Error Correction Codes, from Communication to Cryptography... Two sides of one *chip*

Dr. Cvrille CHAVET - Dr. Bertrand LE GAL

Pr. Philippe COUSSY, Mael TOURRES, Syed FAHIMUDDIN ALAVI

June 12, 2024

ECC & Cryptography vs RISC-V A brief history of ECC & Cryptography

June 12, 2024

June 12, 2024

ECC & Cryptography vs RISC-V A brief history of ECC & Cryptography

June 12, 2024

2/31

Once upon a time...

- Efforts to create a secure voice system had existed since the 1920s
- During World War II, C. Shannon works on SIGSALY, the first Secure Digital Voice Communications
- Mathematical definition of information and encrypted transmission over a noisy channel
- Shannon's paper "A Mathematical Theory of Communication1" is considered as the founding work of information theory
- Error Correction Codes are an integral part of encryption

Agenda

- A brief history of ECC & Cryptography
- Face of the chip Error Correction Codes
- Tails side of chip Cryptographic algorithms
- Conclusion

Once upon a time...

SIGSALY2 was a digital speech encryption system, developed by Bell Telephone Laboratories

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System. Technical Journal, 27(3), 379-423; and the second part, in The Bell System Technical Journal, 27(4), 623-656. ECC & Cryptography vs RISC-V

A brief history of ECC & Cryptography

In our everyday lives

Face of the chip - Error Correction Codes Error Correction Codes Principles

- The world's most important asset is information
- Protecting information is crucial to ensure a trusted global economy (E-commerce, online banking, social networking or emailing, online medical results, mobile phone communications, stock exchange...)
- These constraints generate two huge challenges:
 - . Ensuring the same quality of information for any communication channel ⇒ Error Correction Codes

ECC & Cryptography vs RISC-V

- Ensuring the security of information for any communication channel ⇒ Cryptography
- For a "reasonable" cost

- · Error detection/correction on digital communications channels · Two types of encoding methods
- - . Block encoding Each codeword is generated from one block of k message symbols Convolutional encoding - Each codeword is generated from several
 - consecutive message blocks

ECC & Cryptography vs RISC-V

Face of the chip - Error Correction Codes Some typical Error Correction Codes

Face of the chip - Error Correction Codes

June 12, 2024

Some typical Error Correction Codes

- Hamming
- Reed-Salomon

C. Chavet & B. Le Gal

- Goppa
- McFliecce
- LDPC
- Turbo-Codes
- NR-I DPC
- Polar codes
- ...

- Hamming
- Reed-Salomon
- Goppa
- McFliecce
- LDPC
- Turbo-Codes
- NR-I DPC
- Polar codes
- ...

June 12, 2024

Some typical Error Correction Codes

- Hamming
- Reed-Salomon
- Goppa
- McFliecce
- LDPC^a
- Turbo-Codes
- NB-LDPC
- Polar codes

V. Pignoly et al., "Fair comparison of hardware and software LDPC decoder implementations for SDR space links". Int. Conf. ECS. 2020

SW LDPC - Intel XEON GOLD 6148

LDPC code	#cores	favg	Throughput	Latency	Power	
(16384, 4096)	- 1	3403 MHz	0.48 Gbps	34 µs	169 W	
(16384, 4096)	40	2194 MHz	11.25 Gbps	60 µs	343 W	
(64800, 29160)	- 1	3484 MHz	0.32 Gbps	201 μs	173 W	
(64800, 29160)	40	2194 MHz	7.60 Gbps	345 µs	370 W	
(22528, 6144)	- 1	3485 MHz	0.35 Ghps	64 µs	173 W	
(22528, 6144)	40	2194 MHz	7.55 Gbps	122 µs	345 W	

HW	LDPC -	Xilinx	Ultrasc	ale+)	CZU9	EG-3FF	VB1156E	
LDPC code	- Acores	FPGA	DISPOS.	fm	s The	perhoss	Latency	Power

LDPC code	#cores	PPGA usage	fmax	Throughput	Latency	Power
(16384, 4096)	- 1	17%	274 MHz	2.34 Obps	7.7 px	3.29 W
(16384, 4096)		78%	274 MHz	11.65 Gbps	7.7 pcs	13.80 W
(64800, 29160)	- 1	22%	271 MHz	1.36 Gbps	47.5 µs	4,74 W
(64800, 29160)	3	68%	270 MHz	4.08 Gbps	47.7 µs	12.92 W
(22528, 6144)	- 1	31%	273 MHz	4.02 Gbps	6.1 ps	3.63 W

