.

Definition 3.3. The cell of f ∈ Filn(K), denoted cell(f) ⊆
Filn(K), is the set of all g ∈ (Rn)K such that gridf = gridg
and ordf = ordg .

Remark. Another reasonable definition of cell would be to
directly draw from the one-parameter case and declare the
cell of a filtration f : K → Rn to be the set of filtrations
g : K → Rn that induce the same preorder on the simplices
of K as f does; the difference with our choice being that
we require each coordinate gi : K → R to induce the same
preorder on the simplices of K as fi. For the purposes of
this remark, let us call this cell′(f). It can be easily seen
that cell′(f) is a disjoint union of cells in the sense of Defi-
nition 3.3. But, importantly, cell′(f) is typically not convex,
or even connected: take K consisting of two points and no
other simplices, then g : K → R2 mapping the first point to

(0, 1) and the second to (1, 0) is in cell′(f), where f maps
the first point to (1, 0) and the second to (0, 1); but f and g
cannot be connected through a path that stays within cell′(f).
It can also be checked that usual descriptors restricted to
cell′(f) do not behave as nicely as when restricted to cell(f):
for example, the sorted Hilbert decomposition is affine on
cell(f), but typically not on cell′(f).

We have the following key properties of cells.

Lemma 3.4. The function (Rn)K → (RK)n mapping g
to (g1, . . . , gn) is a linear diffeomorphism. Given f ∈
Filn(K), this function restricts to a linear diffeomorphism
If : cell(f) ∼= cell(f1)× · · · × cell(fn).

Lemma 3.5. The set Filn(K) ⊆ (Rn)K is semilinear, and,
cell(f) ⊆ (Rn)K is semilinear for every f ∈ Filn(K).

Corollary 3.6. Let α : Filn(K) → RD be a function such
that α|cell(f) : cell(f) → RD is semilinear (resp. semial-
gebraic) for every f ∈ Filn(K). Then, α is semilinear
(resp. semialgebraic).

3.1.2 GRID INCLUSIONS AND GEOMETRY OF CELLS

Definition 3.7. Let G = G1 × · · · × Gn. An aligned grid
inclusion of G into Rn is a monotonic and injective map
G → Rn that is a product of monotonic and injective maps
Gk → R for 1 ≤ k ≤ n.

As an example, for any filtration f ∈ Filn(K), the map
ιf : gridf → Rn is an aligned grid inclusion.

The following construction allows us to identify the space
of aligned grid inclusions of a fixed grid G as a particularly
simple subset of a Euclidean space.

Construction 3.8. Given m ∈ N, define incl([m]) ⊆ R[m]

incl([m]) := {f : [m] → R | f(0) < · · · < f(m− 1)} ,

and, for a grid G = G1 × · · · × Gn, let

incl(G) := incl(G1)×· · ·× incl(Gn) ⊆ R[m1]×· · ·×R[mn].

Note that, if κ : G → Rn is an aligned grid inclusion, then
κ = κ1 × · · · × κn, and (κ1, . . . , κn) ∈ incl(G).

Thanks to Construction 3.8, we can, and do, identify aligned
grid inclusions of G into Rn with incl(G). In particular, if
f ∈ Filn(K), we write ιf ∈ incl(gridf ).

Lemma 3.9. For any grid G, the set incl(G) ⊆ R[m1] ×
· · · × R[mn] is open, convex, and semilinear.

Our goal now is to prove that the map taking a filtration
f to its corresponding aligned grid inclusion restricts to a
linear diffeomorphism between the cell of f and the space
of inclusions incl(gridf ).

We start by formally defining this map.
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Figure 2. An example of a simplicial complex K, a two-parameter filtration f of K, the grid of f according to Construction 3.2, and the
aligned grid inclusion associated with f according to Construction 3.2 and Definition 3.10.

By Definition 3.3, if g ∈ cell(f), then gridg = gridf , so that
ιg is an aligned grid inclusion of gridf into Rn, and thus
ιg ∈ incl(gridf ). This allows us to define the following.

Definition 3.10. Let f ∈ Filn(K). Define the function
itsIncl : cell(f) → incl(ordf ) by mapping g ∈ cell(f) to
ιg : gridf = gridg → Rn, seen as an aligned grid inclusion
(Construction 3.8).

Definition 3.11. Let f ∈ Fil1(K). A carrier for f is a
function C : gridf → K, such that ordf (C(k)) = k for
every k ∈ gridf . A carrier for a multifiltration f ∈ Filn(K)
consists of a family of functions C = {Ci : gridfi →
K}1≤i≤n, with Ci a carrier of fi for every 1 ≤ i ≤ n.

Every filtration f ∈ Filn(K) admits a carrier, since ordfi :
K → ordfi is surjective for all 1 ≤ i ≤ n, by construction.

Lemma 3.12. Let f ∈ Filn(K) and let C be a carrier for f .
The function

n∏
i=1

cell(fi)
C∗

−−−−−→
n∏

i=1

incl(gridfi) = incl(gridf )

given by mapping (g1, . . . gn) to (g1 ◦ C1, . . . , gn ◦ Cn) is
a linear diffeomorphism.

Corollary 3.13. Let f ∈ Filn(K) and let C be a carrier
for f . Then, itsIncl = C∗◦If : cell(f) → incl(gridf ). Thus,
itsIncl : cell(f) → incl(gridf ) is a linear diffeomorphism
between cell(f) and an open, convex, and semilinear subset
of a Euclidean space.

Note, however, that the dimension of cell(f) depends on f
(more specifically, on gridf ).

3.2 Semilinear descriptors of multifiltrations

In this section we prove Theorem 3.19, which gives suffi-
cient conditions for an invariant to be semilinear as well as
an explicit description of the gradient. We instantiate this
result to well known invariants in Theorem 1.2.

Definition 3.14. Let G be a grid. A G-filtration of a simpli-
cial complex K consists of a monotonic function K → G.

Filn(K) RD

cell(f) incl(gridf )

n∏
i=1

cell(fi)
n∏

i=1

incl(gridfi)

α

∼= If (Lem. 3.4)

itsIncl (Def. 3.10)

∼= (Cor. 3.13)

C∗ (Lem. 3.12)

∼=

pushαordf (Prop. 3.15)

Figure 3. Factoring a descriptor α through each cell allows us to
deal with functions over linear, open subsets of a Euclidean space.

A G-filtration is componentwise surjective if hi : K → Gi

is surjective for each 1 ≤ i ≤ n.

The set of G-filtrations on K is denoted by FilG(K) . As an
example, ordf ∈ Filgridf (K) is a componentwise surjective
gridf -filtration, for every filtration f ∈ Filn(K).

For an interpretation of the next result, see Remark 3.16.

Proposition 3.15. Let α : Filn(K) → A. For every grid
G and componentwise surjective G-filtration h ∈ FilG(K),
there exists a unique function pushαh : incl(G) → A such
that, for every f ∈ Filn(K) with gridf = G and ordf = h
we have α|cell(f) = pushαordf ◦ itsIncl : cell(f) → A.

Graphically, there is a uniquely determined vertical map
making the top rectangle of Figure 3 commute; we now give
an interpretation of this map.
Remark 3.16. Let α : Filn(K) → A, and fix a grid G
and componentwise surjective G-filtration h ∈ FilG(K).
The map pushαh : incl(G) → A is to be interpreted as the
map that first computes the invariant α on the discrete, G-
filtration h, and then pushes this computation along any
given grid inclusion κ ∈ incl(G). Informally, Proposi-
tion 3.15 says that any invariant of multifiltrations is de-
termined by an invariant of discrete filtrations (indexed by
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finite grids), and by a map push whose job is to push the
invariant of a discrete filtration along grid inclusions.

