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Abstract

In this paper, we construct a singular standing ring solution of the
nonlinear heat in the radial case. We give rigorous proof for the existence
of a ring blow-up solution in finite time. This result was predicted formally
by Baruch, Fibich and Gavish [BFG10]. We also prove the stability of
these dynamics among radially symmetric solutions.
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1 Introduction

In this paper, we consider the following nonlinear heat equation,

(1.1)

{
∂tu = ∆u+ |u|p−1u,
u(., 0) = u0 ∈ L∞(R),
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where u(t) : x ∈ RN → u(x, t) ∈ R and p > 1. Equation (1.1) is considered
as a model for many physical situations such as heat transfer, combustion theory,
thermal explosion, etc. (see more in Kapila [Kap80], Kassoy and Poland [KP80],
Bebernes and Eberly [BE89]).

The local Cauchy problem for equation (1.1) can be solved within L∞(R).
Furthermore, it can be shown that the solution u(t) exists either in the interval
[0,+∞) or within [0, T ) where T < +∞. In the latter case, u undergoes a
finite-time blow-up, indicating that

lim
t→T

||u(t)||L∞ = ∞.

Despite the extensive research conducted on these equations over the past
four decades, it is crucial to acknowledge that no single review can comprehen-
sively cover all aspects. In this context, our attention is directed towards the
development of solutions displaying a distinct blow-up behavior. Consequently,
our references will be limited to prior work within this scope. Interested readers
may refer to [QS07] for a comprehensive sight of research on equation (1.1).

The pioneering work by Giga and Kohn [GK85] and [GMS04] yielded the first
insight into the asymptotics of blow-up. They established that, up to changing
u by −u, for each K > 0, the following holds:

(1.2) lim
t→T

sup
|x|≤K

√
T−t

∣∣∣(T − t)
1

p−1u(x, t)− κ
∣∣∣ = 0, with κ = (p− 1)−

1
p−1 .

Based on a numerical analysis conducted by Berger and Kohn [BK88], it was
hypothesized that if the decay pattern is non-exponential, the solution u to
equation (1.1) would converge towards a specific universal profile, denoted as
f(z). An extensive literature is devoted to the blow-up profile for NLH equation
see Vélazquez [Vel92], [Vel93a], [Vel93b], and Zaag [Zaa02a], [Zaa02b] for partial
results. In one space dimension, given a a blow-up point, these are the situations:

1. (T − t)
1

p−1u(x, t) ≡ κ.

2. either
(1.3)

sup
|x−a|≤K

√
(T−t) log(T−t)

∣∣∣∣∣(T − t)
1

p−1u(t, x)− f

(
x− a√

(T − t)| log(T − t)|

)∣∣∣∣∣→ 0,

3. or for some m ∈ N, m ≥ 2, and Cm > 0

(1.4) sup
|x−a|≤K(T−t)1/2m

∣∣∣∣(T − t)
1

p−1u(x, t)− fm

(
Cm(x− a)

(T − t)1/2m

)∣∣∣∣→ 0,

as t→ T , for any K > 0, where

(1.5)
f(z) = (p− 1 + b0z

2)−
1

p−1 , with b0 =
(p− 1)2

4p

fm(z) = (p− 1 + b|z|2m)−
1

p−1 , with b > 0.
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In the higher dimensional case, we would like to mention works by Herrero
and Vélazquez [HV92a] on the asymptotic behavior of the blow-up solution to
equation (1.1) and [Vel93a] on the classification of such behavior. Following
these behaviors, there are also interesting examples. One may refer to Nguyen
and Zaag [NZ18], for constructed solutions showing a refinement of behavior
(1.3) in 2 dimensions. In the supercritical case, we have an example of a single-
point blow-up with a degenerate profile given by Merle, Raphäel, and Szeftel
[MRS20]. More recently, Merle and Zaag [MZ22] have provided an example of a
blow-up solution with a completely new blow-up profile, which is cross-shaped.