Performance Comparison of the Proposed GPU-Like Decoder Vs GPU-Based

Decoders

GPU-like

GPU-like

8800-GTX

GPU-like

8800-GTX

GPU-like

GPUJik

GPU-like

Wang et al. 2011a


our work

(Falcae et al. 2011a

Some typical Error Correction Codes

- Hamming Reed-Salomon
- Goppa
- McEliecce
- LDPCab
- Turbo-Codes
- NB-LDPC
- Polar codes

- ^aV. Pignoly et al., "Fair comparison of hardware and software LDPC decoder implementations for SDR space links", Int. Conf. ECS, 2020
- ^bB. Le Gal and C.Jégo, "GPU-Like On-Chip System for Decoding LDPC Codes" ACM TECS, 2014

C. Chavet & B. Le Gal

Face of the chip - Error Correction Codes

ECC & Cryptography vs RISC-V

 9904×1152

 4000×2000

 4896×2448

8000 × 4000

8000 × 4000

 648×328

June 12, 2024

307.4

78.94 11.55 0.007

0.004

28.29

0.055

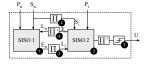
1300

1350

1350

1150 107.8

ECC & Cryptography vs RISC-V Face of the chip - Error Correction Codes


June 12, 2024 10/31

Some typical Error Correction Codes

Some typical Error Correction Codes

- Hamming Reed-Salomon
- Goppa
- McFliecce
- LDPC^{ab}
- Turbo-Codes
- NB-LDPC
- Polar codes
- V. Pignoly et al., "Fair comparison of hardware and software LDPC decoder implementations for SDR space links". Int. Conf. ECS. 2020
- ^bB. Le Gal and C.Jégo, "GPU-Like On-Chip System for Decoding LDPC Codes".ACM TECS. 2014

- Hamming Reed-Salomon
- Goppa
- McFliecce
- LDPC
- Turbo-Codes
- NB-LDPC
- Polar codes
- ...

Some typical Error Correction Codes

Hamming Reed-Salomon

Goppa

McFliecce

LDPC

Turbo-Codes^a

 NR-I DPC Polar codes

B. Le Gal and C. Jégo, "Low-latency and gh-throughput software turbo decoders on multi-core architectures". Annals of Telecommunications. 2019

	radem	or 5M	Chr	Mbps	ж	Mbps.	INDC	nJ
[22]	GTX 550Ti	6	1.90	85	72*	47	1.5	227
[23]	GTX 580	16	1.54	4	1660	1	0.0	1099
[24]	GTX 480	15	1.40	123	50°	35	1.1	339
(25)	GTX 680	8	1.01	37	2657	27	0.1	878
[26]	GTX 580	16	1.54	107	230*	22	0.7	458
[25]	17-37700C	4	3.50	76	323	33	4.1	168
[27]	17-4960890	4	3.20	143	2731	67	4.2	41
[27]	2.E5-2680v3	24	2.50	716	3293	67	4.2	41
(27)	17-4960EIQ	4	3.20	51	7693	24	1.5	114
[27]	2.E5-2690v3	24	2.50	237	9971	24	1.5	169
[27]	17-4960 89 Q	4	3.20	51	7693	24	0.7	114
27	2.25-2699v3	24	2.50	457	10312	46	1.4	87
LeG	17-4960BQ	4	3.20	238	103	112	7.0	25
LeG	2.E5-2680v3	24	2.50	908	162	91	5.7	44
LeG	17-4960000	4	3.20	225	105	105	6.6	26
LeG	2.E5-2680v3	24	2.50	894	165	89	5.6	45
LeG	17-4960890	4	3.20	466	52	218	6.8	13
LeG	2.E5-2680v3	24	2.50	1735	84	174	5.4	23

NThe = (The × hers) / (Freq × Cores) TNDC = (Thr. × Bero) / (Cones × Freq. × SIMD) $E_d = [TDP/(Thr. \times hers)] \times 10^5$

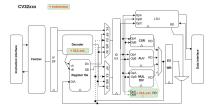
C. Chavet & B. Le Gal Face of the chip - Error Correction Codes

ECC & Cryptography vs RISC-V

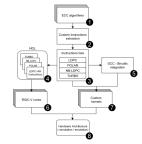
June 12, 2024

13 / 31

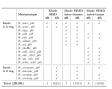
PhD thesis of Mael Tourres³ (2019-2024)


- Director: Pr. P. Coussy
- Advisors: C. Chavet and B. Le Gal.
- · Propose an approach to generate processor ISA extension dedicated to ECC
- Selected ECC for experiences: LDPC, Turbo-Codes, NB-LDPC and Polar Codes
- Objectives
 - Taking advantage of both worlds ASIC for speed and consumption, and CPU/GPU for adaptability Taking advantage of data parallelism, to further enhance performance
 - · Preserve the clock frequency
 - . Do not degrade final chip area and power consumption