Definition 3.17. A function α : Filn(K) → RD is semi-
linearly determined on grids if, for each grid G and com-
ponentwise surjective G-filtration h ∈ FilG(K), the map
pushαh : incl(G) → RD is semilinear.

Remark 3.18. More generally, one can define the notions
of a function α being definably determined on grids with
respect to some o-minimal structure. However, this level of
generality is not required to handle multiparameter descrip-
tors we have considered.

The next theorem and proposition follow immediately from
Corollaries 3.6 and 3.13 and Lemmas 3.4 and 3.9.

Theorem 3.19. If α : Filn(K) → RD is semilinearly deter-
mined on grids, then it is a semilinear function.

Proposition 3.20. If α : Filn(K) → RD is semilinearly
determined on grids, then, for every f ∈ Filn(K), an ele-
ment of the Clarke differential of the restriction α|cell(f) :
cell(f) → RD can be obtained by pulling back an element
of the Clarke differential of pushαordf : incl(gridf ) → RD,
which is a semilinear function with domain an open set of a
Euclidean space, along the linear diffeomorphism C∗ ◦ If ,
for C any carrier of f .

Remark 3.21. The upshot of Theorem 3.19 and Proposi-
tion 3.20 is that, in order to implement subgradient descent
for an invariant α : Filn(K) → RD, it is enough to pro-
vide a map pushαh : incl(G) → RD, for each grid G and
G-filtration h ∈ FilG(K), for which subgradients are known.
Recall that the interpretation of pushαh is in Remark 3.16.

3.3 Applications

We now describe how to use Propositions D.5 and E.4 to
obtain definable and locally Lipschitz objective functions
based on the Hilbert decomposition signed measure; analo-
gous constructions work for the rank decomposition signed
measure. Similar pipelines can be constructed using the
multiparameter persistence landscape, thanks to its semilin-
earity Proposition D.8 and stability (Vipond, 2020). Recall
that OT is the optimal transport distance (A.1).

Example 3.22. Let DSMk(Rn) ⊆ DSM(Rn) denote the
subset of signed measure of total mass k ∈ Z (that is, dis-
crete measures such that the number of positive point masses
minus the number of negative point masses is k)1. Fix ν ∈
DSMk(Rn). Then, the function E′ : DSMk(Rn) → R
given by mapping µ to OT(µ, ν) ∈ R is 1-Lipschitz. Since
the computation of OT(µ, ν) reduces to computing a mini-
mum (over all permutations of the point masses of µ+ + ν−

and ν+ + µ−) of sums of distances, it is easy to find a rep-

1One can see that, for every f ∈ Filn(K), we have µHil
Hi(f)

∈
DSMk(Rn) for k = dim(Hi(K)), which only depends on K
and not on the specific filtration f .

resentative E : RindMass → R as in Proposition E.4. And,
this map E′ is in fact semialgebraic. Combining this with
Proposition D.5, we conclude that we can use the distance to
a fixed signed measure ν, i.e., the following map, as a topo-
logical objective satisfying the assumptions of Thm. 1.1:

Filn(K) −→ R given by f 7−→ OT(µHil
Hi(f)

, ν).

Example 3.23. Let ψ : Rn → R be a Lipschitz function.
We get a Lipschitz function DSM(Rn) → R by mapping µ
to

∫
ψ dµ ∈ R. Since the computation of

∫
ψ dµ reduces to

a finite sum indexed by the point masses of µ and weighted
by ψ, it is easy to find a representative E : RindMass → R as
in Proposition E.4. If the function ψ is definable over some
o-minimal structure, then so is E′. Combining this with
Proposition D.5, we conclude that we can use integration
with respect to ψ, i.e., the following map, as a topological
objective which satisfies assumptions of Theorem 1.1:

Filn(K) −→ R given by f 7−→
∫
ψ dµHil

Hi(f)
.

4 Numerical experiments
We first illustrate our framework on a toy point cloud opti-
mization experiment inspired from (Carrière et al., 2021).
We then show experiments related more specifically to ML
applications with synthetic and real-world data (see also
Appendix F, for details). We use the implementation in
(Loiseaux & Schreiber, 2024).

Point cloud optimization. This is not an application per
se, but rather an illustrative example with the following
two main goals: (1) To demonstrate, with an experiment
that can be easily assessed visually, that our pipeline works
as expected, allowing the user to perform multiparameter
homological optimization. (2) To demonstrate that multipa-
rameter homology optimization enables the user to optimize
with respect to topological structures that can only be cap-
tured by considering the relationship between two or more
parameters (in this case metric and density structure). We
build upon the point cloud example of (Carrière et al., 2021).

Given a finite set of points X sampled uniformly from the
unit square in R2 (Figure 4a), the objective function aims
to maximize the distance between the Hilbert decomposi-
tion signed measure of the optimized point cloud and the
zero signed measure. Intuitively, this makes the topological
content of the optimized point cloud as non-trivial as possi-
ble. This is in direct analogy with the loss used in (Carrière
et al., 2021), which maximizes the optimal transport dis-
tance (referred to as Wasserstein distance there) to the zero
persistence diagram. In the one-parameter setting this is
achieved by increasing the quantity and “size” (persistence)
of the “holes” (cycles), while, in our two-parameter setting,
the quantity and size of the holes, as well as the density of
the constituent points, play a role in the objective function.
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The Vietoris–Rips filtration VR of X—see Definition 5.2
of (Oudot, 2015)—is used for this purpose, via the maxi-
mization of the sum of the lengths of the bars in its barcode2

in homology degree 1. Up to a constant factor, this can be
rewritten as the OT distance between the zero measure and
the Hilbert decomposition signed measure of H1(VR):

OT
(
µHil
H1(VR)(X) , 0

)
. (1)

While this approach does succeed in creating many cycles,
it has two major drawbacks. (a) As observed in (Carrière
et al., 2021) and illustrated in Figure 4c, the topological loss
(1) scales with rescaling of the points ofX , so loss (1) alone
causes the points to diverge to infinity. To mitigate this
effect, another purely geometric loss is added in (Carrière
et al., 2021), which restricts the points to the unit square.
(b) There is no control over the actual sizes of the obtained
holes, which end up being arbitrary—see Figure 4d. Here
we address these two issues at the same time by using the
function-Rips bifiltration (VR, f̂) of X—see Definition 5.1
of (Botnan & Lesnick, 2023)—for some data-dependent
kernel density estimator f̂ , and by maximizing the analog
of loss (1) in this two-parameter setting:

OT
(
µHil
H1(VR,f̂)

(X) , 0
)
. (2)

Note that the density estimator f̂ is recomputed after each
epoch of the optimization. As can be seen from the result
(Figure 4b), adding in the density parameter prevents the
points from diverging to infinity, the intuitive reason being
that the density scales down with rescalings of the points
of X . For the same reason, the density parameter exerts
some control over the sizes of the cycles produced, inducing
larger cycles in lower-density areas.

Another distinguishing feature of the two-parameter metric-
and density-aware topological loss is that it preserves some
of the characteristics of the density of the initial point cloud.
To see this, consider a dataset comprised primarily of points
sampled from a large circle, with some extra noise of higher
density located around the center (Figure 4e). Using the
function-Rips bifiltration and maximizing (2) creates cycles
from the noise points in the center, while still maintaining
the initial large circle (Figure 4f). In contrast, one-parameter
VR optimization treats all points equally, regardless of their
density, and therefore destroys the large circle (Figures 4g
and 4h). A precise explanation for this phenomenon remains
to be determined; we suspect that this behavior is similar to
that of mean-shift, in that creating many, or large, holes in
high-density areas requires many points in those areas.

Topological dimension reduction. In this experiment, we
present an application of multiparameter homological loss
differentiation to dimension reduction with autoencoders.

