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Highlights 17 

• Humanized animal models allow deciphering L. monocytogenes interactions with host 18 

tissues. 19 

• L. monocytogenes adapts to challenging environments inside and outside the host. 20 

• Sequence-tagged L. monocytogenes are instrumental to study infection within-host 21 

dynamics. 22 

• L. monocytogenes evades immune responses, favoring its systemic dissemination. 23 

 24 

Key future questions 25 

- What are the mechanism(s) of L. monocytogenes immune escape at the mucosal 26 

level? 27 

- What are the respective roles of microbiota, host and Listeria factors involved in L. 28 

monocytogenes fecal carriage and shedding in the environment? 29 

- What are the mechanism(s) underlying L. monocytogenes hypervirulence? 30 

 31 

  32 



Abstract 33 

Listeria monocytogenes (Lm) is a foodborne pathogen and the etiological agent of listeriosis. 34 

This facultative intracellular Gram-positive bacterium has the ability to colonize the intestinal 35 

lumen, cross the intestinal, blood-brain and placental barriers, leading to bacteremia, 36 

neurolisteriosis and maternal-fetal listeriosis. Lm is a model microorganism for the study of the 37 

interplay between a pathogenic microbe, host tissues and microbiota in vivo. Here we review 38 

how animal models permissive to Lm-host interactions allow deciphering some of the key 39 

steps of the infectious process, from the intestinal lumen to the crossing of host barriers and 40 

dissemination within the host. We also highlight recent investigations using tagged Lm and 41 

clinically relevant strains that have shed light on within-host dynamics and the purifying 42 

selection of Lm virulence factors. Studying Lm infection in vivo is a way forward to explore 43 

host biology and unveil the mechanisms that have selected its capacity to closely associate 44 

with its vertebrate hosts.  45 



Introduction 46 

Listeria monocytogenes (Lm) is a Gram-positive bacterium and the etiological agent of 47 

listeriosis, one of the deadliest foodborne infections. Listeriosis manifests as bacteremia and 48 

neurolisteriosis in elderly and immunocompromised patients, with a high fatality rate of 20 to 49 

30% even with appropriate antibiotic treatment, and maternal-fetal infection in pregnant 50 

women [1]. Lm is a highly diverse species that can be classified into clonal complexes (CCs) 51 

of uneven virulence [2,3] (reviewed in [4]). The CCs most prevalent in food samples and under-52 

represented in clinical cases tend to be hypovirulent compared to reference strains, invading 53 

less efficiently host tissues in a mouse model of infection, while they form more biofilm on 54 

food-processing environments [2,5]. In contrast, CCs over-represented in clinical cases tend 55 

to be hypervirulent compared to reference strains, colonize better the gut lumen, invade more 56 

efficiently host tissues and lead to higher fecal shedding [2,5,6]. 57 

 58 

Lm is widespread in the environment where it can thrive as a saprophyte, and is able to infect 59 

a wide range of hosts including vertebrates, from birds to mammals [7]. Importantly, Lm is 60 

frequently isolated from domestic ruminants, in which it can lead to rhombencephalitis and 61 

abortion, and be a source of contamination of dairy products [5,8-10]. Even though Lm host 62 

range is wide, murine laboratory animals are not permissive to orally-acquired listeriosis, due 63 

to the species specificities of Lm interactions with mammalian cells. Indeed, the Lm surface 64 

protein internalin (InlA), which mediates Lm internalization in epithelial cells [11], interacts with 65 

its receptor E-cadherin (Ecad) [12] in a species-specific manner that relies on the nature of its 66 