M. Tourres et al., "Extended RISC-V hardware architecture for future digital communication systems", 2021 IEEE 4th 5G World Forum (5GWF) 14/31

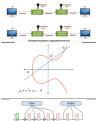

C. Chavet & B. Le Gal ECC & Cryptography vs RISC-V June 12, 2024 Face of the chip - Error Correction Codes

New Instruction Design Flow


Architectural target

 Selected RISC-V cores: PicoRV32, RISCY, IBEX and SCR1 (and CVA6 from OHG)

Last Experimental Results to be published4



inter-transe			LDPC	sc	Polatre F-SC	LDPC-NB MS	Turbo
lutif	O Barcino	cyclos	90800	454637	239292	1715625	1565623
latif_total	@ ISA 28	system	61443	273854	215509	1292853	1651247
(32 bits)	• ISA 38.	eyder	54827	200978	162066	969990	804477
	Gala (00)	cyclox	41928	351959	72150	745635	781350
	Gala (0-0)	(%)	43.7%	35.6%	30.2%	43.5%	49.25
	Gain (0-0)	system	7416	81176	48414	322963	200779
	Gold (0-+0)	(%)	12.0%	21.7%	22.4%	25.0%	23.49
	Disk 0	Kbita/s	341	200	1711	7	20
	Dilair 6	Kbits/s	885	4382	7602	29	2354
	Deka •	Khita/s	1006	5598	5805	52	3871
bs8.1×8	0 ISA 28	cycles	57998	349229	242388	3359196	120772-
(64 bits)	0 ISA 38	system	525-06	335632	213560	3015731	163596
	Clair (0-0)	system	43409	11960S	29732	699954	\$49656
	Grin (0-10)	(%)	45.2%	26.3%	10.8%	40.8%	31.65
	Gain (9-+9)	cycles	5352	53388	39428	343455	17176
	Gala (0-0)	(%)	9.2%	11.7%	12.4%	25.7%	14.29
	Dillik 0	Khitajis	141	900	2711		29
	Doka o	Khitaja	1879	8440	13.630	25	4300
	Dibit. 0	Kbita/s	2870	5780	15343	100	4783
Arcibination							
	• → •	32 bits	7.1×	6.2×	5.7×	7.1×	7.55
	0 → 0	64 bits	14.6×	10.5×	9.0×	\$3.5×	12.2>
	0 → 0	$32 \rightarrow 64 \text{ hits}$	2.1×	1.7×	1.6×	1.9 x	1.65

- ⁴M. Tourres et al., "Specialized Scalar and SIMD instructions for Error Correction Codes Decoding on RISC-V processors", ECC & Cryptography vs RISC-V June 12, 2024
 - Tails side of chip Cryptographic algorithms

Classical Cyphers

- · Symmetric cyphering: DES, ΔFS
- · Asymmetric cyphering: PGP, SSL. RSA Elliptic Curve cyphering:
- **ECDSA** Signature: MD5/SHA1, SHA2,
- SHA3-Keccak

ECC & Cryptography vs RISC-V Example of an AES extension on a RISC-V6

Standardization of RISC-V Cryptographic Extensions⁵

Scalar Cryptography

- Bit manipulation, Data independent execution, AES enccryption/decryption, SHA2...
- Public review ended in Oct.17th, 2021
- Ratified

Vector Cryptography

- Same algorithms, but for element that are group of scalars
 - Public review ended last year
- Ratified

- 32-bit architectures
 - · Byte-wise round instructions Results on SCARV and Rocket

and 64-bit architectures

Limited area increase - x1.03 vs SCARV

Hardware assisted T-table approach for 32

- and 1.001 vs Rocket
- . SW memory footprint divided by a factor
- Speedup upto x3,6 on SCARV and x2,5 on Rocket

Source: J.Savard, wikipedia

B.Marshall et al.," The design of scalar AES Instruction Set Extensions for RISC-V". https://doi.org/10.46586/tches.v2021.i1.109-136

Tails side of chip - Cryptographic algorithms Tails side of chip - Cryptographic algorithms

Hypothetical (?) weaknesses

- Mathematical problem that are really complex to solve (prime factorization, log computation...)
- The computing power required to crack them is titanic
- However, the literature is full of side-channel attacks... and wavs of countering them
 - CPA, DPA, clock glitching...
 - Masking⁷, randomization...