2I.e., one-parameter rank decomposition measure (App. A.2).

Regularizing standard autoencoders with topological losses
that constrain the latent space to have the same PH as the
input space was one of the first applications of PH-based
optimization to appear in the literature (Moor et al., 2020;
Doraiswamy et al., 2020; Carrière et al., 2021; Vandaele,
Robin and Kang, Bo and Lijffijt, Jefrey and De Bie, Tijl
and Saeys, Yvan, 2022). Common topological losses for
autoencoders have a regularization term involving a distance
between the barcodes of one-parameter VR filtrations:

L(θ) := OT
(
µrk
H∗(VR)(X̃(θ)) , µrk

H∗(VR)(X)
)
, (3)

where θ denotes the parameters of the autoencoder, and X
and X̃ denote the input and the learned latent spaces, respec-
tively. This loss does not take density into account, making
the quality of the learned latent spaces susceptible to the
presence of even mild noise. We compare this to using the
following loss, based on the Hilbert decomposition signed
measure and a function-Rips two-parameter filtration,

L(θ) := OT
(
µHil
H∗(VR,f̂)

(X̃(θ)) , µHil
H∗(VR,f̂)

(X)
)
,

where f̂ is a data-dependent density estimator. This topo-
logical loss is an instance of Example 3.22.

The point cloud data consist of two interlaced circles with
background noise embedded in R9 (Figure 7), similar to the
data used in (Carrière et al., 2021). See Figure 5, which
shows that the proposed multiparameter topological regu-
larization outperforms both no topological regularization,
and the one-parameter regularization of Equation (3). See
Appendix F.1 for details about this experiment.

Graph classification. In this experiment, we illustrate the
use of multiparameter topological optimization for deep
learning on graph data, since graph classification is known to
be a useful application of topology-based methods (Zhao &
Wang, 2019; Hofer et al., 2020b; Carrière et al., 2020; Zhao
et al., 2020a; Horn et al., 2022b; Loiseaux et al., 2023b).
We use the setup developed in (Horn et al., 2022b), in which
node and edge attributes are learned at the same time that a
graph neural network classifier is trained, with the attributes
being computed using topological descriptors. The authors
of (Horn et al., 2022b) study the performance of using k
one-parameter descriptors, using k different node attributes.
We compare the use of k, independent, one-parameter topo-
logical descriptors, against the use of a single k-parameter
topological descriptor. Since attributes are learned, the de-
scriptors used must be differentiable, and this is where the
application of our theory lies. Details are in Appendix F.2.

Table 1 shows classification performances of a graph neu-
ral network architectures complemented with either no
topology (*-NOTOP), one-parameter PH as in (Horn et al.,
2022b) (*-OPTOP), and multiparameter PH (*-MPTOP).
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(a) Point cloud X (b) X optimized with (2) (c) X optimized with (1) (d) X optimized w/ (1) + regul.

(e) Point cloud Y (f) Y optimized with (2) (g) Y optimized with (1) (h) Y optimized w/ (1) + regul.

Figure 4. Optimizing the holes of point clouds. The colors indicate the log-values of the density estimator.

Figure 5. Rows correspond to datasets (top has less background
noise), and columns correspond to no topological regularization,
one-parameter regularization, and multiparameter regularization.
One-parameter regularization is very susceptible to noise points,
while no topological regularization can fail to close the circles and
preserve topology. Interestingly, no topological regularization be-
haves better with many noise points, possibly due to the metric loss
having more distances to work with. Multiparameter topological
regularization ensures the preservation of topology in both cases.

Our goal is not to obtain state-of-the-art results, but rather
show a positive improvement when using multiparameter
homological descriptors instead of one-parameter ones.

5 Conclusions
In order to address the fact that there is no unique homolog-
ical descriptor of multifiltrations, we introduce a theoretical
framework for studying the differentiability and gradient
descent convergence of general topology-based losses of
multiparameter filtrations. Our main theoretical results give
conditions ensuring differentiability and convergence of
the stochastic subgradient method, and show that this ap-

Model ENZYMES IMDB-B IMDB-M MUTAG

GCN-NOTOP 30.3±8.1 73.2±6.4 44.9±7.6 87.2±5.6
GCN-OPTOP 28.8±7.5 75.2±5.6 51.2±4.4 84.1±8.9
GCN-MPTOP 39.0±10.1 78.4±5.1 51.1±3.5 85.1±7.7

GIN-NOTOP 47.0±12.9 71.2±5.4 47.1±2.9 87.2±8.0
GIN-OPTOP 45.3±11.8 75.0±2.7 47.5±5.0 88.3±8.9
GIN-MPTOP 46.5±11.2 71.3±5.1 48.5±4.2 87.2±6.1

GraphResNet-NOTOP 42.8±11.0 75.3±5.3 49.4±4.3 88.8±5.2
GraphResNet-OPTOP 39.5±12.2 68.1±8.2 40.7±3.5 87.8±4.3
GraphResNet-MPTOP 44.3±9.8 69.4±5.8 50.1±4.4 89.3±6.1
GraphDenseNet-NOTOP 43.2±10.4 50.3±5.9 33.1±2.7 88.8±5.2
GraphDenseNet-OPTOP 47.3±12.3 50.0±7.1 32.7±4.2 86.2±8.3
GraphDenseNet-MPTOP 48.0±11.4 52.2±7.7 34.1±3.1 92.6±5.1

Table 1. Bold denotes best score and underline best between one-
and multiparameter topology. As one can see, it is usually better
to use differentiable multiparameter topological descriptors.

plies to topological descriptors of very different flavors,
demonstrating the flexibility of our approach. Our numeri-
cal experiments show positive improvements with respect
to one-parameter homological optimization.

Limitations and future work. An inherent limitation of
multiparameter persistent homology is that it is generally
computationally demanding. This can be dealt with in
practice by subsampling or other sparsification techniques
(Alonso et al., 2023). To complement this, one could adapt,
to the multiparameter case, the optimization with big steps
of (Nigmetov & Morozov, 2024), to speed up optimization.

It remains a possibility that our theory does not apply to
topological descriptors to be introduced in the future; we
believe that suitable generalizations (e.g., descriptors that
are definably determined on grids, as in Remark 3.18), will
at the very least encompass a large class of descriptors.

On the applications side, future work includes regularizing
NNs (Chen et al., 2019) with multiparameter persistence.
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A More background

A.1 Partial optimal transport

A.1.1 DEFINITION

We define optimal transport between signed measures on a metric spaces, and partial optimal transport between signed
measures on a metric pair. This allows one to model the scenario in which one considers signed measures on a space M
and optimal transport plans that are allowed to “throw mass away” in a certain subset Z ⊆M . Partial optimal transport is
relevant in topological data analysis (Divol & Lacombe, 2021) and in optimal transport problems in general (Figalli & Gigli,
2010). For more context, see Appendix A.1.2.

Let M be an extended metric space, that is, a set together with a function dM :M ×M → [0,∞] that is symmetric, which
satisfies the triangle inequality, and such that dM (x, y) = 0 if and only if x = y ∈M .

The set DM(M) of discrete measures on M admits an extended metric, called the optimal transport distance and denoted
OT, which we now define. Given µ, ν ∈ DM(M), let

assign(µ, ν) :=
{(
I fin. set , β : I→M

γ : I→M

)
:
µ =

∑
i∈I δβ(i)

ν =
∑

i∈I δγ(i)

}
,

and for every a = (I, β, γ) ∈ assign(µ, ν), define cost(a) :=
∑

i∈I dM (β(i), γ(i)). Then, the set DM(M) together with
the function

OT(µ, ν) := inf{cost(a) : a ∈ assign(µ, ν)},

with the convention that the infimum over an empty set is +∞, is an extended metric space.

