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Discrete-time convergent nonlinear systems
Marc Jungers, Member, IEEE , Mohammad Fahim Shakib, Member, IEEE , and Nathan van de Wouw,

Fellow, IEEE

Abstract— The convergence property of discrete-time
nonlinear systems is studied in this paper. The main re-
sult provides a Lyapunov-like characterization of the con-
vergence property based on two distinct Lyapunov-like
functions. These two functions are associated with the
incremental stability property and the existence of a com-
pact positively invariant set, which together guarantee the
existence of a well-defined, bounded, and unique steady-
state solution. The links with the conditions available in the
recent literature are discussed. These generic results are
subsequently used to derive constructive conditions for the
class of discrete-time Lur’e-type systems. Such systems
consist of an interconnection between a linear system and
a static nonlinearity that satisfies cone-bounded (incremen-
tal) sector conditions. In this framework, the Lyapunov-like
functions that characterize convergence are determined by
solving a set of linear matrix inequalities. Several classes
of Lyapunov-like functions are considered: both Lyapunov-
Lur’e-type functions and quadratic functions. A numerical
example illustrates the applicability of the results.

Index Terms— Convergent systems, discrete-time sys-
tems, Lur’e systems, discrete-time Lyapunov Lur’e func-
tions, Stability analysis, Linear matrix inequalities.

I. INTRODUCTION

THE notion of convergence has been introduced for non-
linear continuous-time systems in [1] (see [2] for more

details) to formalize the concept of nonlinear systems that
“forget” their initial conditions after a transient and con-
verge to a well-defined, bounded, and unique steady-state
solution. Roughly speaking, a system is called convergent
if two conditions hold: (i) there exists a (unique) solution
that is bounded on the complete time axis; and (ii) this
solution is globally asymptotically stable. This property is
closely related to, but different from the ones of incremental
stability [3]–[7] and contractivity [8], [9], see the comparative
discussion in [10], [11]. These three stability properties have
been used to tackle a wide variety of problems in (nonlinear)
system theory [12]. Examples are: observer design [4], [8],
stable inversion of nonlinear systems [13], [14], output regu-
lation [15], [16], frequency response functions for nonlinear
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convergent systems [17], synchronization [18]–[20], extremum
seeking control [21], [22], model reduction [23]–[25], and
system identification [26]–[28]. In these problems, the notion
of convergence provides uniqueness and boundedness of the
steady-state response, which is a property that is not exhib-
ited by other stability notions. For example, even if a non-
convergent nonlinear system has a globally asymptotically
stable equilibrium for a zero input, solutions of the system
for a non-zero input may become unbounded or converge
to one of the several bounded solutions depending on the
initial condition, which is undesirable in the aforementioned
problems.

The literature contains several contributions in the frame-
work of convergent nonlinear continuous-time systems,
see [12], [15] and the references therein. Nevertheless, to the
best of the authors’ knowledge, the work on the discrete-time
case is rather limited. The papers [29], [30] provide generic
sufficient conditions ensuring convergence, which are based on
a quadratic (incremental) Lyapunov function. These sufficient
conditions are derived in the form of linear matrix inequalities
(LMIs) for the particular class of piecewise-affine systems.
Recently, the paper [11] discusses in detail the three notions
of convergence, incremental stability, and contraction analysis
in the discrete-time case and identifies their similarities and
differences. It is important to point out that, for discrete-time
globally convergent systems, a characterization of convergence
has been provided in [11, Theorem 10] by requiring a single
time-varying Lyapunov function. The time dependency of that
Lyapunov function comes from the explicit dependency on the
time-varying steady-state solution. Based on the observation
that, in practice, determining the steady-state solution of a
nonlinear system can be a challenging task, the main result of
this paper is to avoid this undesired dependency on the steady-
state solution. We provide a Lyapunov-like characterization
of convergent discrete-time nonlinear systems that does not
require knowledge of the steady-state solution. The considered
approach is based on the use of two Lyapunov-like functions:
one Lyapunov function characterizes incremental stability and
the other characterizes the existence of a compact positively
invariant set. By searching independently for a Lyapunov func-
tion to prove incremental stability and to prove the existence of
a positively invariant set, the condition is more generic than
searching for a Lyapunov function to prove both simultane-
ously. This can be seen as the discrete-time counterpart of
[15, Theorem 2.40] formulated for the continuous-time case.

In a second step, this paper uses this generic result to
study the convergence of discrete-time Lur’e-type systems.
Lur’e-type systems consist of an interconnection between
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linear dynamics and a static nonlinearity that satisfies sector
conditions. These systems form an important system class
because, on the one hand, these naturally capture physics,
such as mechanical systems with nonlinear spring and damper
characteristics, and electrical circuits with nonlinear elements
such as nonlinear resistors or diodes. On the other hand, Lur’e-
type systems are used by design, e.g., for nonlinear data-based
control design [31], [32], data-driven modeling with neural
network models [27], and identification of low-complexity
nonlinear models [28]. Lur’e-type systems have been intro-
duced in [33] and intensively studied in the literature either
in the continuous-time domain [34], [35] or in the discrete-
time domain [36], [37, Chapter 13]. This is still an active
field of research [38]–[40]. In particular, for the Lyapunov
function of Lur’e-Postnikov type, it should be emphasized that
the positive definiteness condition on the matrix associated
with the quadratic in the state Lyapunov function has recently
been relaxed [41], [42], while the positive definiteness of the
Lyapunov function is ensured by making use of the cone-
bounded sector conditions. A suitable Lyapunov function of
Lur’e-type form has been proposed for the stability analysis
and the control design of discrete-time systems based on a
Lyapunov function that consists of the sum of a quadratic
term in the state and a cross term between the state and the
nonlinearity [43], [44]. The latter term, which extends the
class of Lyapunov functions that are quadratic in the state,
can be viewed as an adequate discrete-time counterpart of
the integral term of the Lyapunov-Lur’e-type function in the
continuous-time domain. Based on quadratic and Lur’e-type
Lyapunov functions, we present two sets of novel sufficient
conditions in the form of LMIs for the convergence of discrete-
time Lur’e-type systems. Furthermore, we show that if there
exists a quadratic Lyapunov function that satisfies our LMI
conditions, then we can also construct a parametrized Lur’e-
type Lyapunov function that proves convergence of the Lur’e-
type system. These novel LMI conditions are independent of
the steady-state system response and thus straightforward to
verify. Moreover, we show that a graphical frequency-domain
condition can be formulated that implies the satisfaction of
the LMI conditions, which is beneficial when the system
dimensions are large.

The paper is organized as follows. Section II introduces
the generic class of discrete-time nonlinear systems and the
definitions of convergent and incrementally stable systems.
Furthermore, it recalls several results from the literature on
discrete-time convergent systems. Section III presents the main
result dealing with the Lyapunov-like characterization of the
convergence property based on two independent Lyapunov-
like functions. Comparative discussions on the links between
this result and those in the literature are presented. Section IV
is devoted to the derivation of constructive conditions for
the particular class of discrete-time Lur’e-type systems by
considering several kinds of Lyapunov-like functions, based
on the results of Section III. Section V provides a numerical
illustration of the main results of the paper before concluding
remarks are presented in Section VI. All the proofs of the
theorems and associated technical lemmas are postponed to
the appendix for the sake of readability.

Notation: the notation is standard. The sets R and Z denote
the set of real numbers and the set of all integers, respectively.
The set R+ is the set of nonnegative reals. For a positive
definite symmetric matrix P and a vector x, |x|P is the
weighted norm

√
x′Px and |x| is the Euclidean norm of

the vector x. The Euclidean distance of a vector x ∈ Rn

to a set Z ⊂ Rn is denoted and defined as dist(x,Z) =
dZ(x) = inf x̃∈Z |x − x̃|. For a positive definite symmetric
matrix P and a nonnegative scalar c, E(P, c) denotes the
ellipsoid {x ∈ Rn, |x|2P ≤ c}. The ball centered at the origin
with radius ϵ > 0 is denoted by B(ϵ) = E(In, ϵ2). In matrices,
⋆ denotes a symmetric block. We recall the main comparison
functions. A function α : R+ → R+ is of class-K if it is
continuous, zero at zero and strictly increasing. A function
α : R+ → R+ is of class-K∞, if it is of class-K and if
limt→+∞ α(t) = +∞. A function α : R+ → R+ is of class-
L if it is continuous, strictly decreasing and limt→0 α(t) = 0.
A function β : R+×R+ → R+ is of class-KL if it is of class-
K in the first argument and of class-L in the second argument.
For a square matrix M , ρ(M) denotes its spectral radius. The
unitary complex number is denoted by i :=

√
−1.

II. PRELIMINARIES FOR THE GENERIC CASE OF
NONLINEAR SYSTEMS

This section recalls important results on discrete-time con-
vergent systems. The relationship between, on the one hand,
the convergence property and, on the other hand, incremental
stability (Theorems 1 and 2 below, see [11]), is used in the
current section to provide a Lyapunov-like characterization.
Theorems 3 and 4 contain conditions for the convergence of
discrete-time systems. These theorems are recalled from the
literature and their similarities and differences with our results
are discussed in Section III.