16th amino-acid [13]. It is a proline in permissive species and a glutamic acid in non-permissive 67 

species [13]. Mouse and rat Ecad exhibit a glutamic in position 16 and are therefore not able 68 

to serve as a receptor for InlA, in contrast to human, guinea pig, rabbit and gerbil [13,14]. InlB, 69 

another virulence factor of Lm, interacts with c-Met, the hepatocyte growth factor receptor [15], 70 

in human, gerbils and mice but not guinea pigs and rabbits [16]. Ideally, human listeriosis 71 

should therefore be studied in animals that are naturally permissive to both InlA and InlB, such 72 

as ruminants, gerbils, or non-human primates [14,17,18]. However, ethical considerations and 73 

the relative unavailability of molecular tools limits the use of these models. To circumvent 74 

these limitations, two genetically modified mouse models have been generated: iFABP-hEcad 75 

transgenic mice, which express human Ecad under the control of the enterocyte specific 76 

promoter iFABP [19], and the KIE16P knock-in mouse line in which mouse Ecad is specifically 77 

modified and harbors a proline at position 16 in place of a glutamic acid [14]. A "murinized" 78 

Lm expressing a modified version of InlA (InlAm) so that it interacts with mouse Ecad has also 79 

been generated [20] to overcome InlA-Ecad species specificity. However, InlAm happens to 80 

interact with both mouse E-cad and N-cadherin, which modifies Lm cell tropism at the intestinal 81 

level, leading to gut inflammation that delays and decreases Lm systemic dissemination [21]. 82 



Upon ingestion of contaminated food, Lm colonizes the gut lumen and can cross the intestinal 83 

barrier. Lm has the ability to spread systemically to the spleen and liver, and breach the blood-84 

brain and placental barriers, leading to neurolisteriosis and maternal-fetal listeriosis, 85 

respectively [22]. Recent studies have shown that Lm is shed back from infected tissues to 86 

the gut lumen, in particular via the bile duct, favoring its release in the feces and the 87 

environment [23,24]. Investigating how Lm crosses host barriers, amplifies in host tissues and 88 

is shed back to the environment is critical to understand the pathophysiology of listeriosis and 89 

the forces that have shaped its genome and selected its virulence factors. 90 

 91 
Lm adaptation to the host environment 92 

Sensing and adapting to the host — Once in the intestinal lumen, Lm has to adapt to the 93 

physical and chemical conditions of the gut. Sensing its environment is key for Lm to switch 94 

from saprophytism to a host-adapted phenotype [25]. The alternative sigma factor B (SigB) is 95 

the major Lm transcriptional factor of the general stress response and is activated through the 96 

stressosome, a multi-protein complex linked to the membrane by Prli42, a small protein 97 

essential for stress sensing by the stressosome [26] (reviewed in [27]). SigB has been shown 98 

to be required for Lm adaptation to the gut lumen [25]. It activates bsh transcription, which 99 

gene product allows bacteria to hydrolyze bile salts [28], and inlA and inlB transcription [29]. 100 

These genes, as well as the major virulence genes hly (encoding Listeriolysin O, LLO) 101 

and actA from Listeria pathogenicity island 1 (LIPI-1), are also under the control of the 102 

transcriptional factor PrfA, which is itself regulated by SigB, and is key to allow Lm transition 103 

from an extracellular to an intracellular environment (reviewed in [30]). prfA translation is 104 

activated at 37°C via an RNA thermosensor in its 5’UTR [31]. Activation of PrfA also requires 105 

the presence of its co-factor glutathione (GSH) synthetized by the host or the Lm glutathione 106 

synthase GshF [32,33]. GSH synthesis by GshF requires sensing the intracellular 107 

environment and host metabolites, as Lm is auxotrophic for cysteine, a precursor of GSH. It 108 

has been recently shown that methylglyoxal, a toxic byproduct of metabolism produced by the 109 

host and Lm, induces the expression of gshF [34]. The Opp Lm transporter imports peptides 110 

from the host cell cytosol that provides cysteine for GSH synthesis [35]. Another ABC 111 

transporter, TcyKLMN, is a cystine/cysteine importer also involved in GSH synthesis and 112 

activation of PrfA in infected cells [36]. Lm can also adapt to the redox state of its 113 

environment [37]. The transcriptional regulator Rex senses the ratio of reduced and oxidized 114 