The optimal transport distance extends to DSM(M), the set of discrete signed measures on M , by reduction to the positive
case: define OT(µ, ν) := OT(µ+ + ν−, ν+ + µ−), where the signs + and − in superscripts indicate the positive and
negative parts of the signed measures according to their Jordan decomposition.

Then, discrete signed measures on a metric pair are defined as follows.

Definition A.1. If Z ⊆ M is any subset, the set of discrete signed measures on the pair (M,Z) is DSM(M,Z) :=
DSM(M \ Z).

It may seem from Definition A.1 that the subset Z is hardly playing any role; this is not so, since the partial optimal transport
distance (Definition A.2) uses Z in a crucial way.

One can extend the optimal transport distance on discrete signed measures to the partial optimal transport distance on the set
DSM(M,Z) of discrete signed measures on (M,Z) that, informally, allows one to “throw mass away” in the subset Z.
This is defined formally as follows.

Definition A.2. Let µ, ν ∈ DSM(M,Z), their partial optimal transport distance is

OT(µ, ν) := inf
{
OT(µ, ν) : µ , ν ∈ DSM(M) , µ = µ|M\Z , ν = ν|M\Z

}
.

Then, the set DSM(M,Z) endowed with the partial optimal transport distance is an extended metric space (see Ap-
pendix A.1.2).

We use the same notation for the optimal transport distance and the partial optimal transport distance, as these are defined
over two different spaces.

A.1.2 CONTEXT

Note that, depending on the context, optimal transport distances are named after different people, including Kantorovich,
Monge, Rubinstein, and Wasserstein.

Since in this paper we deal with discrete measures, our optimal transport distances take a particularly simple form, which
reduces its computation to an assignment problem; we refer the reader to (Bubenik & Elchesen, 2022) for a detailed
exposition—from the lens of topological data analysis—of the concepts introduced here; in the cited paper, the measures
we consider are called virtual persistence diagrams (Definition 4.10 of (Bubenik & Elchesen, 2022)). Then, Corollary 4.9
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of (Bubenik & Elchesen, 2022) implies that our partial optimal transport distance (Definition A.2) does in fact endow
DSM(M,Z) with an extended metric.

Partial optimal transport between signed measures is not as develop as its positive (i.e., unsigned) counterpart, but note that
Proposition 5.19 of (Bubenik & Elchesen, 2022) gives very general conditions under which their notion of partial optimal
transport for positive measures (which, in the case of discrete measures restricts to ours) coincides with that of (Figalli &
Gigli, 2010).

A.2 The rank decomposition signed measure

The rank decomposition signed measure is a generalization of the well-known one-parameter barcode (also known as
persistence diagram); and instead of being a measure on the space of intervals (or bars) in R, it is a signed measure on the
space of higher dimensional bars, which we now define. If n ≥ 1 ∈ N, let

barsn = {(r, s) ∈ (Rn ∪ {∞})2 : r ≤ s} ⊆ (Rn ∪ {∞})2 .

As in the one-parameter case, short bars are bars close to the diagonal, defined as ∆ := {(r, r)} ⊆ barsn.

Definition A.3. Let f ∈ Filn(K) and let i ∈ N. The ith rank decomposition signed measure is the unique signed measure
µrk
Hi(f)

∈ DSM (barsn,∆) such that, for all r ≤ s ∈ Rn ∪ {∞},

rk

(
Hi(f)(r)

φf
r,s−−→ Hi(f)(s)

)
= µrk

Hi(f)
(C(r, s)) ,

where C(r, s) = {(r′, s′) ∈ barsn : r′ ≤ r, s′ ≰ s}.

Existence and uniqueness follows from Corollary 5.6 of (Botnan et al., 2022a).

In order to make barsn into an (extended) metric space, we endow Rn and (Rn ∪ {∞})2 with the extended distance induced
by ∥ − ∥∞, with the convention that |∞ − x| = |x−∞| = ∞ if x ̸= ∞ and |∞ −∞| = 0.

In particular, in the one-parameter case, DSM(bars1,∆) is the usual set of one-parameter persistence barcodes, and the
descriptor µrk is the one-parameter barcode.

A.3 Isomorphism invariance

Let K and K ′ be simplicial complexes with underlying sets X and X ′, respectively. An isomorphism between K and K ′

consists of a bijection ψ : X → X ′ such that σ = {x0, . . . , xi} ∈ K if and only if ψ(σ) := {ψ(x0), . . . , ψ(xi)} ∈ K ′.

Example A.4. Two graphs are isomorphic as graphs if and only if they are isomorphic as simplicial complexes.

An isomorphism between filtrations f ∈ Filn(K) and g ∈ Filn(K
′) consists of an isomorphism of simplicial complexes

ψ : K → K ′ such that g ◦ ψ = f .

Definition A.5. A family of descriptors {αK : Filn(K) → A}K indexed by all finite simplicial complexesK is isomorphism
invariant if α(f) = α(g) ∈ A whenever f and g are isomorphic filtrations.

Since homology is isomorphism invariant, it follows that all descriptors that only rely on homology are also isomorphism
invariants. In particular, we have the following.

Proposition A.6. The Hilbert function, rank invariant, Hilbert decomposition signed measure, and rank decomposition
signed measure are isomorphism invariant.

B Convergence of the stochastic subgradient method with topological descriptors

B.1 Details about the stochastic subgradient method

Assumption B.1. (a) The sequence {ak}k∈N is such that ak ≥ 0 for all k ∈ N,
∑

k ak = ∞, and
∑

k a
2
k <∞.

(b) Almost surely, supk ∥xk∥ <∞.
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(c) The sequence of random variables {ζk}k∈N has the property that there exists a function p : Rd → [0,∞), bounded on
bounded sets, such that

E[ζk|Fk] = 0 and E[∥ζk∥2|Fk] < p(xk),

almost surely, where Fk = σ(xj , yj , ζj)j<k is the increasing sequence of σ-algebras generated by x, y, and ζ up to k.

We comment on how to satisfy the Assumption B.1 in Remark B.5

The following is a simple adaptation of a main result from (Davis et al., 2020).

Proposition B.2. Assume given a simplicial complex K, a number of parameters n ≥ 1 ∈ N, and functions

Rd Φ−−−→ Filn(K)
α−−−→ RD E−−−→ R.

Assume the following:

1. The loss function L := Φ ◦ E ◦ α : Rd → R is locally Lipschitz.

2. The function α is semilinear.

3. The functions Φ and E are definable over a common o-minimal structure.

Under Assumption B.1, almost surely, every limit point of the iterates of the stochastic subgradient method is critical for the
loss L, and the sequence of loss values converges.

Proof. We use Corollary 5.9, part (stochastic subgradient method), of (Davis et al., 2020). In the notation of that result, we
are considering f = L = E ◦α ◦Φ, which is locally Lipschitz by assumption (1). By assumption (3), the functions Φ and E
are definable over a common o-minimal structure O, and by assumption (2), it follows that L = E ◦ α ◦ Φ is definable over
O (since semilinear functions are definable over all o-minimal structures (van den Dries, 1998)). Since functions definable
over an o-minimal structure are Whitney Cp-stratifiable for any p ≥ 1 ∈ N (van den Dries & Miller, 1996), it follows that
f = L is Whitney Cd-stratifiable.

B.2 Proof of Theorem 1.1

The statements not involving the optimization pipeline E ◦ α ◦ Φ are the contents of Theorem 3.19 and Proposition 3.20.
For the convergence of the stochastic subgradient method, we use Proposition B.2, and to satisfy condition (2) we use and
Theorem 3.19 and the fact that α is semilinearly determined on grids, by assumption.