Let us consider a general discrete-time nonlinear system
defined by

xk+1 = f(xk, wk, k), ∀k ∈ Z, (1)

where xk ∈ Rn is the state and wk ∈ Rm is the input, which is
assumed to belong to a class of inputs W: w = {wk}k∈Z ∈ W .
We assume that the function f : Rn × Rm × Z → Rn is
continuous with respect to the first two arguments for any
third argument. Note that the dynamics formally depend on
the state xk, the input wk, and the time k.

We introduce the notation of the trajectory solution of
system (1) with the input w as ϕw : Z × Z × Rn → Rn

verifying

ϕw(k + 1, k0, x0) = f(ϕw(k, k0, x0), wk, k),

∀(k, k0, x0) ∈ Z× Z× Rn, k ≥ k0. (2)

Based on ϕw, the following definition of a positively invariant
set for a given input w ∈ W is introduced. A set X ∈ Rn

is said to be positively invariant (for a given input w) to the
dynamics (1), if ∀x0 ∈ X , and k, k0 ∈ Z such that k ≥ k0,
we have ϕw(k, k0, x0) ∈ X .

The notion of convergence is defined as follows.
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Definition 1: The discrete-time nonlinear system (1) is said
to be uniformly convergent in a set X ⊂ Rn, for a class of
inputs W , if, for every input w ∈ W:

• there exists a solution xw
k , called the steady-state solution,

that is defined and bounded on Z;
• xw

k is uniformly asymptotically stable in X .
Following this definition, there exists a function β ∈ KL

such that ∀x0 ∈ X , ∀k ≥ k0,

|ϕw(k, k0, x0)− xw
k | ≤ β(|x0 − xw

0 |, k − k0). (3)

In the case that β in (3) is exponential in the second argument,
the convergence property is called exponential. The set X is
referred to as a convergence region. If X = Rn, then the
convergence property is global.

The notion of convergence is closely related to the notion
of incremental stability, which is defined as follows.

Definition 2: The system (1) is uniformly asymptotically
incrementally stable in a set X ⊂ Rn, for a class of inputs
W , if, for every input w ∈ W , there exists a KL-function β
such that

|ϕw(k, k0, x
a
0)− ϕw(k, k0, x

b
0)| ≤ β(|xa

0 − xb
0|, k − k0),

∀(k, k0, xa
0 , x

b
0) ∈ Z× Z×X × X , k ≥ k0. (4)

In the case where β in (4) is exponential in the second
argument, the incremental stability property is exponential. If
X = Rn, then the incremental stability property is global.

In the following, we recall strong, though nuanced, links
between incremental stability and convergence, that are used
in the main results of this paper in Section III.

Uniform global incremental stability and the existence of
a compact and positively invariant set for (1) imply global
uniform convergence, as stated in the next theorem. To pre-
vent unbounded but globally incrementally stable solutions,
the existence of a compact and positively invariant set is
required. Furthermore, this compact set is independent of the
incremental stability region, which is global here.

Theorem 1: [11, Theorem 13], proof available in [45].
Suppose that system (1) is globally uniformly asymptotically
incrementally stable for a class of inputs W and that there
exists a compact set X ⊂ Rn, which is positively invariant
under (1), then system (1) is globally uniformly convergent.

Uniform convergence on a compact set and local Lipschitz
continuity of the dynamics imply uniform incremental stability
on this convergence region, as formalized in the next theorem.
It should be emphasized that the compactness of the conver-
gence region and the regularity of the dynamics are required
to design the function β ∈ KL in the relation (4) (see also [10]
in the continuous-time framework for additional discussion).

Theorem 2: [11, Theorem 12], proof available in [45].
Suppose that the system (1) is uniformly convergent for a class
of inputs W on a compact and positively invariant set X ⊂ Rn.
Furthermore, assume that the right-hand side f of system (1) is
locally Lipschitz continuous in the first argument on X . Then
the system (1) is uniformly asymptotically incrementally stable
on X .

Next, we recall two results (with an adapted notation regard-
ing the dependency of the dynamics on exogenous inputs and

also with a slightly modified notation to ensure coherence) in
the literature to set the stage for our main result presented in
Section III and to allow for a comparative discussion later
in the paper. Theorem 3 provides sufficient conditions for
global exponential convergence thanks to a single quadratic
Lyapunov-like function.

Theorem 3: [29, Theorem 1] Consider system (1). If there
exist a symmetric positive definite matrix P ∈ Rn×n and a
constant ρ such that 0 < ρ < 1 and

|f(xa, wk, k)− f(xb, wk, k)|P ≤ ρ|xa − xb|P , (5)

for all xa, xb ∈ Rn and all k ∈ Z, and

sup
k∈Z

|f(0, wk, k)|P = C < +∞, (6)

then system (1) is globally exponentially convergent for the
class of inputs W that is defined as the set of inputs w
verifying (6). Moreover the steady-state solution xw

k satisfies

sup
k∈Z

|xw
k |P ≤ C

1− ρ
. (7)

Theorem 4 provides a characterization of global uniform
convergence via a single Lyapunov-like function that explicitly
depends on the steady-state solution xw

k . It is noteworthy that,
since we deal here with a class of inputs W , the Lyapunov-like
function is consequently a control-Lyapunov function.

Theorem 4: [11, Theorem 10] Assume that system (1) is
globally uniformly convergent for a class of inputs W . Then,
for every input w ∈ W , there exists a smooth function V :
Z× Rn → R+, a constant c ≥ 0, functions α1, α2, α3 ∈ K∞
such that

α1(|x− xw
k |) ≤ V (k, x) ≤ α2(|x− xw

k |), (8)

V (k + 1, f(x,wk, k))− V (k, x) ≤ −α3(|x− xw
k |), (9)

V (k, 0) ≤ c < +∞, (10)

for all x ∈ Rn and k ∈ Z. Conversely, if a smooth function
V : Z×Rn → R+, a constant c ≥ 0, functions α1, α2 ∈ K∞,
and α3 : R+ → R+ positive definite are given such that for
some trajectory xw

k : Z → Rn of the nonlinear dynamics (1),
the relations (8)–(10) hold, then the system (1) is globally
uniformly convergent and the trajectory xw

k is the unique
bounded steady-state solution.

III. LYAPUNOV-LIKE CHARACTERIZATION OF
CONVERGENCE OF GENERIC NONLINEAR SYSTEMS

This section is dedicated to the first main result of the paper,
which provides a Lyapunov-like characterization of convergent
nonlinear discrete-time systems exploiting two Lyapunov-like
functions. Before it is formalized in Theorem 5, several
assumptions are listed.

Assumption 1: There exist a continuous function V1 :
Rn → R+, a K-function γ(·), K∞-functions α1(·), α2(·), and
a nonnegative scalar c ∈ R+ such that the following conditions
are satisfied:

α1(|x|) ≤ V1(x) ≤ α2(|x|), (11)
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V1(f(x,w, k)) ≤ c, if V1(x) ≤ c and γ(|w|) ≤ 1, (12)

for all x ∈ Rn; w ∈ Rm and k ∈ Z.
If Assumption 1 holds, then we can introduce the level set

of V1(x) as follows:

Sc = {x ∈ Rn, V1(x) ≤ c}, (13)

and the class of inputs based on γ(·) as follows:

Wγ = {w ∈ Rm, |w| ≤ γ−1(1)}. (14)

Furthermore, a set S ⊂ Rn, which is positively invariant
under (1) for the class of inputs Wγ and that is a superset
of Sc can be selected. Such a set S always exists, e.g., natural
choices are S = Sc when considering the convergence prop-
erty and S = Rn when considering the global convergence
property. The set S, which is not necessarily compact, is the
convergence region.

Assumption 2: Assume that there exist a continuous func-
tion V2 : Z× S × S → R+, K∞-functions α3(·), α4(·) and a
K-function α5(·) satisfying:

α3(|xa − xb|) ≤ V2(k, x
a, xb) ≤ α4(|xa − xb|), (15)

V2(k + 1, f(xa, w, k), f(xb, w, k))

− V2(k, x
a, xb) ≤ −α5(|xa − xb|), (16)

for all xa, xb ∈ S , w ∈ Wγ with Wγ defined by (14) and
k ∈ Z.

Assumption 3: Assume that
• there exist a K-function γ and a compact set X ⊂ Rn

which is positively invariant with respect to the dynam-
ics (1) for any input w ∈ Wγ with Wγ defined by (14)
and which contains the origin in its interior.

• the right-hand side f of the system (1) is locally Lipschitz
continuous with respect to the first argument for any w ∈
Wγ and any k ∈ Z.

Assumption 4: Assume that the system (1) is uniformly
convergent on X , for the class of inputs Wγ defined by (14).

Theorem 5: Consider system (1).
Sufficient condition for convergence: from incremental sta-

bility to convergence.
Suppose Assumptions 1 and 2 hold.