nicotinamide adenine dinucleotides (NADH/and NAD+). It represses the fermentative 115 

metabolism and allows Lm to adapt to an intracellular oxygen-rich environment. Rex is 116 

dispensable for gut lumen colonization but is involved in spleen, liver and gallbladder 117 

infection [38]. 118 

 119 



Interaction with the host microbiota — The gut microbiota, which is constituted of >100 120 

bacterial species and >1013 bacterial cells per individual [39], exerts a protective role against 121 

orally acquired pathogens, a process called colonization resistance (reviewed in [40]). 122 

Conditions associated with an immature or disbalanced microbiota (e.g. young age or after 123 

antibiotic treatment) can increase host susceptibility to incoming pathogens such as group B 124 

streptococcus [41], Enterococcus faecium [42], Salmonella [43] or Clostridium difficile [44,45]. 125 

The microbiota can act directly through competition for nutrients, the production of 126 

bacteriocins, contact-dependent killing [46-48], or indirectly through stimulation of the host 127 

immune system [49,50]. 128 

The gut microbiota also plays a protective role against Lm infection in mice [23,51]: microbiota 129 

depletion by antibiotics increases susceptibility to Lm, but this effect can be rescued by a group 130 

of four Clostridia species, potentially by directly inhibiting or killing Lm [51]. Depleting the 131 

microbiota with antimicrobials can however also increase host protection against a second 132 

infectious challenge. Indeed, it leads to an increase in tissue resident memory CD8+ T cells, 133 

which protects the host against a second encounter with Lm [52]. It has also been shown that 134 

antibiotic-resistant commensal E. coli can indirectly protect sensitive Lm from anti-bacterial 135 

treatment, by favoring antibiotic degradation in the intestine [53]. The impact of microbiota 136 

composition on listeriosis has also been observed in aged mice, in which age-related dysbiosis 137 

favors Lm inflammation and infection [54]. 138 

Some Lm isolates, mostly belonging to Lineage I, also express bacteriocins which are active 139 

on the host microbiota and potentially decrease colonization resistance. Two Lm bacteriocins 140 

have been described so far: the bacteriocin LLS (encoded by LIPI-3), synthetized by strains 141 

from hypervirulent CCs [55,56], which induces membrane permeabilization of Gram-positive 142 

bacteria by direct contact [57] and Lmo2776, which targets Prevotella species, and is, for 143 

reasons which are not fully understood, associated to a decrease in Lm intestinal colonization 144 

[58] (Figure1). 145 

Lm might also compete with the microbiota when it is shed back into the intestinal lumen from 146 

host tissues after infection. Indeed, recent results show that Lm, but not its non-pathogenic 147 

related species can establish asymptomatic carriage in humans and other animals, being 148 

present in up to 10% of asymptomatic human stool samples. This process depends on the 149 

composition of the microbiota: Lm abundance in feces positively correlates with the ratio of 150 

abundance of (i) Firmicutes and (ii) Actinobacteria to Bacteroidetes phyla [59].  151 

Considering the wide range of interactions between this model microorganism and the host 152 

microbiota, Lm stands as a powerful model to further investigate the tripartite interplay 153 

between foodborne pathogens, their host and microbiota.  154 

 155 

Intestinal barrier crossing 156 



Transcytosis across goblet cells at the intestinal villus level — In vitro studies have 157 

demonstrated that Lm enters epithelial cells upon the interaction of InlA with its receptor E-158 

cadherin (Ecad) [11]. The critical role of InlA in crossing the intestinal barrier was shown in 159 

vivo in animal models naturally permissive to InlA-Ecad interaction (guinea pig, gerbils) and in 160 

genetically modified iFabp-hEcad and KIE16P mice [14,19]. However, Ecad forms adherens 161 

junctions, which are located below tight junctions on polarized epithelia, and is therefore 162 

inaccessible from the intestinal lumen. This apparent paradox was addressed by whole mount 163 