B.3 On the assumptions of Theorem 1.1 and possible extensions

We comment on possible uses and generalizations of Proposition B.2 and thus of Theorem 1.1.
Remark B.3. The optimization pipeline considered in Theorem 1.1 typically arises in ML contexts where PH is used as
the initial data featurization step. For instance, when the input data are filtered point clouds to be optimized, the map Φ
can build the corresponding function-Rips bifiltration, while the map E can be the loss associated to some neural network
architecture into which the vectorized invariant is plugged.

Beyond that, Theorem 1.1 can easily be adapted to encompass a larger variety of use cases, using stronger results of (Davis
et al., 2020), such as those in Section 6 of (Davis et al., 2020). For instance, one can consider composites L ◦ F , where
F : Rp → Rd is both locally Lipschitz and definable over the same o-minimal structure as L (for instance, F could be some
neural network), which enables for instance the use of PH as an intermediate step (as opposed to the initial step) in the
learning pipeline, with back-propagation of the gradients via the chain rule. Alternatively, one can consider sums L+ L′

where L′ is another objective function (possibly non-topological) that is both locally Lipschitz and definable over the same
o-minimal structure as L, which enables for instance the use of PH as a topological regularizer. Finally, one can also restrict
the domain of Φ, also as regularization.

We now comment on the different conditions of Proposition B.2.
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Remark B.4. Assumption B.1 contains technical conditions about the choices made for the stochastic subgradient method.
We comment on how these can be met in Remark B.5.

Condition (3) is often easy to meet; for example, by the second main result of (Wilkie, 1996), this holds automatically if
the functions consist of combinations of algebraic and exponential functions (see Section 3.3 of (Carrière et al., 2021) for
examples for Φ that are particularly relevant in topological optimization).

The theoretical results of this paper are specifically about meeting the conditions involving the topological descriptor α:
assumptions (1) and (2).

Finally, we comment on how to satisfy the standard assumptions for the stochastic subgradient method (Assumption B.1).
Remark B.5. Condition (a) is immediate to satisfy, since we have control over the choice of learning rate. Condition (c)
is satisfied, for example, by any sequence of random variables {ζk} with zero mean, bounded variance, independent, and
independent of {xk} and {yk}. Although condition (b) seems more difficult to satisfy, as it involves proving something about
the behavior of the stochastic subgradient method, it is known that it can be dealt with by adding a suitable regularization
(for example, in the form of a non-topological loss L′ as in Remark B.3) forcing the iterates of the stochastic subgradient
method to remain in a bounded region, or simply by restricting the domain of Φ; we refer the interested reader to Section 6.1
of (Davis et al., 2020).

C Proofs of Section 3

C.1 Proofs of Section 3.1

Proof of Lemma 3.4. The function (Rn)K → (RK)n in the statement is clearly a linear diffeomorphism, since its inverse is
given by mapping (g1, . . . , gn) to the function K → Rn given by sending σ to (g1(σ), . . . , gn(σ)). It follows directly from
the definition of cells that this function restricts to a bijection cell(f) ∼= cell(f1)× · · · × cell(fn), concluding the proof.

Lemma C.1. The set {cell(f) : f ∈ Filn(K)} is finite.

Proof. Given f ∈ Filn(K), we have gridf = [m1]× · · · × [mn] with mi = |fi(K)|, so mi ≤ |K|. Thus, there are finitely
many product posets gridf that can be obtained. Moreover, there are finitely many possible maps K → gridf into each of
these finitely many posets.

Proof of Lemma 3.5. The first statement follows from the second and Lemma C.1, since distinct cells are disjoint, the union
of all cells is exactly Filn(K), and finite unions of semilinear sets are semilinear. So it remains to show that all cells are
semilinear. By Lemma 3.4, it is sufficient to prove it in the one-parameter case, that is for f ∈ Fil1(K).

Given σ, τ ∈ K, define a polynomial Pσ,τ : RK → R as Pσ,τ (h) = hσ − hτ , and a set Sσ,τ ⊆ RK as follows:

Sσ,τ =


{h ∈ (Rn)K : Pσ,τ (h) = 0} if f(σ) = f(τ)

{h ∈ (Rn)K : Pσ,τ (h) < 0} if f(σ) < f(τ)

{h ∈ (Rn)K : Pσ,τ (h) > 0} if f(σ) > f(τ).

Note that ordh = ordf if and only if the preorder on the simplices of K induced by h is equal to that induced by f , and, in
turn, this is true if and only if h ∈

⋂
σ,τ∈K Sσ,τ . Thus, cell(f) =

⋂
σ,τ∈K Sσ,τ , which is a finite intersection of semilinear

sets, and thus semilinear.

Proof of Lemma 3.9. We prove that incl([m]) ⊆ Rm is open, convex, and semilinear for every m ≥ 1 ∈ N; this is sufficient,
since incl(G) = incl(G1)× · · · × incl(Gn) can then be written as a finite intersection of open, convex, and semilinear sets.

The fact that incl([m]) ⊆ Rm is open follows directly from its definition, which uses strict inequalities. Convexity follows
from the fact that r1 < · · · < rn and s1 < · · · < sn implies ar1 + bs1 < · · · < arn + bsn for any a, b ≥ 0 ∈ R. We reduce
the semilinearity statement to Lemma 3.5, as follows. Let K be the simplicial complex on the set {0, . . . ,m− 1} that has
one 0-simplex for each element and no higher-dimensional simplices. Consider the filtering function f ∈ Fil1(K) with
f(i) = i, for i ∈ {0, . . . ,m− 1}. Then, a straightforward check shows that incl([m]) = cell(f), so the result follows from
Lemma 3.5.
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Proof of Lemma 3.12. Since everything is defined componentwise, it is sufficient to prove this for f ∈ Fil1(K).

The fact that the function is linear is evident from its definition; it thus suffices to prove that it is a bijection. Consider the
function F : incl(gridf ) → cell(f) mapping any injective and monotonic function κ : gridf → R to κ ◦ ordf . We prove
that F is the inverse of C∗.

Right inverse. If κ ∈ incl(gridf ), then C∗(F (κ)) = κ ◦ ordf ◦ C = κ, by the fact that C is a carrier for f .

Left inverse. If g ∈ cell(f), then F (C∗(g)) = g ◦ C ◦ ordf = ιg ◦ ordg ◦ C ◦ ordf = ιg ◦ ordf ◦ C ◦ ordf = ιg ◦ ordf =
ιg ◦ ordg = g, using the fact that g = ιg ◦ ordg , the fact that ordg = ordf twice, and the fact that C is a carrier for f .

C.2 Proofs of Section 3.2

Proof of Proposition 3.15. We start by proving existence. Consider the function pushαh : incl(G) → A given by mapping
κ ∈ incl(G) to α(κ ◦ h) ∈ A. If f ∈ Filn(K) with gridf = G and ordh = h and g ∈ cell(f), we have pushαh(ιg) =
α(ιg ◦ h) = α(ιg ◦ ordf ) = α(ιg ◦ ordg) = α(g). This shows existence.

We now show uniqueness. Suppose p : incl(G) → A also satisfies that, if f ∈ Filn(K) with gridf = G and ordf = h, then
α = p ◦ itsIncl. Note that, if κ ∈ incl(G) and d = κ ◦ h, then since hi : K → Gi is surjective for all 1 ≤ i ≤ n, it follows
that gridd = G and ordd = h. Let f ∈ Filn(K) such that gridf = G and ordf = h (note that such a function always exists
by taking, e.g., f = κ ◦ h for any κ ∈ incl(G)). Now, if κ ∈ incl(G), then p(κ) = p(ικ◦h) = α(κ ◦ h) = pushαh(κ), as
required.

Proof of Corollary 3.13. It’s enough to prove that itsIncl = C∗ ◦ If : cell(f) → incl(gridf ); the second claim follows then
follows directly from Lemmas 3.4, 3.9 and 3.12.