Then, a set S ⊂ Rn, which is positively invariant under (1)
for the class of inputs Wγ and which is a superset of Sc in
(13) can be selected such that the system (1) is uniformly
convergent on the set S , for the class of inputs Wγ , and has
a unique steady-state solution xw

k , for every w ∈ Wγ , which
satisfies the implicit upper bound

V1(x
w
k ) ≤ c, (17)

which implies the explicit upper bound:

|xw
k | ≤ α−1

1 (c), (18)

When S = Rn, the system (1) is globally uniformly
convergent. When α3, α4 and α5 are quadratic functions, the
system (1) is exponentially uniformly convergent.

Necessary condition for convergence: from convergence to
incremental stability:
Suppose Assumptions 3 and 4 hold.

Then

• there exist a continuous function V1 : Rn → R+, K∞-
functions α1(·), α2(·), and a nonnegative scalar c ∈ R+

such that conditions (11)–(12) are satisfied and also such
that Sc = {x ∈ Rn, V1(x) ≤ c} = X .

• There exist a local incremental Lyapunov function V2 :
Z×X ×X → R+, K∞-functions α3(·), α4(·) and a K-
function α5(·) satisfying conditions (15)–(16) and hence
the system is uniformly incrementally stable in X .

Proof: The proof of Theorem 5 and the necessary
technical lemmas are presented in the appendix.

Let us emphasize the motivation for and the positioning of
the result in Theorem 5 with respect to the literature:

• The crucial point of our approach is the strong link be-
tween incremental stability and the convergence property.
On the one hand, the existence of a positively invariant
compact set (given by a Lyapunov function level set)
and incremental stability (characterized by an incremental
Lyapunov function, as defined in [11, Theorem 9]), (as
formalized in Assumptions 1 and 2) imply convergence.
On the other hand, the existence of a positively invariant
compact set, a local Lipschitz continuous dynamics, and
the convergence property (Assumptions 3 and 4) imply
the existence of a Lyapunov function, of which a level
set is the positively invariant compact set, and imply the
existence of an incremental Lyapunov function.

• The quasi-equivalence between convergence and incre-
mental stability is established under slightly different
assumptions. For instance in Theorem 5, only one im-
plication requires the local Lipschitz continuity of the
dynamics, and not the dual implication, as in Theorem 2
(that is [11, Theorem 12]).

• The advantage of considering two generic Lyapunov-like
functions is twofold and is beneficial from a computa-
tional (and conservatism) point of view since it allows
an extra degree of freedom in the choice of the class of
Lyapunov functions. First, we avoid a specific structure
for the quadratic functions, which was needed to exploit
the triangular inequality in Theorem 3 (that is [29,
Theorem 1]). Second, these functions do not depend on
the steady-state solution x̄w, unlike the characterization
in Theorem 4 (that is [11, Theorem 10]), although the
incremental Lyapunov function may still depend on time.
The latter is important from an applicability point of view
since the steady-state solution xw

k is typically unknown.
• The domain of definition of the incremental Lyapunov

function is more generic than the one defined in [11] and
can be adapted to cope with local or global incremental
stability/convergence properties.

• The class of inputs W considered here is the set of
bounded inputs with a given bound. This is more use-
ful in practice than trying to determine the inputs that
satisfy the time-dependent conditions (10) or (6) as used
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in [29] and [11]. Note, however, that the latter may admit
unbounded inputs for specific dynamics f .

• A corollary of the sufficient part could be obtained by
considering a single function V1 instead of two sepa-
rate functions. A natural choice is thus S = Sc and
V2(k, x

a, xb) = V1(x
a − xb). The conditions to satisfy

are (11), (12), and (16).
• This result is a stepping stone to the constructive results

for Lur’e-type systems presented in Section IV.
The following section derives sufficient conditions based on

Theorem 5 and proposes suitable Lyapunov functions to ensure
the convergence property of discrete-time Lur’e-type systems.

IV. CONVERGENT DISCRETE-TIME LUR’E-TYPE
SYSTEMS

Let us consider the discrete-time Lur’e-type system, defined
as the interconnection between linear dynamics and a static
nonlinearity, described by

xk+1 = Axk +Bφ(yk) + Fwk =: f(xk, wk), (19)
yk = Cxk, ∀k ∈ Z, (20)

where xk ∈ Rn is the state of the system, wk ∈ Rm is
the input, yk ∈ Rp is the output, and φ : Rp → Rp is a
static decentralized nonlinearity [46]. Note that the mapping f
does not explicitly depend on time k and that this dependency
is dropped in the sequel. We assume here that φ(·) verifies
two cone-bounded sector conditions (in a component-wise
manner): the first relates to the output of the nonlinearity
characterized by a positive definite diagonal matrix Ω ∈ Rp×p:

sΩ(R, y) := φ(y)′R(φ(y)− Ωy) ≤ 0, ∀y ∈ Rp, (21)

for any positive definite diagonal matrix R ∈ Rp×p, and the
second relates to its slope characterized by a positive definite
diagonal matrix Ω ∈ Rp×p:

sΩ(S, y
a, yb) := (φ(ya)− φ(yb))′S

× (φ(ya)− φ(yb)− Ω(ya − yb)) ≤ 0, ∀ya, yb ∈ Rp, (22)

for any positive definite diagonal matrix S ∈ Rp×p. When no
ambiguity occurs, we will denote φk := φ(yk) = φ(Cxk).

The conditions (21) and (22) call for some comments. First
of all, setting yb = 0 in (22) results in a condition of type (21),
roughly speaking sΩ(S, y, 0) = sΩ(S, y). We can thus assume
that Ω ≤ Ω. Thanks to condition (22), the nonlinearity φ
is continuous and induces the continuity with respect to xk

and wk of the map f : Rn × Rm → Rn, which defines
the dynamics (19). Moreover, condition (22) ensures that the
nonlinearity φ is monotonic, which avoids the existence of
multiple fixed points of the system (19).

The main result of this section provides numerically
tractable sufficient conditions for the construction of
Lyapunov-like functions in the sufficiency part of Theorem 5
(from incremental stability to convergence), required for the
class of Lur’e-type systems in (19)–(20). Here, we consider
a specific class of candidate functions as follows. Let us
introduce the extended state, or graph function, ξ(xk) =

[
xk

φ(yk)

]
=

[
xk

φ(Cxk)

]
∈ Rn+p and consider functions with

the structure:

Ṽ (xk) = ξ(xk)
′P̃ ξ(xk), P̃ =

[
P̃a P̃b

⋆ P̃c

]
, (23)

with 0n < P̃a = P̃ ′
a ∈ Rn×n, but with the indefinite

symmetric matrix P̃c = P̃ ′
c ∈ Rp×p and matrix P̃b ∈ Rn×p.

Notice that the matrix P̃ can thus be indefinite.
This function Ṽ , which is quadratic in the extended state

ξ(xk), motivates the following discussion. Obviously, by im-
posing P̃b = 0n×p and P̃c = 0p, we retrieve Lyapunov
functions that are quadratic in the state xk: Ṽ (xk) = |xk|2P̃a

.
By restricting the choice of functions to P̃b = C ′RΩ, with a
positive semi-definite diagonal matrix R ∈ Rp×p, and P̃c =
0p, we recover the class of discrete-time Lur’e-type Lyapunov
functions introduced in [43]: Ṽ (xk) = |xk|2P̃a

+2y′kRΩφk. The
generic function Ṽ as in (23) has already been introduced in
the context of Generalized Lyapunov functions for discrete-
time Lur’e-type systems in [47], but requires the matrix P̃
to be symmetric and positive definite. The idea to relax
the positive definiteness condition is inspired by the results
in [41], [42], which deal with the continuous-time case of
Lur’e-type systems. Next, tractable sufficient conditions for
the convergence property are presented that make use of two
classes of quadratic Lyapunov functions, namely quadratic in
the extended state ξk and quadratic in the state xk.

A. Quadratic Lyapunov function in the extended state

To clarify the notation and improve the readability of the
sequel of the paper, we introduce the following notation:

GΩ(S) =

[
0n −C ′SΩ
⋆ 2S

]
∈ R(n+p)×(n+p)

with S ∈ Rp×p diagonal and positive definite. This al-
lows us to write 2sΩ(S,Cx) = ξ(x)′GΩ(S)ξ(x) ≤ 0
and 2sΩ(S,Cxa, Cxb) = (ξ(xa) − ξ(xb))′GΩ(S)(ξ(x

a) −
ξ(xb)) ≤ 0. Finally, we introduce the matrix M0 ∈
R2(n+p)×(n+2p), which depends only on the matrices of the
system (19)–(20):

M0 =


In 0n×p 0n×p

0p×n Ip 0p
A B 0n×p

0p×n 0p Ip

 .

Building on the generic result of Theorem 5, the following
theorem provides sufficient conditions for convergence in
the form of bilinear matrix inequalities (BMIs) that can be
interpreted as linear matrix inequalities (LMIs) by fixing a
single scalar (or hyper-parameter) 0 < τ1 < 1.