tissue imaging, which showed that Ecad can be luminally accessible around mucus-expelling 164 

goblet cells [60]. Upon inoculation of Lm into the intestinal lumen, Lm specifically associates 165 

with goblet cells and is transferred across these cells within vacuoles and is released in the 166 

lamina propria. This translocation is solely dependent on InlA, and is in particular independent 167 

of LLO and ActA, involved respectively in escape from the vacuole and intracytosolic 168 

movement (Figure1). Moreover, the translocation of Lm-containing vacuole also requires host 169 

microtubule dynamics and the exocytic machinery [60]. These results collectively indicate that 170 

Lm breaches the intestinal epithelium by transcytosis through goblet cells [60]. The molecular 171 

mechanism of Lm transcytosis has been studied in intestinal organoids in which Lm can be 172 

microinjected. The advantage of intestinal organoids also referred to as “minigut” is that it 173 

allows the differentiation in an in vitro context of goblet cells surrounded by classical 174 

enterocytes, and that they are easily genetically amenable [61]. In this experimental setting, 175 

Lm translocation across the intestinal epithelium can be imaged in real-time, and has been 176 

shown to last less than 12 minutes [62]. Lm-containing vesicle remains associated with the 177 

cell apex when endocytosis is inhibited, while transcytosis towards the cell basal pole requires 178 

functional host microtubules, in line with in vivo studies [60,62]. Finally, in organoids 179 

expressing a dominant-negative version of Rab11 (Rab11DN), Lm is stuck at the basal pole 180 

of goblet cells, enwrapped with mucus material, and fails to finalize its translocation [62]. 181 

These results collectively indicate that Lm hijacks the recycling of its receptor Ecad to cross 182 

the intestinal barrier through goblet cells [62] (Figure 1). 183 

 184 

Crossing of the intestinal barrier via M cells — The gut-associated lymphoid tissue (GALT) 185 

is distributed along the gastrointestinal tract. It consists of Peyer’s patches (PP) in the small 186 

intestine, cecal and colonic patches, and isolated lymphoid follicles. These immune structures 187 

sample luminal antigens and orchestrate the induction of mucosal immune responses. 188 

Microfold cells (M cells) are specialized epithelial cells that overlay the GALT, which 189 

phagocytic activity allows sampling luminal antigens. 190 

Lm can cross PP through M cells in InlA-independent manner, and this has been shown to be 191 

sufficient to trigger Lm intestinal tissue response to infection [63-65] (Figure 1). An in vitro 192 

study has reported that M cell infection by Lm may also propagate to neighboring enterocytes 193 



[66]. Once translocated via M-cells, Lm infects CX3CR1+ myeloid cells in PP, leading to the 194 

expression of IL-12 and IL-23 and subsequent decrease in the number of mature goblet cells. 195 

As a consequence, it locks InlA-dependent entry, while sensitizing the host to colitis [67]. 196 

Adaptive immune response to Lm at the PP level has been recently shown to be complement-197 

dependent. Indeed, lysozyme-expressing dendritic cells close to M cells in PPs express the 198 

complement C5a receptor (C5aR), and induce Lm-specific CD8+ T cells response in a C5a-199 

dependent manner [68]. 200 

As indicated above, Lm expressing a murinized version of InlA (InlAm) interacts not only with 201 

mouse Ecad [20], but also with luminally accessible N-cadherin expressed by villus M cells 202 

[21,64]. This artefactual entry elicits host immune responses at the villus level and epithelial 203 

damage, which are not observed with wild-type Lm infection [21]. This indicates a role for villus 204 