Going back to the one-dimensional case, Bricmont and Kupiainen [BK88]
construct a solution for (1.1) behaves just like (1.3). Recently, Duong et al.
[DNZ23b] revisited the construction of flat profile given by fm in (1.5) using
modulation theory. The methods used in [BK88] were enhanced after by Merle
and Zaag [MZ97] by using a more geometrical approach. In general speaking,
regarding the linearized equation, Merle and Zaag cope with this problem in
two steps:

1. Reduce the problem into a finite-dimensional one.

2. Solve the finite-dimensional problem with a topological shooting argu-
ment.

This powerful method is then applied to many other different fields. Inter-
ested readers are invited to see [MZ08] and [DNZ23a] for an application in the
complex Ginzburg-Landau equation and a more direct way to accomplish the
first step in [MZ97]. Besides, Dávila, Del Pino, and Wei [DDPW20] applied this
method to deal with the formation of the singularities for harmonic map flow.
Among the numerous results, the blow-up behavior of the solution to the non-
linear Schrodinger equation remarked by Raphael [Rap06] on a sphere arouses
our interest.

Nevertheless, Baruch, Fibich, and Gavish have presented numerical evi-
dence indicating that the nonlinear heat equation (1.1) also allows for singular
standing-ring solutions in cases of radially symmetric solutions [BFG10]. We
hence like to study (1.1) in radially symmetric settings. The existence and
stability of solution blowing up on a sphere were already studied for the L2-
supercritical nonlinear Schrödinger equation by Raphaël [Rap06], this result
was extended to a higher dimension in the work of Raphaël and Szeftel [RS09].
We cite also the work of Collot et al. [CGMN23] where the authors proved the
existence and stability of a collapsing-ring blow-up solution to the Keller-Segel
system in 3 dimensions and higher.

In this paper, we prove the existence and stability of radially symmetric
blow-up along the unit sphere of Rn for the non-linear heat equation (1.1).
Whence proposes our main theorem as follows:

Theorem 1.1. (Existence of a singular standing solution for equation (1.1)
with Prescribed Profile). There exists T > 0 such that equation (1.1) has a
solution u(x, t) in Rn × [0, T ), with radial symmetry such that:

1. the solution u blows up in finite time T on the sphere of radius rmax;
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2. there holds that for all R > 0,

sup
ΛR

∣∣∣∣∣(T − t)
1

p−1u(|x|, t)− f

(
|x| − rmax√

(T − t)| log(T − t)|

)∣∣∣∣∣→ 0 as t→ T, (7)

where ΛR :=
{
||x| − rmax| ≤ R

√
(T − t)| log(T − t)|

}
,

f(z) =
(
p− 1 + bz2

)− 1
p−1 and b =

(p− 1)2

4p
.

3. for all r > 0, r ̸= rmax, u(r, t) → u(r, T ) as t → T , with u(r, T ) ∼
u∗(r − rmax) as r → rmax, where

(1.6) u∗(r) ∼
[
b

2

r2

| log r|

]− 1
p−1

as r → 0.

Using the ideas from [MZ97] and [Zaa98], we are able to interpret the two-
dimensional variable in terms of blow-up point and blow-up time. This results
in the stability of profile (1.6) in Theorem 1.1 .

Proposition 1.2 (Stabilty of the singular standing solution). Denote by û the
solution constructed in Theorem 1.1 which blowup at the sphere of radius r̂ and
note by Tû its blow-up time. Then, there exists ε0 > 0 such that for any radially
symmetric initial data u0 ∈ H, satisfying ∥u0 − û(·, 0)∥L∞ ≤ ε0, the solution
of (1.1), with initial data u0 blows up at finite time Tu0 at only one collapsing
ring with radius r0 in Rn . Moreover, the function u(|x|, ·) satisfies the same
estimates as u with Tû replaced by Tu0

. Furthermore, it follows that

Tu0
→ Tû, r0 → r̂ as u0 → û(0).

Remark 1.3. To prove Theorem 1.1 we project the linearized partial differential
equation on the eigenfunctions hm given by (2.19). This is technically different
from the work of [MNZ16], [MZ97] and [BKL94], where the authors use the
integral equation. We will follow the two steps proposed in [MZ97] but in a
more straight way. Indeed, we have an additional problem coming from the fact
that the equation in radial coordinates presents a singularity in zero. To solve
this problem we will use ideas from [MNZ16] and [Rap06].

Remark 1.4. In this paper, we are focused on the radial dynamics of the cir-
cle which reduces to the one-dimensional dynamic. We will give the proof in
dimension 2, but it can be extended to a higher dimension with no difficulties.