Theorem 6: Consider symmetric matrices P1, P2 ∈
R(n+p)×(n+p), diagonal positive definite matricse S0, S1, S2,
S3, S4, S5 ∈ Rp×p, and a positive scalar τ1 ∈ (0, 1) such that
the following inequalities hold:

P1 +GΩ(S0) > 0n+p, (24)
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M ′
0

[
−τ1P1 −GΩ(S1) 0n+p

⋆ P1 −GΩ(S2)

]
M0 < 0n+2p,

(25)

P2 +GΩ(S3) > 0n+p, (26)

M ′
0

[
−P2 −GΩ(S4) 0n+p

⋆ P2 −GΩ(S5)

]
M0 < 0n+2p. (27)

Then, for any positive scalar σ, the assumptions of the suf-
ficiency part of Theorem 5 are satisfied by taking V1(x) =
ξ(x)′P1ξ(x) and V2(k, x

a, xb) = V2(x
a, xb) = (ξ(xa) −

ξ(xb))′P2(ξ(x
a) − ξ(xb)) and there exist quadratic functions

α3, α4, and α5, and a sufficiently large scalar c ≥ 0 defining
the level set Sc. In conclusion, the Lur’e-type system (19)–
(20) is globally exponentially uniformly convergent (GEUC),
for the class of inputs W = {wk ∈ Rm, |wk| ≤

√
σ}.

Proof: The proof of Theorem 6 is presented in Ap-
pendix V.

The dimension of the LMIs in Theorem 6 is 4n+ 6p. The
following corollary to Theorem 6 uses two Lyapunov functions
of the same form to provide LMIs of dimension 2n + 3p.
Hence, it enables a more efficient check for convergence at
the expense of conservatism, since these conditions depend
on a reduced set of decision variables.

Corollary 1: Suppose Ω̄ ⪰ Ω. Consider the symmetric
matrix P ∈ R(n+p)×(n+p), the diagonal positive-definite
matrices S0, S1, S2 ∈ Rp×p, and the scalar τ1 ∈ (0, 1) such
that the following inequalities hold:

P +GΩ̄(S0) > 0n+p, (28)

M ′
0

[
−τ1P −GΩ̄(S1) 0n+p

⋆ P −GΩ̄(S2)

]
M0 < 0n+2p, (29)

Then, there exist symmetric matrices P1, P2 ∈ R(n+p)×(n+p)

and diagonal positive definite matrices S3, S4 ∈ Rp×p such
that the matrix inequalities in Theorem 6 are satisfied.

Proof: By Ω̄ ⪰ Ω, the satisfaction of (28) ensures the
satisfaction of (24) for P1 = P and the same S0; and (26)
for P2 = P and S3 = S0. Furthermore, (29) ensures the
satisfaction of (25) for P1 = P , and the same S1 and S2; and
(27) for P2 = P, S4 = S1, and S5 = S2.

Remark 1: Note that the input matrix F does not appear in
inequalities (24)–(27). Consequently, the convergence property
of system (19)–(20) is independent of the input matrix F .
From the proof of the theorem, it can be concluded that the
input matrix F defines a constant η which relates the ‘size’ σ
of the input to the ‘size’ of the level set Sc by (13) according
to σ ≥ ηc, where this set can be used to formulate a bound
on the steady-state solution.

B. Quadratic Lyapunov function in xk

In this subsection, we consider Lyapunov functions that are
quadratic in the state x, which is a special case of (23) where

P̃ =

[
P̃a 0n×p

⋆ 0p

]
.

Sufficient conditions for the construction of the quadratic
Lyapunov functions V1 and V2, which guarantee the satisfac-
tion of the conditions in Theorem 5, and thereby also the

convergence of the Lur’e-type system, are provided in the
following theorem.

Theorem 7: Consider positive definite matrices P11, P21 ∈
Rn×n, diagonal positive definite matrices S1, S4 ∈ Rp×p, and
a positive scalar τ1 ∈ (0, 1) such that the following inequalities
hold:[

A′

B′

]
P11

[
A′

B′

]′
−

[
τ1P11 −C ′S1Ω
⋆ 2S1

]
< 0n+p, (30)[

A′

B′

]
P21

[
A′

B′

]′
−

[
P21 −C ′S4Ω
⋆ 2S4

]
< 0n+p. (31)

Then the assumptions of the sufficiency part of Theorem 5
are verified by taking V1(x) = x′P11x and V2(k, x

a, xb) =
V2(x

a, xb) = (xa−xb)′P21(x
a−xb) and there exist quadratic

functions α3, α4, and α5, and a sufficiently large nonneg-
ative scalar c defining the level set Sc. As a conclusion
of Theorem 5, the Lur’e-type system (19)–(20) is globally
exponentially uniformly convergent, for the class of inputs
W = {wk ∈ Rm, |wk| ≤

√
σ}. Furthermore the steady-state

solution xw
k belongs to the ellipsoid E(P11, c).

Proof: The proof of Theorem 7 follows a similar line of
reasoning as the proof of Theorem 6 and is therefore omitted.

The following corollary of Theorem 7 is the counterpart
of Corollary 1 and provides a more efficient check for con-
vergence at the expense of conservatism compared to the
conditions in Theorem 7.

Corollary 2: Suppose Ω̄ ⪰ Ω. Consider the positive definite
matrix P ∈ Rn×n, the diagonal positive definite matrix
S ∈ Rp×p, and the scalar τ ∈ (0, 1) such that the following
inequality holds:[

A′

B′

]
P

[
A′

B′

]′
−
[

τ1P −C ′SΩ̄
⋆ 2S

]
< 0n+p, (32)

Then, there exist positive definite matrices P11, P21 ∈ Rn×n

and diagonal positive definite matrices S1, S4 ∈ Rp×p such
that the matrix inequalities in Theorem 7 are satisfied.

Proof: The proof follows a similar line of reasoning as
the proof of Corollary 1 and is therefore omitted.

The remainder of the subsection shows that the conditions
of Theorem 6 are less conservative than those of Theorem 7.
The class of Lyapunov functions in Theorem 6 includes the
quadratic ones used in Theorem 7, nevertheless, the conditions
in both theorems are only sufficient and based on multiple S-
procedures. Theorem 8 states that based on a solution of the
conditions in Theorem 7, we can construct a parameterized
solution of the conditions in Theorem 6 which leads to
a smaller set in the state-space containing the steady-state
solution.

Theorem 8: Assume that the conditions of Theorem 7 are
satisfied. Then there exist additional matrices P12, P22 ∈
Rn×p, symmetric matrices P13, P23 ∈ Rp×p, diagonal positive
definite matrices S0, S2, S3, and S5 ∈ Rp×p such that

1) conditions (24)–(27) are verified;
2) Sc = {x ∈ Rn, ξ′kP1ξk = V1(x) ≤ c} ⊂ E(P11, c).

Proof: The proofs of Theorem 8 and an auxiliary lemma
can be found in Appendix VI.
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C. Graphical frequency-domain condition

Let us denote by H(z) : C 7→ Cp×p the transfer-function
matrix of the LTI part of (19) - (20) from input φ(·) to
output y, defined as follows:

H(z) := C(zI −A)−1B. (33)

Furthermore, consider the following transfer-function matrix:

H̃(z) := C
(
zI −

(
Ã
))−1

B, Ã := A+
1

2
BΩ̄C. (34)

Let us consider the case where all elements of the static
decentralized nonlinearity φ(·) are scaled so that all elements
have the same maximum slope γ̄ > 0, i.e., Ω̄ = γ̄Ip.
If the elements of the nonlinearity do not share the same
maximum slope, then a scaling should be performed to obtain
a nonlinearity whose elements have the same maximum slope,
see [46] for more details.

For a real, rational transfer-function matrix H̃ with all poles
inside the unit circle, the infinity system norm is denoted by
∥H̃∥∞ and is defined by∥∥∥H̃∥∥∥

∞
:= sup

ω∈[0,π)

ζmax

(
H̃

(
eiω

))
, (35)

where ζmax(·) denotes the maximum singular value. Now,
the following theorem formulates an easy-to-check, graphical
condition for convergence for the class of Lur’e-type systems
under study.

Theorem 9: Suppose that Ω̄ = γ̄Ip ⪰ Ω, the matrix Ã has
all its eigenvalues inside the unit disc, and ∥H̃∥∞ < 2γ̄−1,
where Ã and H̃ are defined in (34). Then, system (19)–(20)
is globally exponentially uniformly convergent, for the class
of bounded inputs W = {wk ∈ Rm}.

Proof: The proof can be found in Appendix VII.
The conditions of Theorem 9 provide the insight that the
infinity norm of the transfer-function matrix of the LTI block
must remain below 2γ̄−1, where the factor 2 comes from
a loop transformation that makes the nonlinearity satisfy a
symmetric sector condition.