M cells in the induction of immune responses, in contrast to goblet cells [21,65]. Comparison 205 

of the mechanisms by which Lm-InlAm- and wt-Lm-dependent host responses are either 206 

triggered or prevented is therefore a way forward to investigate how host responses are 207 

differentially induced by M cells and goblet cells.  208 

 209 

Systemic dissemination  210 

Within-host dynamics of Lm infection — Once Lm has crossed the intestinal barrier, it 211 

spreads to inner organs (Figure 2). The standard method to follow a bacterial infection is to 212 

dissect animals at sequential time points post inoculation and count CFUs, and also to image 213 

bacteria in host tissues [69]. Use of bioluminescent bacteria allows following qualitatively and 214 

over time Lm infection within individual animals [14,70,71]. In order to follow and model the 215 

spatiotemporal dynamics of infection within the host, several methods based on tagged clones 216 

have been developed (reviewed in [72]). 217 

Lm within-host dynamics has been studied based on sequence tag–based analysis of 218 

microbial populations (STAMP), a methodology initially set up to study Vibrio cholerae 219 

intestinal phase of infection [73]. This technique makes use of hundreds of individually tagged 220 

bacterial clones, whose numbers and relative proportions are measured over time in various 221 

anatomical locations by high throughput DNA sequencing. This, combined to mathematical 222 

modelling allows evaluating the barrier exerted by each organ (bottleneck effect), by analyzing 223 

the clonality and the number of bacteria from the inoculum that reach the organs (founding 224 

population). It also allows comparing clones retrieved from various host organs and retrace 225 

their dissemination routes along the infectious process. 226 

The modelling of Lm infection was performed using STAMP with the 10403S reference strain 227 

modified so that it expressed InlAm, upon oral and intravenous (iv) inoculation. The founding 228 

populations in liver and spleen were relatively high, but decreased drastically in the 229 

gallbladder, which collects the bile produced by the liver to release it in the duodenum, the 230 



proximal part of the intestine. Comparison of the tags between the gallbladder and the gut 231 

upon iv inoculation indicates that the gallbladder is a reservoir fueling Lm fecal shedding in 232 

this model [24], a phenomenon which is dependent on both LLO and ActA, two core virulence 233 

genes of Lm [3,23]. The observation of the low number of tags and the implication of LLO and 234 

ActA in gallbladder-mediated shedding of Lm in the gut suggests that Lm release by the biliary 235 

tract is involved in the purifying selection of virulence genes [3,23]. 236 

 237 

Infection of mesenteric lymph nodes and spleen — The mesenteric lymph nodes (MLN) 238 

are lymphoid organs that drain lymph irrigating the intestinal mucosa. As such, they become 239 

rapidly infected upon oral inoculation of Lm [19] (Figure 2). A recent study using Lm InlAm 240 

suggests that migration to and bacterial accumulation into MLN occurs in a dendritic cell- (DC) 241 

dependent manner and triggers a robust CD8+ T cell response [74]. However, it remains to be 242 

determined where Lm mostly disseminates from (intestinal villi vs. PPs vs. cecum vs. colon), 243 

and if the infection route plays a role in host responses. 244 

The spleen is the major lymphoid organ filtering the systemic circulation and plays a critical 245 

role in controlling bloodborne infections (reviewed in [75]). The histological structure of the 246 

spleen includes the red and white pulps and marginal zone (MZ), which contain different 247 

populations of immune cells. Upon crossing the intestinal barrier, Lm disseminates rapidly 248 

from the bloodstream to the spleen (Figure 2). It is taken up mainly by MZ macrophages. 249 

Depletion of MZ macrophages leads to the spread of Lm to the red pulp and exacerbation of 250 

the infection [76]. These cells are therefore crucial for early bacterial control and represent a 251 

critical line of defense against Lm, in line with their strategic location in the spleen [77]. MZ 252 

macrophages closely interact with MZ CD8a+ DCs to initiate Lm transfer to T cell zones and 253 

induce effective adaptive immune responses, while the mechanism of Lm transmission from 254 

MZ macrophages to DCs remains to be elucidated [77]. In infected phagocytes, Lm escape 255 

from the vacuole induces the production of prostaglandin E2 (PGE2), which is necessary for 256 

an effective T-cell priming [78]. Splenic DCs can also initiate innate immune responses by 257 

inducing TNF and iNOS to clear bacteria through CCR2-dependent signaling [79]. 258 