All this could collapse the day a real quantum computer arrives in the laboratories

Tails side of chip - Cryptographic algorithms

Recent works

- Many studies explore these aspects
 - Processor that are able to change between classical and post-quantum cryptography
 - Dedicated PQC coprocessors design
 - · Definition of PQC extension of ISA (cf. PhD thesis of M. Tourres)

A solution - Post-Quantum Cryptography

- The advent of post-quantum encryption has seen the return of ECC to favour
 - McFliecce
 - NTRU MDPC
 - Bike
- Crystal Kyber/Dilithium
- Expensive and complex algorithms
- · For small system, a hardware accelerator could be a good option

Tails side of chip - Cryptographic algorithms

ECC & Cryptography vs RISC-V

June 12, 2024

22 / 31

PhD Thesis of Rémy Fumeron (2019-xx)

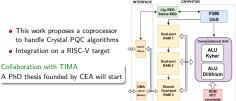
- Founded by PEC Cyber
- Director: Pr. Philippe Coussy
- Advisors: C. Chavet and K. Martin
- · Subject: Exploring an agile CPU that could handle both generic computation and PQC algorithm - Study of ECC code from the NIST on the Pulp platform
- Research abandoned by the PhD student at the end of 2020

⁷F. Lozachmeur and A. Tisserand, "A RISC-V Instruction Set Extension for Flexible Hardware/Software Protection of Cryptosystems Masked at High Orders", 66th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2023) ECC & Cryptography vs RISC-V June 12, 2024

- Founded by PEPR ARSENNE
- Thesis director: Dr Arnaud Tisserand (DR CNRS)
- . Subject: Exploring the design of an architecture that could handle both classical and PQC

ECC & Cryptography vs RISC-V June 12, 2024

25 / 31 Tails side of chip - Cryptographic algorithms


Master Thesis of Syed FAHIMUDDIN ALAVI TIMA

- Supervisor: Dr. C. Chavet
- Exploring RISCV ISA extension for Post-Quantum Cryptography
- Target architecture: PicoRV32
- Test case: AES for classical cryptography and Crystal and McEliecce for PQC
- The idea is to show that it is possible to extract some complex parts of a PQC algorithm, and to replace it by some dedicated new RISCV instruction

Tails side of chip - Cryptographic algorithms

Master Thesis of Ivan SARNO

CRYPHTOR8 (CRYstals Polynomial HW acceleraTOR)

8 S. Di Matteo et al., "CRYPHTOR: A Memory-Unified NTT-Based Hardware Accelerator for Post-Quantum CRYSTALS Algorithms", IEEE Access, 2024, DOI:10.1109/ACCESS.2024.3367109

Tails side of chip - Cryptographic algorithms

June 12, 2024

Master Thesis of Syed FAHIMUDDIN ALAVI TIMA

- Current results
 - . For AES, the PicoRV32 with custom instruction is upto twice as faster compared to the reference
 - For CRYSTAL Kyber 1024:
 - ho $\sim 8.5\%$ and $\sim 18.5\%$ of latency improvement in PQC encryption and decryption resp.
 - FMAX legacy: 58,27MHz, FMAX custom ext.: 82,85 MHz Area overcost: 6.5% for our enriched PicoRV32
- Paper is coming...

28/31

Conclusion

Conclusion

Conclusion

- The worlds of error-correcting codes and cryptography are part and parcel of each other
- But, currently 'simple' mathematical problems (compared to ECC) made it possible to guarantee, a level of security that make encryption algorithms virtually unbreakable
- · However, it is possible that in the medium/long term the emergence of quantum machines will disrupt all this
- As part of the NIST competition, ECC have made a comeback in the field of cryptography (McElliecce, NTRU MDPC, Bike...)
- · As it was the case when LDPCs were first discovered, these algorithms offer excellent performance, but at prohibitive cost
- To solve these problems, the solution may once again come from computer engineering...

C. Chavet & B. Le Gal ECC & Cryptography vs RISC-V June 12, 2024

 The worlds of error-correcting codes and cryptography are part and parcel of each other But, currently 'simple' mathematical problems (compared to ECC)

made it possible to guarantee, a level of security that make encryption algorithms virtually unbreakable However, it is possible that in the medium/long term the emergence

Conclusion

- of quantum machines will disrupt all this As part of the NIST competition. ECC have made a comeback in the
- field of cryptography (McElliecce, NTRU MDPC, Bike...) As it was the case when LDPCs were first discovered, these
- algorithms offer excellent performance, but at prohibitive cost
- To solve these problems, the solution may once again come from computer engineering...

Thanks

C. Chavet & B. Le Gal

ECC & Cryptography vs RISC-V

June 12, 2024 30 / 31

https://xkcd.com/538 - Security

31/31