The frequency-domain condition of Theorem 9 can be
checked graphically by plotting the maximum singular values
of the transfer-function matrix H̃(eiω) over a sufficiently dense
grid for ω ∈ [0, π) and by checking whether the matrix Ã has
all its eigenvalues inside the unit disc. This graphical check
is demonstrated by a numerical example in the next section.
The benefit of this graphical check is that it can be applied
to large-scale systems, whereas the LMI implementations of
Theorems 6 and 7 are limited to 2n + 4p being in the order
of hundreds and Corollaries 1-2 are limited to n + 2p in the
order of hundreds. However, the drawback of this graphical
check is that the Lyapunov functions are not explicitly found,
thereby, disallowing defining the level set Sc and formulating
explicit bounds on the steady-state solution.

V. ILLUSTRATIVE EXAMPLE

In this section, we demonstrate the application of the results
in Theorems 6, 7, 8, and 9 to an example Lur’e-type system.

y

ϕ1(y), ϕ2(y)

ϕ2(y)

ϕ1(y)

δδ

Slope Ω̄

Fig. 1. Graph of φ1 (dashed) and φ2 (dotted) with deadzone/saturation
length δ and slope Ω̄.

Consider system (19)-(20) with n = 2 states, p = 2 outputs,
and m = 1 input characterized by the following matrices:

A =

[
0.5 0.1
0.3 −0.4

]
, B =

[
0.5 0.1
0 −0.5

]
,

C =

[
1 0
1 1

]
, F =

[
0.1
0.1

]
,

(36)

and the following nonlinear function φ(y):

φ(y) =

[
φ1(x1)

φ2(x1 + x2)

]
(37)

where

φ1(y) := Ω̄sign(y)max(0, |y| − δ),

φ2(y) := Ω̄ (y − sign(y)max(0, |y| − δ))

The graphs of φ1 and φ2 are depicted in Figure 1, where it can
be observed that φ1 admits a deadzone characteristic, whereas
φ2 admits a saturation characteristic. The variable δ repre-
sents the deadzone and saturation length and the variable Ω̄
represents the maximum slope of both nonlinearities. For this
example, we select δ = 0.05 and Ω̄ = 0.6. implying that Ω =
Ω̄. This system can be thought of as the discretized dynamics
of a mechanical system with nonlinear spring and damper
characteristics or, alternatively, the discretized dynamics of an
electrical circuit with nonlinear elements such as nonlinear
resistors.

Let us first turn to Theorem 7, which characterizes conver-
gence by searching for Lyapunov functions that are quadratic
in the state x. The conditions of Theorem 7 lead to linear
matrix inequalities by fixing the hyper-parameter τ1. It can
be verified that for τ1 = 0.9, the linear matrix inequalities
(30)–(31) are satisfied by the following matrices:

P11 =

[
1.4598 0.1084

⋆ 1.1063

]
, P21 =

[
1.3431 0.0990

⋆ 1.1030

]
,

S1 =

[
0.8977 0

0 0.5855

]
, S4 =

[
0.8291 0

0 0.6275

]
.

Next, we turn to Theorem 8, which states that there are
additional matrix variables such that the conditions of The-
orem 6 are satisfied. In turn, this implies the existence of a
Lyapunov function that is quadratic in the extended state ξ.



8

It can be verified that (24)–(27) are satisfied by the following
additional matrices:

P12 =

[
0.7495 −0.0308

∗ 0.2604

]
, P13 =

[
−0.2260 −0.0348

∗ 0.0819

]
,

P22 =

[
0.6628 −0.0161

∗ 0.2730

]
, P23 =

[
−0.1259 −0.0446

∗ 0.0668

]
,

S0 =

[
0.9079 0

0 0.7065

]
, S2 =

[
0.8156 0

0 0.6309

]
,

S3 =

[
0.8590 0

0 0.7071

]
, S5 =

[
0.7895 0

0 0.6667

]
,

where

P1 =

[
P11 P12

∗ P13

]
, P2 =

[
P21 P22

∗ P23

]
.

Let us now analyze the positively invariant set Sc in (13)
in which the steady-state solution x̄w

k resides. To compute a
value for c, we take the following sequence of calculations:

1) Compute a sufficiently large τ2 such that (i) τ2 is strictly

greater than ρ

([
F ′ 0m×p

]
P1

[
F

0p×m

])
; and (ii) such

that inequality (49) holds.

2) Take a constant c ≥ τ2σ

1− τ1
.

It can be verified that both conditions of Step 1) are satisfied
for τ2 = 0.3811. Finally, via Step 2), we compute c = 3.8108
for σ = 1, which defines the set Sc. As a result, the system
is globally exponentially convergent for the class of inputs
W = {wk ∈ Rm, |wk| ≤

√
σ} for σ = 1, i.e., any input that

admits |wk| ≤ 1 for all k. By Theorem 6, we have the property
that the steady-state solution x̄w

k ∈ Sc, where the set Sc

corresponds to the Lyapunov function which is quadratic in the
extended state ξ. Consider also the set E(P11, c), which is not
necessarily positively invariant. The set E(P11, c) corresponds
to the Lyapunov function which is quadratic in the state x. By
Theorem 8, we have the property that Sc ⊂ E(P11, c), which
is consistent with the observations in Figure 4. Consequently,
one of the benefits of the convergence characterization via
Lyapunov functions that are quadratic in the extended state ξ
is that the positively invariant set Sc is a subset of E(P11, c).

Alternatively, the condition

∥H̃∥∞ = sup
ω∈[0,π)

ζmax(H̃(eiω)) < 2γ̄−1 (38)

in Theorem 9 can be checked for γ̄ = Ω̄ = 0.6 to conclude on
the GEUC property. Since the conditions of Theorems 6–7 are
verified in the above analysis, the condition (38) is expected to
hold. Figure 2 shows that, indeed, the maximum singular value
ζmax(H̃(eiω)) remains below the threshold 2γ̄−1 for any ω ∈
[0, π). This check, in addition to the eigenvalues of Ã+ 1

2 γ̄BC
being inside the unit disc, implies that the considered system
is GEUC for the class of bounded inputs. This alternative,
graphical method of checking the GEUC property can also be
efficiently applied to large-scale systems.

Next, we demonstrate the convergence property by means
of forward simulation of the Lur’e-type system in (19)-(20)
characterized by (36) and (37). Hereto, we perform two

Fig. 2. The singular values of the transfer function matrix H̃(eiω) as
a function of the frequency ω (dashed lines) and the threshold 2γ̄−1

(solid line).

Fig. 3. Time response for initial conditions xa
0 (solid blue) and xb

0
(dashed red) for the input wk = cos(kπ/3).

simulations, one with the initial condition xa
0 and the other

with the initial condition xb
0, where

xa
0 =

[
2 1

]⊤
and xb

0 =
[
1 −2

]⊤
.

For both simulations, we take the same periodic input wk =
cos(kπ/3), which admits to |wk| ≤

√
σ for σ = 1. The state

trajectory for the first 50 time steps is presented in Figure 3.
This figure shows that both trajectories converge to each other,
which is a property of convergent systems. Furthermore, it can
be observed that the period time of the state trajectory is equal
to the period time of the input, which is another property of
convergent systems, see [29, Lemma 1], and also [48] and
[8] in the context of contracting systems. Moreover, Figure 4
depicts the steady-state state trajectory x̄w

k in the phase plane,
where it can be seen that the state x̄w

k lies indeed inside Sc.
Finally, Figure 5 shows that the values of the Lyapunov

functions V1(x
a) and V1(x

b) decrease to a value below the
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Fig. 4. The steady-state state trajectory x̄w (blue), the level set
V1(x) = c (black), and the ellipsoid E(P11, c).

Fig. 5. Top: Lyapunov function V1 along the trajectories xa (solid
blue) and xb (dashed red). Bottom: Incremental Lyapunov function V2

evaluated along xa − xb.

level c and then remain below the level c (without decreasing
further). It can also be observed that the incremental Lyapunov
function V2(x

a − xb) decreases exponentially to zero.
The example firstly shows a sequence of computations to

assess the convergence property for Lur’e-type systems and to
compute a positively invariant set in which the steady-state so-
lution resides thereby linking the Theorem 6, 7, and 8 together.
Furthermore, the example shows that the convergence property
can also be checked graphically via Figure 2. Moreover, the
example highlights important properties of convergent systems
by means of simulation results in Figures 3, 4, and 5.

VI. CONCLUSION

A Lyapunov-like characterization of the convergence prop-
erty for discrete-time nonlinear systems based on two distinct
Lyapunov-like functions is proposed. One of the advantages
of this characterization is that it does not require knowledge

0 ε−ε

V0(x) δ(x)

V1(x)

x

B(ε)
X X

Fig. 6. Illustration of the functions δ(x) (red solid), V0(x) (blue dotted)
and V1(x) (green dashed).

of the steady-state solution as opposed to the characterization
provided in the literature using a single Lyapunov function.
The conditions are further specialized to the case of discrete-
time Lur’e-type systems and conditions based on several
classes of Lyapunov-like functions are formulated in terms of
linear matrix inequalities and a graphical frequency-domain
check.