While the spleen plays a major role in inducing protective immunity to Lm, splenectomized 259 

mice are actually more resistant to infection and have less bacteria in the liver compared to 260 

non-splenectomized controls [80]. This paradoxical phenotype reflects the fact that Lm takes 261 

advantage of the splenic environment to increase its survival and replication and promote 262 

infection. Indeed, Lm can grow exponentially in MZ CD8a+ DCs during the first 18 hours of 263 

infection, and the lack of these cells leads to a rapid bacterial clearance in MZ [81]. This growth 264 

is at least partly due to the release of the regulatory cytokine IL-10 upon Lm infection by MZ 265 

B cells in the spleen. IL-10 exerts multiple suppressive effects on myeloid and T cells [82]. In 266 



Lm infected spleen, IL-10 inhibits iNOS production and favors the bacterial burden in MZ 267 

macrophages, which in turn transfer Lm to CD8a+ DCs, as described above. This leads to two 268 

opposite effects: a high bacterial load in the spleen, but also a strong CD8 T+ cell response 269 

induced by infected CD8a+ DCs [83]. In addition, Lm can also take advantage of IL-10 270 

produced by regulatory NK cells to promote host susceptibility, by blocking the accumulation 271 

and activation of inflammatory myeloid cells [84] [85]. 272 

 273 

Liver invasion — In the liver, Lm is rapidly taken up by tissue-resident macrophages called 274 

Kupffer cells, leading to their rapid death [86]. This triggers monocyte recruitment and induces 275 

a type-1 antimicrobial inflammatory response that controls the infection. In addition, Kupffer 276 

cell death also induces secretion of IL-33 by hepatocytes, which induce IL-4 expression in 277 

basophils that orchestrates the switch from an inflammatory type-1 to a type-2 response that 278 

dampens inflammation, allowing the replacement of embryo derived Kupffer cells by myeloid-279 

derived macrophages and return to homeostasis [86]. 280 

As for the spleen, Lm may benefit from the immune response elicited in the liver to promote 281 

infection. Indeed, it has been observed that mice lacking type I interferon receptor are 282 

paradoxically more resistant to Lm infection, highlighting its role in promoting Lm pathogenesis 283 

[87]. Further studies reviewed in [88] have investigated the mechanisms involved in this 284 

atypical facilitating effect of type I IFN on infection. Recently, it has been shown that type-I IFN 285 

expressed by myeloid cells impairs the degradation of Lm virulence factors (ActA and LLO) in 286 

phagosomes, which promotes intracellular bacterial growth and cell-to-cell spread in the liver 287 

[89,90]. It also inhibits proinflammatory cytokine signaling and immune cell recruitment via the 288 

IFN-induced transmembrane protein 3 (IFITM3) [90]. 289 

Liver, as the producer of bile, also fuels the bile duct with Lm [23,24,70], even though Lm 290 

clinically patent bile infection in human is extremely rare [91]. 291 

 292 

Brain and placenta infection 293 

Neurolisteriosis and maternal-fetal listeriosis are the two most severe presentations of human 294 

listeriosis [1,92,93]. 295 

Brain infection — Crossing of the blood-brain barrier is considered as the way by which Lm 296 

enters the CNS in human, while retrograde nervous infection is likely to be at play in ruminants 297 