Given g ∈ cell(f) and x ∈ gridf , we compute as follows

ιg(x) = ιg(x1, . . . , xn)

= ιg
(
ordf1(C1(x1)), . . . , ordfn(Cn(xn))

)
= ιg

(
ordg1(C1(x1)), . . . , ordgn(Cn(xn))

)
=

(
ιg1(ordg1(C1(x1))), . . . , ιgn(ordgn(Cn(xn)))

)
=

(
g1(C1(x1)) . . . , gn(Cn(xn))

)
= If (g)(C(x))

= C∗(If (g))(x).

Thus, ιg = C∗(If (g)) : gridf → Rn, as required.

D Semilinearity of known invariants
We start by providing a proof of Theorem 1.2, which is a direct consequence of the results in this section.

The sorted Hilbert decomposition is defined in Definition D.4, and the evaluated multiparameter persistence landscape is
defined in Definition D.7.

Proof of Theorem 1.2. This is a direct consequence of Proposition D.5 and Proposition D.8.

D.1 Semilinearity of Hilbert decomposition signed measure

We do the case of the Hilbert decomposition signed measure, and thus that of discrete signed measures on Rn; the case of
the rank decomposition signed measure is only slightly more verbose, but not conceptually harder.

In order to prove semilinearity, we must represent the Hilbert decomposition signed measures as elements of a finite
dimensional vector space.

For notational clarity, fix n ≥ 1 ∈ N, i ∈ N, and a simplicial complex K.
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In Appendix D.1.1, we prove a technical result stating that the Hilbert decomposition signed measure has a constant
number of positive and negative masses on each cell. In Appendix D.1.2, we prove the semilinearity of the sorted Hilbert
decomposition.

D.1.1 CONSTANT NUMBER OF POINT MASSES

It is convenient to also consider discrete signed measures on discrete sets, such as grids. In this case, we do not define
optimal transport distances, since we do not make use of these.

Lemma D.1. Let i ∈ N. Let G = G1 × · · · × Gn be a finite grid and let h ∈ FilG(K). There exists a signed measure
µHil
Hi(h)

∈ DSM(G) such that, for every grid inclusion κ ∈ incl(G) we have

µHil
Hi(κ◦h) = κ# µ

Hil
Hi(h)

∈ DSM(Rn),

where κ# : DSM(G) → DSM(Rn) denotes the push forward of measures induced by the inclusion κ : G → Rn.

Proof. The existence of µHil
Hi(h)

∈ DSM(G) follows from the existence of Hilbert decompositions (Oudot & Scoccola,
2024). The equality between measures follows from the uniqueness of µHil

Hi(κ◦h).

Note that push forwards of discrete measures by any function (such as κ in Lemma D.1) have a very simple expression: all
one needs to do is to apply the function to the coordinates of each of the point masses.

Lemma D.2. Let f ∈ Filn(K). There exists pf , qf ∈ N such that, for every g ∈ cell(f), the number of positive
(resp. negative) point masses of µHil

Hi(g)
is pf (resp. qf ).

Proof. This follows immediately from Lemma D.1 and the fact that κ is injective, so that no positive-negative pair of masses
cancels.

D.1.2 PROOF OF SEMILINEARITY

Lemma D.2 allows us to index the coordinates of the point masses of µHil
Hi(g)

in a convenient way, as follows.

Construction D.3. Let C ∈ N be the number of cells of Filn(K), which is finite by Lemma C.1. Choose representatives
f1, . . . , fC ∈ Filn(K) of the cells of Filn(K). Consider the finite set

indMass′ :=


(c, s, j) ∈ N× {+,−} × N, such that

1 ≤ c ≤ C,
1 ≤ j ≤ pfc , if s = +
1 ≤ j ≤ qfc , if s = −

 ,

and define the disjoint union indMass := {1, . . . , C} ⨿ indMass′.

Given g ∈ Filn(K), let 1 ≤ e ≤ C such that g ∈ cell(fe). Using Lemma D.2, consider the unique ordering x1, . . . , xpfe ∈
Rn of the positive point masses of µHil

Hi(g)
that is compatible with the lexicographic order of Rn. Analogously, let

y1, . . . , yqfe ∈ Rn be the unique order of the negative point masses of µHil
Hi(g)

that is compatible with the lexicographic
order of Rn.

Consider the element sortHil(g) ∈ RindMass defined by

sortHil(c) =

{
0 if c ̸= e

1 if c = e,

when c ∈ {1, . . . , C}, and by

sortHil(c, s, j) =


0 if c ̸= e

xj if c = e and s = +

yj if c = e and s = −,

when (c, s, j) ∈ indMass′.
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In words, sortHil(g) contains the information of which cell g belongs to, as well as the coordinates of the point masses of
the Hilbert decomposition signed measure of g.

Definition D.4. Let i ∈ N. Define the ith sorted Hilbert decomposition as sortHil : Filn(K) → RindMass, as in Construc-
tion D.3.

Proposition D.5. The sorted Hilbert decomposition is semilinearly determined on grids, and thus semilinear.

Proof. By Theorem 3.19, it is sufficient to let f ∈ Filn(K) be arbitrary, and show that the function pushsortHilordf : incl(gridf ) →
RindMass is semilinear. This function is in fact affine.

To see this, we let h = ordf and use Lemma D.1. This guarantees that each point mass of µHil
Hi(g)

lies on top of ιg(x) for
some element x ∈ gridf , and thus varies affinely with respect to ιg ∈ incl(gridf ). Moreover, the lexicographic order of the
point masses of µHil

Hi(g)
does not change as g varies: the order on gridf induced by pulling back the lexicographic order of

Rn along any inclusion ιg is the same for all g ∈ cell(f). This implies that sortHil(g) varies affinely with respect to inclg as
long as g ∈ cell(f), as required.

D.2 Semilinearity of the multiparameter persistence landscape

For ease of notation, let us fix a simplicial complex K, a number of parameter n ≥ 1 ∈ N, and a homological dimension
i ∈ N.

We now recall the definition of multiparameter persistence landscape from (Vipond, 2020). Note that (Vipond, 2020) works
with general multiparameter persistence modules; we specialize the definition to the case of a homology multiparameter
persistence module.

Definition D.6. Let f ∈ Filn(K). Let k ≥ 1 ∈ N. The kth multiparameter persistence landscape of Hi(f) is the function
λkf : Rn → R defined by

λkf (z) := sup
{
ε ≥ 0 ∈ R : rkf (z − h, z + h) ≥ k for all h ∈ Rn

≥0 with ∥h∥∞ ≤ ε
}
∈ R,

where we write rkf = rk(Hi(f)), to simplify notation.

By convention, the supremum of an empty set is taken to be zero. Note that this supremum is always finite since the support
of Hi(f) : Rn → vecF is bounded from below.

As a function of f ∈ Filn(K), the multiparameter landscape takes values in a space of functions Rn → R, which is not
a finite dimensional vector space. In order to prove a semilinearity result, we consider the evaluation of the landscape at
points of Rn, and show that this is semilinear.

Definition D.7. Let z0 ∈ Rn. The evaluated multiparameter persistence landscape is the descriptor Filn(K) → R mapping
f to λkf (z0).

In fact, we prove the following stronger result, which, down the line, allows for the optimization of the points over which the
landscape is evaluated.

Proposition D.8. The evaluated multiparameter persistence landscape is linearly determined on grids, and thus semilinear.
Moreover, the function Filn(K)× Rn → R mapping (f, z) to λkf (z) is semilinear.

To simplify notation even more, let us fix k ≥ 1 ∈ N and let λf := λkf .