APPENDIX I
TECHNICAL LEMMA 1

Lemma 1 is used below in the proof of Theorem 5 as given
in Appendix IV.

Lemma 1: Let us consider a set X ⊂ Rn, which contains
the origin, is compact, and is positively invariant with respect
to the dynamics (1) for any input w ∈ Wγ . Then there
exists a continuous function V1 : Rn → R+, K∞-functions
α1(·), α2(·), and a nonnegative scalar c ∈ R+ such that
conditions (11)–(12) are verified and such that Sc = {x ∈
Rn, V1(x) ≤ c} = X .

Proof: [Proof of Lemma 1] The proof constructs the
function V1 with the desired properties. The function V1

is based on the auxiliary functions δ(x) : Rn → R and
V0 : Rn → R. Let us denote the signed distance function
δ(x) of the boundary ∂X of the closed set X as follows:

δ(x) =

 d∂X (x), if x ̸∈ X ,
0, if x ∈ ∂X ,

−d∂X (x), if x ∈ X .
(39)

For illustration, a disconnected set X and its corresponding
distance function δ(x) are depicted in Figure 6. Since the
origin is inside the interior of the set X , denoted by X o, there
exists ϵ > 0 such that B(ϵ) ⊂ X o, see Figure 6. Consequently,
we define V0 : Rn → R such that

V0(x) :=

{
δ(0) + |x|, if x ∈ B(ϵ),
δ(0) + ϵ, elsewhere, (40)

and, finally, the function V1 : Rn → R given by

V1(x) := max(δ(x), V0(x))− δ(0). (41)

Both V0(x) and V1(x) are depicted in Figure 6.
The continuity of V1(·) is inherited by the continuity of

δ(·) and V0(·). Let us introduce κ = supx∈X |x| which is
finite thanks to the compactness of X . In addition, we have
κ > ϵ > 0 due to the inclusion B(ϵ) ⊂ X o. To prove that V1

satisfies the conditions (11)–(12), let us prove that
ϵ

κ
|x| ≤ V1(x) ≤ |x|. (42)
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Proof of the upper bound of V1 in (42): We show that
irrespectively of the two expressions that can be taken by V1

in (41), it is upper bounded by |x|. Let us first study δ(x) in
(39). If x ∈ (X ∪ ∂X ), then

|δ(x)− δ(0)| = |d∂X (0)− d∂X (x)| ≤ |x|.

If x ̸∈ X , then the intersection between the boundary ∂X and
the line segment connecting 0 ∈ X to x is non-empty and
contains at least one point z. This implies that

|x| = |x− 0| = |x− z|+ |0− z|,
≥ d∂X (x) + d∂X (0),

≥ δ(x)− δ(0).

Let us now turn to relation (40). If x ̸∈ B(ϵ), then |x| ≥ ϵ and
we find V0−δ(0) = ϵ ≤ |x|. If x ∈ B(ϵ), then V0−δ(0) = |x|.
We conclude that V1(x) ≤ |x| for any x ∈ Rn.

Proof of the lower bound of V1 in (42): We first show
that for x ∈ B(κ), the function V1 in (41) is lower bounded
by

ϵ

κ
|x|. After that, we show that the same lower bound also

holds for x ̸∈ B(κ). If x ∈ B(κ), we have, thanks to the
relation (40)

V1(x) = max(δ(x), V0(x))− δ(0),

≥ V0(x)− δ(0),

≥ min(|x|, ϵ).

Because x ∈ B(κ), we have |x| ≤ κ and because B(ϵ) ⊂ B(κ),
it holds that ϵ < κ, resulting in V1(x) ≥

ϵ

κ
|x|. If x ̸∈ B(κ) ⊃

X (note that x ̸∈ X in this case), then δ(x) = dist(x, ∂X ) ≥
dist(x,B(κ)) ≥ |x| − κ ≥ 0, thanks to a geometric argument.
Then,

V1(x) = max(δ(x), V0(x))− δ(0),

≥ δ(x)− δ(0),

≥ |x| − κ− δ(0).

Furthermore, due to the inclusion B(ϵ) ⊂ X o, −δ(0) =

dist(0, ∂X ) > ϵ. By emphasizing that
|x|
κ

≥ 1, and by
recalling that κ > ϵ, we conclude that

V1(x) ≥
(
|x|
κ

− 1

)
κ+ ϵ ≥

(
|x|
κ

− 1

)
ϵ+ ϵ =

ϵ

κ
|x|.

To end the proof, we have to determine the constant c such
that Sc = {x ∈ Rn, V1(x) ≤ c} = X . By recalling that
−δ(0) > ϵ, we can deduce that V0(x) − δ(0) < 0, ∀x ∈ Rn

and finally, by selecting c = −δ(0) > 0,

Sc := {x ∈ Rn, V1(x) ≤ c} = {x ∈ Rn, δ(x) ≤ 0} = X

defines the level set of V1.

APPENDIX II
TECHNICAL LEMMA 2

Lemma 2 is used below in the proof of Theorem 5 given
in Appendix IV.

Lemma 2: Consider system (1) and assume that it is uni-
formly incrementally stable on the set X , which is compact

and positively invariant with respect to the dynamics (1) for
any input w ∈ Wγ . Then, there exist a continuous function
V2 : Z × X × X → R+, K∞-functions α3(·), α4(·), and K-
function α5(·) such that (15)–(16) hold.

Proof: [Proof of Lemma 2 ] Lemma 2 is an adaptation in
the local context of the sufficiency part of [11, Theorem 9] (see
the detailed proof in [45], which is inspired by the continuous-
time framework in [4]). To make the paper self-contained, we
detail the proof as follows. Consider the extended system{

xa
k+1 = f(xa

k, wk, k),
xb
k+1 = f(xb

k, wk, k),
(43)

for a given sequence of inputs w ∈ Wγ , and the diagonal set
∆ := {(x′, x′)′ ∈ R2n, x ∈ Rn}.

Let zk = ((xa
k)

′, (xb
k)

′)′ ∈ R2n, then the distance from zk
to the diagonal set ∆ is given by

d∆(zk) = inf
z̃∈∆

|z̃ − zk| =
1√
2
|xa

k − xb
k|. (44)

By denoting F (k,wk, zk) =

[
f(xa

k, wk, k)
f(xb

k, wk, k)

]
, we have the

extended dynamics

zk+1 = F (k,wk, zk). (45)

Starting from xa
k ∈ X and xb

k ∈ X , and the set X
being positively invariant for the dynamics (1) for inputs
w ∈ Wγ , we have zk+1 ∈ X 2. The system (1) is uniformly
incrementally stable on X , which implies that the extended
system (45) is uniformly asymptotically stable on the domain
X 2, with respect to the diagonal set ∆.

That is, there exists a KL-function β such that the rela-
tion (4) holds ∀(k, k0, xa

0 , x
b
0) ∈ Z2 ×X 2, k ≥ k0. Thanks to

[49, Proposition 7], there exist two K∞-functions θ1 and θ2
such that β(s, k − k0) ≤ θ1(θ2(s)e

k−k0), ∀(s, k) ∈ R+ × Z,
k ≥ k0. Let θ3(s) = θ−1

1 (s), ∀s ∈ R+ be the inverse function
of θ1, which is also a K∞-function. We infer that

θ3(|ϕw(k, k0, x
a
0)− ϕw(k, k0, x

b
0)|)

≤ θ3(β(|xa
0 − xb

0|, k − k0)) ≤ θ2(|xa
0 − xb

0|)ek−k0 ,

∀(k, k0, xa
0 , x

b
0) ∈ Z2 ×X 2, k ≥ k0.

Define Ww : Z×X 2 as

Ww(k0, x
a
0 , x

b
0) =

∞∑
k=k0

θ3(|ϕw(k, k0, x
a
0)− ϕw(k, k0, x

b
0)|)

= θ3(|xa
0−xb

0|)+
∞∑

k=k0+1

θ3(|ϕw(k, k0, x
a
0)−ϕw(k, k0, x

b
0)|).

Ww is a convergent series of nonnegative scalars and satisfies
the following bounds:

θ3(|xa
0 − xb

0|) ≤ Ww(k0, x
a
0 , x

b
0)

≤ θ2(|xa
0 − xb

0|)
∞∑

k=k0

ek−k0 =
e

e− 1
θ2(|xa

0 − xb
0|).

Note that the latter bound does not depend on the sequence
of inputs. Since the set of inputs Wγ is compact, as is the
set X 2, we can apply [50, Lemma 4.2], which implies that
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the trajectories ϕw(k, k0, x
a
0) and ϕw(k, k0, x

b
0) are uniformly

continuous with respect to (xa
0 , x

b
0) ∈ X 2 and to the sequence

of inputs w. It is thus possible to define the desired function
V2 : Z×X × X → R+ as

V2(k0, x
a
0 , x

b
0) = sup

γ(|wk|)≤1

Ww(k0, x
a
0 , x

b
0). (46)

By selecting α3(s) = θ3(s) and α4(s) =
e

e− 1
θ2(s), the

condition (15) is verified. The continuity of V2 with respect to
the last two arguments is obtained thanks to [50, Lemma 4.4],
restricted on X 2. By following the proof of [50, Theorem 1],
selecting α5(s) = θ3(s), we can verify condition (16).