Remark 1.5. Note that Herrero and Velázquez showed the genericity of the
behavior given by (1.3), in [HV92b] and [HV92c] dedicated to the one dimen-
sional case, and in a non published document in higher space dimensions. In
Proposition 1.2, we focused on the radially symmetric perturbations. While, un-
der non-radial perturbations, due to the genericity of the profile, stability of the
blow-up profile broke down.

This paper is organized as follows: in Section 2, we will give the formulation
of our problem. Then, in Section 3 we give the proof of Theorem 1.1 without
technical details and solve the finite dimension problem. Finally, in Section 4
we conclude by giving the proofs of propositions cited in Section 3.
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2 Formulation of the problem

For simplicity, we give the proof in dimension n = 2. Inspired by the numerical
results [BFG10], we consider the radially symmetric solution u(r, t) = u(|x|, t),
then we write equation (1.1) in radial coordinates as follows

(2.1) ∂tu = ∂2ru+
d− 1

r
∂ru+ |u|p−1u.

In general, the two terms ∂2ru and ∂ru
r forming the Laplacian certainly scale

the same way. Heuristically, if we assume that the singularity formation of a
priory takes place exclusively around the circle r ∼ 1, then on this circle, the
term ∂ru

r scales below ∂2ru, and thus the singular part of the equation is governed
by the one-dimension nonlinear heat equation

(2.2) ∂tu = ∂2ru+ |u|p−1u.

for which the rigorous construction of blow-up solution is very well known, see
[MZ97], while the existence of the term: ”d−1

r ∂ru” which has a singularity at
”{(t, x)|x = 0}”, prevents us from the estimations in a neighborhood of the
origin. We naturally think of separating the space into two parts: the regular
part and the blow-up part. The first part contains the origin, where the solution
is supposed to be regular, while the other is away from the origin and the solution
is expected to be explosive.

We introduce the following smooth nonnegative cut-off functions:

(2.3) X =

 0 0 ≤ ξ ≤ 3
8 ,

1 ξ ≥ 3
4 ,

and

(2.4) X =

 0 ξ ≥ 1
4 ,

1 0 ≤ ξ ≤ 1
8 .

In regular region, we define u(x, t) = X
(

|x|
ε0

)
u(x, t), for x ∈ R2, where u(x, t)

is assumed to satisfy the following:

ut = ∆u+ |u|p−1u.

Then for all x ∈ R, u satisfies the following equation:

(2.5) ∂tu = ∆u+ |u|p−1u− 2∇X∇u−∆Xu

u will be controlled using classical parabolic estimates.

In the blow-up region: First, we note that by an invariable scaling, we can
take rmax = 1. In the following, we consider the equation in radial coordinates
given by (2.1).
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Let us introduce U(r, t) = u(|x|, t) with r = |x|, then U satisfies the following
equation:

(2.6) ∂tU = ∂2rU +
d− 1

r
∂rU + |U |p−1U.

If we consider the following self-similar transformation:

(2.7) W (y, s) = (T − t)
1

p−1U(r, t) with y =
r − 1√
T − t

, s = − log(T − t),

then W satisfies:

(2.8) ∂sW = ∂2yW − 1

2
y∂yW + e−s/2 d− 1

ye−s/2 + 1
∂yW − W (y, s)

p− 1
+ |W |p−1W,

With y ∈ [−es/2,+∞) and s ∈ [− log T,+∞). If we set w = W · X(ye
−s/2+1
ε0

),
where X is defined by (2.3), then w satisfies:

(2.9) ∂sw = ∂2yw− 1

2
y∂yw− 1

p− 1
w−|w|p−1w+e−s/2 d− 1

ye−s/2 + 1
∂yw+F (y, s),

where F (y, s) is defined as following:

(2.10)

F (y, s) =


W∂sX− 2∂yX∂yW −W∂2yX

+
1

2
yW∂yX− d− 1

y + es/2
W∂yX+ |W |p−1W (X− Xp)

, if y ≥ −3

4
e−s/2

0, otherwise.