Let 1 = (1, . . . , 1) ∈ Rn. Multiparameter landscapes can be computed using lines of slope 1 as follows (see Lemma 21 of
(Vipond, 2020)): λf (z) = sup {ε ≥ 0 : rkf (z − 1ε, z + 1ε) ≥ k}. In particular, we get the following, by the monotonicity
of the rank:

λf (z) = sup {min(r, s) : r, s ≥ 0 ∈ R, rkf (z − 1r, z + 1s) ≥ k} . (4)
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Figure 6. Illustration of the main constructions involved in Proposition D.8.

We now give some useful constructions for the proof of Proposition D.8. Given x, z ∈ Rn and y ∈ Rn ∪ {∞}, let

d↓(z, x) :=

{
0 if x ≰ z

min
1≤j≤n

|zj − xj | if x ≤ z

d↑(z, y) :=


∞ if y = ∞
0 if z ≥ y ∈ Rn

max
1≤j≤n

s.t. zj≤yj

|zj − yj | if z ≱ y ∈ Rn

d↕(z, x, y) := min (d↓(z, x), d↑(z, y)) .

Given x, z ∈ Rn, y ∈ Rn ∪ {∞}, with x ≤ z and z ≱ y, let

z ↓ x := z − 1d↓(x, z) ∈ Rn

z ↑ y := z + 1d↑(z, x) ∈ R∞ ∪ {∞},

which have the following property: if Uw = {u ∈ Rn : u ≥ w} ⊆ Rn, then z ↓ x is the intersection between the line
r 7→ z + 1r and ∂Ux, the boundary of Ux; and z ↑ y is the intersection between the line r 7→ z + 1r and ∂Uy. Note that,
by definition, we have ∥z − (z ↓ x)∥∞ = d↓(z, x) and similarly ∥z − (z ↑ y)∥∞ = d↓(z, y).

See Figure 6 for an illustration.

It is standard (and easy to see) that r 7→ rkf (z− 1r, z+ 1r) is constant as long as z− 1r and z+ 1r do not cross any of the
coordinates of the inclusion of the grid of f in Rn; more precisely, as long as z − 1r and z + 1r do not cross the boundary
of Uιf (a) for some a ∈ gridf . From this observation and Equation (4), we get

λf (z) = max
{
d↕(z, ιf (a), ιf (b)) : a < b ∈ gridf , rkordf (a, b) ≥ k

}
, (5)

where gridf = gridf ∪ {∞}, the function rkordf : {(a, b) : a < b ∈ gridf} → Z denotes the rank function of the
gridf filtration ordf : K → gridf , extended as rkordf (a,∞) := rkordf (a,max gridf ), and also extending ιf (∞) = ∞ ∈
Rn ∪ {∞}. The extension of gridf to gridf is a minor technical point required to handle cases in which a rank does not go
below k as its second coordinate goes to ∞, i.e., the case in which λf (z) = d↓(z, ιf (a)) and rkf (z ↓ ιf (a), z + 1r) ≥ k
for all r ≥ 0 ∈ R.

Since gridf is finite, the supremum of Equation (4) is now a maximum; and again we use the convention that a maximum
over an empty set is zero.

Proof of Proposition D.8. Let f ∈ Filn(K), and let g ∈ cell(f). Since gridg = gridf and ordg = ordf , we have, by
Equation (5),

λg(z) = max
{
d↕(z, ιg(a), ιg(b)) : a ≤ b ∈ gridf , rkordf (a, b) ≥ k

}
,

which is a maximum of finitely many semilinear functions that do not depend on g or z, and hence semilinear in both z and
ιg. It follows that the function Filn(K)× Rn → R mapping (g, z) to λg(z) is semilinear when restricted to cell(f)× Rn

for each f ∈ Filn(K), and thus semilinear. For the first claim, note that pushordf (ιg) = λg(z), and use Theorem 3.19.
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E Locally Lipschitz objective functions
In this section we prove Proposition E.4, which gives simple conditions under which an objective relying on the Hilbert
decomposition signed measure is locally Lipschitz.

In Appendix E.1, we prove a bound that allows us to deduce the stability of signed barcodes as measures descriptors. In
Appendix E.2, we use this to give sufficient conditions for a Hilbert decomposition signed measure-based loss function to be
locally Lipschitz.

E.1 An algebraic bound

Since this is the only section containing algebraic arguments, and these are encapsulated and only used in the stability result
Proposition E.3, we refer the reader to, e.g., (Oudot & Scoccola, 2024; Botnan & Lesnick, 2023) for background.

Lemma E.1. Fix a finite simplicial complex K and n ∈ N. There exists a constant B that only depends on K and n such
that, for every f ∈ Filn(K) and i ∈ N, the sizes of the Betti signed barcode (Oudot & Scoccola, 2024) and of the rank exact
decomposition (Botnan et al., 2022b) of the multiparameter persistence module Hi(f) : Rn → vecF are bounded above
by B.

Proof. We first prove the following.

Claim a. Fix n ∈ N. Let P → Q be a map of free n-parameter persistence modules, of ranks p, q ∈ N, respectively.
There exists a constant B′ only depending on n, p, q ∈ N (and not on P , Q, or the map between them), such that
b(ker(P → Q)) ≤ B′.

Proof of Claim a. This is a consequence of the main result of (Beecher, 2007), in the case where the chosen presentation is
not minimal.

Now, for any fixed f ∈ Filn(K), let Cf
• denote the associated chain complex of n-parameter persistence modules, whose

homology is the family of homology persistence modules H•(f). Note that, for every k ∈ N, the rank of the free module
Cf

k is independent of f . By definition of homology, we have Hi(f) = coker(Cf
i+1 → Zf

i ), where Zf
i is the kernel of the

boundary morphism Zf
i = ker(dfi : Cf

i → Cf
i−1).

To simplify notation, let b(M) denote the size of the Betti signed barcode of a multiparameter persistence module M , as in
(Botnan et al., 2022b).

Claim b. There exists a constant B′′, only depending on K and n (and not on f ), such that, for all k ∈ N, b(Zf
k ) ≤ B′′.

Proof of Claim b. Since Cf
k is non-zero only for finitely many k ∈ N (because K is finite), this follows from Claim a and

the fact that Zf
i = ker(Cf

i → Cf
i−1).

We now prove that b(Hi(f)) is bounded above by a constant that only depends on K and n. The bound for the rank exact
decomposition of Hi(f) follows from this and Proposition 5.28 of (Botnan et al., 2022b).

Note that ker(Ci+1 → Zi) ∼= ker(Ci+1 → Ci) = Zi+1, so we have a short exact sequence

0 → Ci+1/Zi+1 → Zi → Hi(f) → 0

By Lemma 5.1 of (Botnan et al., 2022b), to bound b(Hi(f)), it is thus enough to bound b(Ci+1/Zi+1) and b(Zi) by a
constant that only depends on K and n. To bound b(Zi) we use Claim b.

To bound b(Ci+1/Zi+1), we use Lemma 5.1 of (Botnan et al., 2022b), this time with the short exact sequence 0 → Zi+1 →
Ci+1 → Ci+1/Zi+1 → 0, and Claim b. This concludes the proof.

As a direct consequence of Lemma E.1, we get the following.

Corollary E.2. Fix a finite simplicial complex K and n ∈ N. There exists a constant B that only depends on K and n such
that, for every f ∈ Filn(K) and i ∈ N, the number of point masses in both µHil

Hi(f)
and µrk

Hi(f)
is bounded above by B.

22



Differentiability and Optimization of Multiparameter Persistent Homology

E.2 Locally Lipschitz signed measure-based objective functions

The next result follows easily from the main results of (Oudot & Scoccola, 2024; Botnan et al., 2022b), and the algebraic
bound (Lemma E.1).