APPENDIX III
TECHNICAL LEMMA 3

Lemma 3 is used below in the proof of Theorem 8 given
in Appendix VI.

Lemma 3: Consider a symmetric positive definite matrix
M > 0 and a symmetric positive semidefinite matrix N(κ)
of the same dimension and depending on a parameter κ > 0.
If the function κ 7→ N(κ) is continuous at κ = 0 and
limκ→0 N(κ) = 0, then there exists a sufficiently small scalar
κ∗ > 0, such that for any scalar κ ∈]0;κ∗], M +N(κ) > 0.

Proof: [Proof of Lemma 3] Since the inequality M > 0 is
strict, there exists a scalar κ1 > 0 such that M > κ1I . Thanks
to the limit for N(κ), we have that there exists κ∗(κ1) > 0,
such that ∀κ ∈]0;κ∗], ρ(N(κ)) <

κ1

2
, which gives N(κ) ≥

−ρ(N(κ))I > −κ1

2
I . By summing the two inequalities, we

obtain M +N(κ) >
κ1

2
I > 0.

APPENDIX IV
PROOF OF THEOREM 5

Proof: [Proof of Theorem 5]
From incremental stability to convergence property: This
implication is proved thanks to two main points: incremental
stability related to conditions (15) and the existence of a
positively invariant compact set related to conditions (11).

For |wk| ≤ γ−1(1), the level set Sc, defined by (13), is
invariant for the dynamics (1), thanks to the condition in (12).
It is the preimage of the closed interval [0; c] via a continuous
map V1(·) and is thus closed. Furthermore, the fact that V1(·)
is radially unbounded thanks to (11) implies that the set Sc is
bounded, and hence compact.

The input wk in the mapping f can be incorporated in
the time-dependency k such that f has only two arguments,
namely the state xk and the time k. By assumption, this
mapping f is continuous with respect to its first argument
(the state) and there exists a compact positively invariant set
Sc. Then, Lemma 2 in [29] applies and we conclude that
there exists a steady-state solution xw

k ∈ Sc, ∀k ∈ Z, for
any w ∈ Wγ . Relation (11) implies that the system has the
following uniformly bounded steady-state property:

|xw
k | ≤ α−1

1 (c). (47)

Substituting xb by the steady-state xw
k in the relations (15)

leads to uniform global asymptotic stability of the solution xw
k .

Consequently, the system is globally uniformly convergent for
the class of inputs verifying γ(|wk|) ≤ 1.

From convergence property to incremental stability:
The proof of this implication can be divided into two steps.
The first step ensures the construction of a suitable function
V1 : Rn → R+. The properties of the set X are sufficient to
apply Lemma 1, which guarantees that the function V1 and
the functions α1 and α2 verify (11)–(12). The second step is
possible thanks to [11, Theorem 12] leading to the fact that
the system is uniformly asymptotically incrementally stable on
the compact set X . Then, Lemma 2 guarantees the existence
of V2, α3, α4, and α5 such that inequalities (15)–(16) hold.

APPENDIX V
PROOF OF THEOREM 6

Proof: [Proof of Theorem 6] Assume that the LMI (24)
holds. Thanks to the strict inequality, there exists a positive
scalar α̃1 > 0, such that pre- and post-multiplying (24) by
ξ(xk)

′ and ξ(xk) leads to

ξ(xk)
′P1ξ(xk) + 2sΩ(S0, Cxk) > α̃1x

′
kxk, ∀xk ̸= 0.

We have V1(xk) = ξ(xk)
′P1ξ(xk) ≥ α̃1x

′
kxk,

because sΩ(S0, Cxk) ≤ 0. By definition, we have
V1(x) ≤ ρ(P1)|ξ(x)|2. Next, we consider the equality
|ξ(x)|2 = |x|2 + |φ(Cx)|2. When the condition (21) is
satisfied, the components of the nonlinearity have the same
sign as the corresponding components of the output. Then we
also have the condition y′Ω(φ(y) − Ωy) ≤ 0, which implies
|φ(y)|2 = φ(y)′φ(y) ≤ y′Ωφ(y) ≤ y′ΩΩy ≤ ρ(C ′ΩΩC)|x|2.
By taking α̃2 = ρ(P1)(1 + ρ(C ′ΩΩC)), condition (11) is
satisfied with α1(r) = α̃1r

2 and α2(r) = α̃2r
2, ∀r ∈ R+.

Let us now prove condition (12). For a positive scalar τ2

strictly greater than ρ

([
F ′ 0m×p

]
P1

[
F

0p×m

])
, the matrix

M2(τ2) :=
[
F ′ 0m×p

]
(P1 −GΩ(S2))

[
F

0p×m

]
− τ2Im

=
[
F ′ 0m×p

]
P1

[
F

0p×m

]
− τ2Im (48)

is invertible. For τ2 tending to infinity, the matrix M2(τ2),
given in (48) tends continuously to the null matrix. Thanks to
Lemma 3, for τ2 large enough, we have

M ′
0

[
−τ1P1 −GΩ(S1) 0n+p

0n+p P1 −GΩ(S2)

]
M0

+ [⋆]M−1
2 (τ2)×([

F ′ 0m×p

]
(P1 −GΩ(S2))

[
A B 0n×p

0p×n 0p Ip

])
< 0n+2p.

By applying a Schur complement to the latter, we obtain:

M ′
1

 −τ1P1 −GΩ(S1) 0n+p 0(n+p)×m

⋆ P1 −GΩ(S2) 0(n+p)×m

⋆ ⋆ −τ2Im

M1

< 0n+2p+m (49)
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with M1 ∈ R(2(n+p)+m)×(n+2p+m) defined as follows:

M1 =

 M0

0(n+p)×m

F
0p×m

0m×(n+2p) Im

 .

Define

ηk :=

 ξ(xk)
φ(CAxk +Bφ(Cxk) + Fwk)

wk

 ,

such that  ξ(xk)
ξ(xk+1)

wk

 = M1ηk.

Pre- and post-multiplying inequality (25) by η′k and ηk respec-
tively leads to

ξ(xk+1)
′P1ξ(xk+1)− τ1ξ(xk)

′P1ξ(xk)− τ2w
′
kwk

− 2sΩ(S1, Cxk)− 2sΩ(S2, Cxk+1) < 0, ∀xk ̸= 0. (50)

Let us now set c ≥ ρσ =
τ2σ

1− τ1
, which allows to write:

−c(1− τ1) + τ2σ ≤ 0. (51)

Summing inequalities (50) and (51) concludes that

[ξ(xk+1)
′P1ξ(xk+1)− c]− τ1[ξ(xk)

′P1ξ(xk)− c]

− τ2[w
′
kwk − σ]− 2sΩ(S1, Cxk)

− 2sΩ(S2, Cxk+1) < 0, ∀xk ̸= 0. (52)

Thanks to the sector bounded condition (21) and the use of the
S-procedure, we obtain the condition (12), with γ(r) =

1

σ
r2,

∀r ∈ R+.
Consider in the sequel the time-independent incremental

Lyapunov function V2(x
a, xb) = (ξ(xa)− ξ(xb))′P2(ξ(x

a)−
ξ(xb)). First, we verify conditions (15). By pre- and post-
multiplying inequality (26) by (ξ(xa

k)− ξ(xb
k))

′ and its trans-
pose respectively, and, using the fact that the inequality is
strict, there exists a positive scalar α̃3 such that the following
inequality holds:

(ξ(xa
k)− ξ(xb

k))
′P2(ξ(x

a
k)− ξ(xb

k)) + 2sΩ(S3, Cxa
k, Cxb

k)

> α̃3|xa
k − xb

k|2, ∀xa
k − xb

k ̸= 0,

inducing V2(x
a
k, x

b
k) ≥ α̃3|xa

k − xb
k|2.