[9]. The blood-brain barrier is actually highly efficient to prevent brain infection [24] and several 298 

mechanisms of neuroinvasion have been proposed, using rodents as animal models. Infection 299 

of monocytes by Lm is involved in brain infection with reference strains in mice non-permissive 300 

to InlA-Ecad interaction [94,95]. Extracellular bacteria have also been proposed to cross the 301 

blood-brain barrier, and InlF, expressed by some but not all Lm strains, has been reported to 302 



be involved in brain infection in mice, by interacting with Vimentin present on the surface of 303 

endothelial cells [96,97] (Figure 2). 304 

Seminal studies on Lm pathogenesis have been performed with commonly used laboratory 305 

reference strains EGD, 10403S, EGDe or L028. However, strains from the CCs most 306 

associated to neurolisteriosis and maternal-fetal listeriosis (CC1, 4 and 6) are hypervirulent 307 

compared to these reference Lm, which are actually very poorly neuroinvasive [2]. In contrast, 308 

hypervirulent strains infect the brain and fetal-placental unit to a high level in humanized mice, 309 

suggesting that factors specific to these strains are involved in neuro- and placental invasion 310 

[2]. A comparative genomic analysis has shown that the LIPI-4 locus coding for a putative 311 

cellobiose-family phosphotransferase system (PTS) is involved in hypervirulence and 312 

neuroinvasiveness of CC4 [2] (Figure2). However, the mechanism by which LIPI-4 mediates 313 

hypervirulence remains unknown and ongoing studies are under way to decipher the 314 

neuroinvasion of Lm. 315 

 316 

Placenta infection — The maternal-fetal interface is constituted by the syncytiotrophoblast, 317 

a tight syncytial epithelial barrier of fetal origin in direct contact with the maternal blood 318 

(reviewed in [98]). As for the intestine, InlA is involved in the crossing of this barrier by 319 

interacting with Ecad apically accessible at the surface of the syncytiotrophoblast [99]. 320 

However, in contrast to the intestine, InlA acts in a conjugated manner with InlB for placental 321 

invasion [14]. Indeed, InlA-dependent entry requires phosphoinositide 3-kinase (PI3-K) 322 

activity, which is induced by InlB-c-Met interaction [64]. Goblet cells targeted by Lm exhibit a 323 

detectable basal level of PI3-K activity (PI3K is involved in mucus production), which makes 324 

InlB-c-Met interaction dispensable for intestinal barrier crossing [64]. In contrast, PI3-K activity 325 

is low at the syncytiotrophoblast level, and InlB stimulates, via c-Met, PI3-K activation and 326 

therefore allows InlA-dependent entry, leading to placental and fetus invasion [64]. InlP is 327 

another Lm factor reported as involved in Lm crossing of the placental barrier, through its 328 

interaction with Afadin and is also involved in other steps of listeriosis, including spleen and 329 

liver infection [100,101]. As for the CNS infection, the LIPI-4 locus, which is associated with 330 

CC4 hypervirulence, is also involved in placental invasion [2] (Figure 2). 331 

 332 

Concluding remarks 333 

As illustrated in this review, many steps of listeriosis, from ingestion of contaminated food, 334 

intestinal barrier crossing to brain and placenta infection, have been thoroughly investigated 335 

and deciphered in vivo. This allowed to deepen knowledge in infection biology, and also 336 

revealed unexpected properties of host tissues (as previously reviewed in [4,22,102,103]). 337 

However, many questions remain unanswered, for which animal models of listeriosis will be 338 

instrumental, especially regarding the natural history of Lm association with its hosts and the 339 



forces that have shaped and select its core and accessory genes. Ex vivo models such as 340 

organoids will also help to further study the cell biology of the successive steps of Lm infection 341 

of mammalian cells.  342 



Figure legends: 343 

 344 

Figure 1: Interaction of Lm with the intestine  345 

Lm competes with the microbiota for survival by producing bacteriocins. 346 

Lm crosses the intestinal barrier via mucus-producing goblet cells in villi and M cells in Peyer’s 347 

patches. 348 

 349 

Figure 2: Lm dissemination within the host 350 

Lm crosses the intestinal barrier, spreads systemically and crosses the placental and blood-351 

brain barriers to induce maternal-fetal listeriosis and neurolisteriosis, respectively. It is 352 

released via the biliary tract back into the intestinal lumen. 353 

Lm virulence factors are indicated in red, followed by their host receptor in black.  354 
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