Proposition E.3. Let K be a finite simplicial complex and let n, i ∈ N. The following functions are Lipschitz with respect
to any ℓp norm on Filn(K) ⊆ (Rn)K and the (partial) optimal transport distance on discrete signed measures:

µHil
Hi

: Filn(K) → DSM(Rn)

µrk
Hi

: Filn(K) → DSM (barsn,∆) .

Proof. From the bottleneck stability of the Betti signed barcode and the rank exact decomposition (Oudot & Scoccola,
2024; Botnan et al., 2022b) we obtain a partial optimal transport (Definition A.2) stability result (sometimes known as
1-Wasserstein stability result in the topological data analysis literature), as long as have a global bound on the number
of point masses. This is because the Hilbert decomposition signed measure is obtained from the Betti signed barcode by
cancelling equal masses that appear as positive and as negative (Remark 5.3 of (Oudot & Scoccola, 2024)); and the same is
true for the rank exact decomposition and the rank decomposition signed barcode. The bound on the number of masses is
the content of Lemma E.1.

Again, for notational clarity, fix n ≥ 1 ∈ N, i ∈ N, and a simplicial complex K.

Recall that sortHil denotes the sorted Hilbert decomposition (Definition D.4), which is a convenient representation of the
Hilbert decomposition signed measure as a vector of a finite dimensional space.

Proposition E.4. Assume given a locally Lipschitz function E′ : DSM(Rn) → R, and let E : RindMass → R be any
function such that E′ ◦ µHil

Hi
= E ◦ sortHil : Filn(K) → R. Then, E ◦ sortHil : Filn(K) → R is locally Lipschitz.

Proof. By assumption, E ◦ sortHil = E′ ◦ µHil
Hi

, and the right-hand side is a composite of a locally Lipschitz map E′, by
assumption, and a Lipschitz map µHil

Hi
: Filn(K) → DSM(Rn), by Proposition E.3.

Note that a function E as in Proposition E.4 always exists since all sortHil(f) is doing is encoding the point masses of the
signed measure µHil

Hi
(f) in a convenient way. In other words, E is simply an explicit representation of E′ when the signed

measure is encoded as in Construction D.3.

F Details about experiments

F.1 Details about autoencoder experiment

We use a simple autoencoder architectures with both encoders and decoders made of three layers of 32 neurons, with the first
two layers followed by ReLU activation and batch normalization. We then minimize a linear combination of the MSE loss
(between initial and reconstructed spaces) and the topological loss (4) (between initial and latent spaces), with weights 1 and
0.1 for the MSE and topological losses respectively, to account for the scale difference between the two losses. Optimization
is performed with Adam optimizer, learning rate 0.01, and 1000 epochs.

F.2 Details about graph data example

In order to create node and edge attributes from persistence diagrams3, the authors in (Horn et al., 2022b) propose to use the
natural bijections between persistence diagram points in dimension 0 (resp. dimension 1) with nodes (resp. edges) of the
graph4. These bijections can be used to permute the persistence diagrams, so that every node (resp. edge) can be associated
to its k corresponding persistence diagram points in dimension 0 (resp. dimension 1), and further processed with, e.g., a
DeepSet architecture, in order to create a single node vector that is added to the one obtained from graph convolutions. The
edge vectors, on the other hand, are pooled so as to create graph-level descriptors.

3I.e., one-parameter barcodes, or one-parameter rank decomposition signed measure µrk (Appendix A.2), in our language.
4Note that, in dimension 1, this bijection is only well defined after matching the edges that are not involved in the creation of any

graph cycle to an arbitrary persistence diagram point on the diagonal—see Section A.4 in (Horn et al., 2022b)
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Figure 7. Two point cloud datasets consisting of two interlaced circles with background noise, embedded in R9, similar to the data used
in (Carrière et al., 2021). The difference between the two datasets is the amount of background noise.

Unfortunately there is no such correspondence between nodes or edges and the Hilbert decomposition signed measure in
dimension 0 and 1. Hence, for a given node v with associated filtration values f(v) ∈ Rk (again, recall that f is obtained
from graph convolutions), we create node vectors in Rm by computing:

v 7→
∫
ψv,i dµ

Hil
H∗(f)

, 1 ≤ i ≤ m, (6)

where ψv,i is a function of the form ψv,i(p) = exp
(
−(p− f(v))TΣ−1

i (p− f(v))
)
, and the Σi’s are m learnable SPD

matrices in Rk×k. This is thus an instance of Example 3.23. These vectors are then mapped back to Rk with a fully
connected layer in order to add them to the original node attributes, as proposed in (Horn et al., 2022b). We use the same
procedure for edges, except that the edge vectors in Rm are pooled into graph-level descriptors.

For graph neural networks, we use Graph Convolutional Networks (GCN) (Kipf & Welling, 2017), Graph Isomorphism
Network (GIN) (Xu et al., 2019), Graph ResNet (He et al., 2016), and Graph DenseNet (Huang et al., 2017), All graph
architectures have four layers with 256 neurons, and, whenever topological vectors are used, they are placed after the second
layer and computed from k = 2 filtrations. In our experience, using a larger k produced comparable results at a higher
computational cost. GNNs are trained during 200 epochs with Adam optimizer with learning rate 0.001, and performance is
computed over 10 train/test folds.

24



Differentiability and Optimization of Multiparameter Persistent Homology

G Dependency graph and notation table

Figure 8. Dependency graph of the main definitions, results, and experiments in the paper.
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Symbol Description
K A finite simplicial complex (page 3).
(Rn)X The set of functions X → Rn (page 3).
Filn(K) ⊆ (Rn)K The set of n-filtrations of K (Definition 2.2).
F A field.
Φ : Rd → Filn(K) A parameterized family of filtrations.
Hi(K) The ith homology of K with coefficients in F.
Hi(f) The ith multiparameter persistent homology of an n-filtration f of K

(Definition 2.4).
Hil(Hi(f)) : Rn → Z The ith Hilbert function of f ∈ Filn(K) (page 3).
rk(Hi(f)) : {(r, s) ∈ (Rn)2 : r ≤ s} → Z The ith rank invariant of f ∈ Filn(K) (page 4).
M A metric space.
DM(M) The set of discrete measures on M (page 4).
DSM(M) The set of discrete signed measures on M (page 4).
OT The optimal transport distance on the space of discrete measures (Ap-

pendix A.1.1).
µHil
Hi(f)

∈ DSM(Rn) The ith Hilbert decomposition signed measure (Definition 2.5).
S ⊂ Rn A semilinear set (page 4).
∂L(z) The Clarke subdifferential of L at z ∈ Rd (page 4).
[m] The linear order {0 < 1 < · · · < m− 1} for m ∈ N.
G = G1 × · · · × Gn A grid (Definition 3.1).
gridf = [m1]× · · · × [mn] The grid induced by a filtration f (Construction 3.2).
ordf : K → gridf The unique linear preorder induced by a filtration f (Construction 3.2).
cell(f) ⊆ Filn(K) The cell of f ∈ Filn(K) (Definition 3.3).
incl([m]) The set of aligned grid inclusions of [m] into R (Construction 3.8).
incl(G) The set of aligned grid inclusions of a grid G into R[m1] × · · · × R[mn]

(Construction 3.8).
C : gridf → K A carrier for f ∈ Fil1(K) (Definition 3.11).
{Ci : gridfi → K}1≤i≤n A carrier for a multifiltration f ∈ Filn(K) (Definition 3.11).
itsIncl : cell(f) → incl(gridf ) Function mapping a filtration in the cell of f to its corresponding grid

inclusion (Definition 3.10).
FilG(K) The set of G-filtrations on K (page 6).
VR(X) The Vietoris–Rips filtration of a finite point cloud X ⊂ Rn.

Table 2. Notation Table.
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