In the same way as the upper bound for V1 and thanks
to Condition (22), we have V2(x

a
k, x

b
k) ≤ ρ(P2)(1 +

ρ(C ′ΩΩC))|xa
k − xb

k|2.
To conclude the proof, let us prove that condition (16) is

satisfied. We can check that[
ξ(xa

k)− ξ(xb
k)

ξ(xa
k+1)− ξ(xb

k+1)

]
= M0

[
ξ(xa

k)− ξ(xb
k)

φ(Cxa
k+1)− φ(Cxb

k+1)

]
,

which is independent of the input wk. Pre- and post-

multiplying inequality (27) by
[

ξ(xa
k)− ξ(xb

k)
φ(Cxa

k+1)− φ(Cxb
k+1)

]′
and

its transpose, respectively, and thanks to the strict inequality,
there exists a positive scalar α̃5, such that we obtain:

(ξ(xa
k+1)− ξ(xb

k+1))
′P2(ξ(x

a
k+1)− ξ(xb

k+1))

− (ξ(xa
k)− ξ(xb

k))
′P2(ξ(x

a
k)− ξ(xb

k))

− 2sΩ(S4, Cxa
k, Cxb

k)− 2sΩ(S5, Cxa
k+1, Cxb

k+1)

< −α̃5|xa
k − xb

k|2, ∀xa
k − xb

k ̸= 0. (53)

Thanks to the sector bounded condition (22), the latter in-
equality reduces into

(ξ(xa
k+1)− ξ(xb

k+1))
′P2(ξ(x

a
k+1)− ξ(xb

k+1))

− (ξ(xa
k)− ξ(xb

k))
′P2(ξ(x

a
k)− ξ(xb

k))

< −α̃5|xa
k − xb

k|2, ∀xa
k − xb

k ̸= 0, (54)

which satisfies condition (16) and finalizes the proof.

APPENDIX VI
PROOF OF THEOREM 8

Proof: [Proof of Theorem 8] We decompose the matrices
P1 and P2 used in the conditions of Theorem 6 as follows:

P1 =

[
P11 P12

⋆ P13

]
, P2 =

[
P21 P22

⋆ P23

]
,

where P11, P21 ∈ Rn×n satisfy the conditions of Theorem 7.
The idea of the proof is to provide a specific solution that
is parameterized in a single parameter κ for the additional
matrices P12, P13, P22, P23 such that the conditions (24)–(27)
of Theorem 6 are satisfied.

Inequality (24): Inequality (24) reads[
P11 P12 − C ′ΩS0

⋆ P13 + 2S0

]
> 0. Consider a positive scalar

κ and choose S0 = κIp, P13 = −κIp and P12 = κC ′Ω,
such that the latter inequality becomes the block diagonal

inequality
[

P11 0n×p

⋆ κIp

]
> 0, which satisfies condition (24)

thanks to P11 > 0 and κ > 0.
Inequality (25): Let us rewrite inequality (25) as follows.

By inverting rows and columns and splitting the matrix to
separate the additional variables, we obtain that inequality (25)
is equivalent to: A′

B′

0

P11

 A′

B′

0

′

−

 τ1P11 −C ′ΩS1 0
⋆ 2S1 0
⋆ ⋆ 0


+

 0 −τ1P12 A′P12 +A′C ′ΩS2

⋆ −τ1P13 B′P12 +B′C ′ΩS2

⋆ ⋆ P13 − 2S2

 < 0. (55)

With the specific choice S2 = κIp, we have P13 − 2S2 =
−3κIp < 0p, which ensures its invertibility. Applying a Schur
complement to (55) leads to the equivalent inequality:[

A′

B′

]
P11

[
A′

B′

]′
−
[

τ1P11 −C ′ΩS1

⋆ 2S1

]
+κ

[
0 −τ1C

′Ω
⋆ +τ1Ip

]
+

κ

3

[
2A′C ′Ω
2B′C ′Ω

] [
2A′C ′Ω
2B′C ′Ω

]′
< 0.

(56)
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We recognize in the first terms inequality (30) and, thanks
to Lemma 3, there exists a sufficiently small κ such that
inequality (25) holds.

Inequality (26): By choosing P22 = κC ′Ω, P23 = −κIp
and S3 = κIp, we have[

P21 P22 − C ′ΩS0

⋆ P23 + 2S3

]
=

[
P21 0n×p

⋆ κIp

]
> 0, (57)

which implies inequality (26) thanks to P21 > 0n and κ > 0.
Inequality (27): By rewriting Inequality (27) and separating

terms that depend only on the additional variables, we obtain
the following inequality: A′

B′

0

P21

 A′

B′

0

′

−

 P21 −C ′ΩS3 0
⋆ 2S3 0
⋆ ⋆ 0


+

 0 −P22 A′(P22 + C ′ΩS5)
⋆ −P23 B′(P22 + C ′ΩS5)
⋆ ⋆ P23 − 2S5

 < 0. (58)

By choosing S5 = κIp, the latter inequality is equivalent to
the following Schur complement:[

A′

B′

]
P21

[
A′

B′

]′
−
[

P21 −C ′ΩS3

⋆ 2S3

]
κ

[
0 −C ′Ω
⋆ κIp

]
− κ

3

[
2A′C ′Ω
2B′C ′Ω

] [
2A′C ′Ω
2B′C ′Ω

]′
< 0. (59)

We recognize inequality (31) in the first terms of (59). By
Lemma 3, we can find a sufficiently small κ such that
inequality (27) holds.

To end the proof, we only have to derive a lower bound for
the Lyapunov function V1(x) of Theorem 6:

V1(x) = ξ(x)′
[

P11 κC ′Ω
⋆ −κIp

]
ξ(x)

= x′P11x+ 2κφ(y)′Ωy − κφ(y)′φ(y), (60)
= x′P11x+ κφ(y)′φ(y)− 2sΩ(κIp, y). (61)

Thanks to the sector condition (21), we have

V1(x) ≥ κ|φ(y)|2 + x′P11x ≥ x′P11x. (62)

The value of the level set c imposed by Theorem 7, is a lower
bound on the value of the level set imposed by Theorem 6.
Therefore, this allows the inclusion Sc ⊂ E(P11, c) and
finalizes the proof.

APPENDIX VII
PROOF OF THEOREM 9

Proof: The proof is structured as follows. First, we recall
the bounded real lemma inequalities and rewrite these for our
use. We then show that satisfaction of the bounded real lemma
inequalities guarantees the satisfaction of the conditions of
Theorems 6–7. Note that we only need to prove the case in
which γ̄ > 0, since the Lur’e-type system (19)–(20) boils
down to an LTI system in the case γ̄ = 0. In the LTI case, the
condition ∥H̃∥∞ < 2γ̄−1 together with the assumption that
all the eigenvalues of Ã are inside the unit disc implies global

exponential stability, where Ã and H̃ are defined in (34). Any
globally exponentially stable LTI system is also GEUC.

We recall the discrete-time bounded real lemma from [51].
The bounded real lemma states that ∥H̃∥∞ < 2γ̄−1 and Ã
has all its eigenvalues inside the unit disc if and only if there
exists a symmetric, positive definite matrix P such that the
following matrix inequality is satisfied:Ã⊤PÃ− P Ã⊤PB C⊤

⋆ B⊤PB − 2γ̄−1Ip 0p
⋆ ⋆ −2γ̄−1Ip

 ≺ 0. (63)

Using a Schur complement on (63), we find[
Ã⊤

B⊤

]
P
[
Ã B

]
−

[
P − 1

2C
⊤γ̄C 0n×p

⋆ 2γ̄−1Ip

]
≺ 0. (64)

Thanks to the strict inequality in (64), there exists a τ1 ∈ (0, 1)
such that the following inequality is satisfied:[

Ã⊤

B⊤

]
P
[
Ã B

]
−

[
τ1P − 1

2C
⊤γ̄C 0n×p

⋆ 2γ̄−1Ip

]
≺ 0. (65)

By the choice γ̄−1Ip = S with S the matrix in (32), this
inequality is equivalent to[

Ã⊤

B⊤

]
P
[
Ã B

]
−

[
τ1P − 1

2C
⊤Sγ̄2C 0n×p

⋆ 2S

]
≺ 0. (66)

Next, we pre- and post-multiply inequality (66) with the matrix[
In − 1

2 γ̄C
⊤

0n×p Ip

]
, (67)

and its transpose, respectively. This congruence transformation
gives the following matrix inequality:[

A⊤

B⊤

]
P
[
A B

]
−
[
τ1P −γ̄C⊤S
⋆ 2S

]
≺ 0, (68)

where the equality Ã = A+ 1
2BΩ̄C is used. Since the matrix

in (67) is invertible, inequality (68) is equivalent to (66).
Now, notice that (68) is equivalent to (32) for Ω̄ = γ̄Ip.

Therefore, satisfaction of (63) guarantees the existence of a
τ1 ∈ (0, 1) such that (32) is satisfied for S = γ̄Ip. Moreover,
the satisfaction of the inequality ∥H̃∥∞ < 2γ̄−1 and the
condition that the eigenvalues of Ã are inside the unit disc, is
equivalent to the existence of a P ≻ 0 such that (63) holds.
Thus, the satisfaction of ∥H̃∥∞ < 2γ̄−1 and the condition that
the eigenvalues of Ã are inside the unit disc guarantees the
satisfaction of the conditions of Corollary 2, i.e., the existence
of a P ≻ 0, τ1 ∈ (0, 1), and S such that inequality (32)
is satisfied. In turn, Corollary 2 guarantees the satisfaction
of the conditions of Theorem 7. Finally, by Theorem 8, we
conclude that the conditions of Theorem 6 are also satisfied.
The conditions of Theorems 6 and 7 conclude that the system
is GEUC for the class of bounded inputs as given in the
theorem statement.
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