In the ring {r = 1}, we introduce the perturbation q defined by

w = φ+ q,

with

(2.11) φ = f

(
y√
s

)
+

κ

2ps
,

where

(2.12) f(z) = (p− 1 + bz2)−
1

p−1 , κ = (p− 1)−
1

p−1 , and b =
(p− 1)2

4p
.

The problem is then reduced to constructing a function q satisfying

lim
s→∞

sup
y∈[−e−

s
2 ,+∞)

|q(y, s)| = 0.

The equation for q is as follows:

(2.13) ∂sq = (L+ V )q +H(y, s) + ∂yG(y, s) +R(y, s) +B(y, s) +N(y, s)

where

(2.14) L = ∂2y − 1

2
y∂y + 1, V = pφp−1 − p

p− 1
,
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(2.15) B(y, s) = |φ+ q|p−1|φ+ q| − φp − pφp−1q,

and

(2.16)

R(y, s) = ∂2yφ− 1

2
y∂yφ− 1

p− 1
φ+ φp − ∂sφ,

H(y, s) =W (∂2yX+ ∂sX+
1

2
y∂yX∂yX) + |W |p−1W (X− Xp),

G(y, s) = −2∂yXW,

N(y, s) =
d− 1

y + es/2
W∂yX.

The control of q near the collapsing ring {r = 1} obeys two facts:

• Localization
Looking at the expression provided in (2.11), we note that the variable z =
y√
s
plays a fundamental role. Consequently, we will analyze the behavior of q

separately when |z| > 2K, namely the outer region, and when |z| ≤ 2K, namely
the inner region, with the specific value of K > 0 to be chosen later sufficiently
large.

Let us consider the cut-off function X0 ∈ C∞
0 ([0,+∞)), such that X0(ξ) = 1

for ξ < 1 and X0(ξ) = 0 for ξ > 2 and introduce

(2.17) Xc(y, s) = X0

(
|y|

2K
√
s

)
where K > 0 is chosen large enough,

and we introduce:

(2.18) qe = q(1− Xc).

• Spectral properties of the linear operator L

The operator L is self adjoint on D(L) ⊂ L2(R, dµ) with

dµ(y) =
e−

y2

4

(4π)1/2
dy.

The spectrum of L is

spec(L) = {1− m

2
|m ∈ N}.

All the eigenvalues are simple and the corresponding eigenfunctions are derived
from Hermite polynomials:

(2.19) hm(y) =

[m2 ]∑
n=0

m!

n!(m− 2n)!
(−1)nym−2n.

hm satisfies ∫
R
hmhndµ = 2nn!δnm.

7



Thanks to the above spectral properties, we can define the following projec-
tions:

•Decomposition of q

For the sake of controlling q in the region |y| <
√
s, we will expand the

unknown function q (and not qXc) concerning the Hermite polynomial.

(2.20) Pm(f) = fm =

∫
R
fhmdµ(∫
h2mdµ

)1/2
for m ∈ {0, 1, 2},

(2.21) P−(f) = f− =
∑
m≥3

Pm(f).

Then we study

(2.22) q(y, s) =

2∑
m=0

qm(s)hm(y) + q−(y, s).

3 The existence assuming some technical results

This section is devoted to the proof of Theorem 1.1 and as mentioned before,
we only give the proof in R2. We proceed in four steps, each of them making a
separate subsection.

• In the first subsection, we define the bootstrap regime and translate our
goal of making q(s) go to 0 in terms of belonging to S.

• In the second subsection, we give an initial data family for equation (1.1),
such that the initial datum is trapped in the shrinking set.

• In the third subsection, using spectral properties of the linearized operator
in the blow-up region and parabolic regularity in the regular region, we
reduce our goal from the control of u ∈ S to the control of the two first
component of q (q0 and q1).

• We end this section by solving the finite-dimensional problem using the
shooting lemma and conclude the proof of Theorem (1.1).

3.1 Bootstrap regime

In this part, we introduce the following shrinking set

Definition 3.1. For A, K0, ε0 > 0, 0 < η0 ≤ 1, T > 0, we define for all
t ∈ [0, T )

S(t) = S[A,K0, ε0, η0](t),

the set of all functions u ∈ L∞(R) satisfying:
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• (i) Estimates in R1: we consider V(s) = V[K0, A](s) (where s = − log(T−
t) ), the set of all functions r ∈ L∞(R) such that

|rm(s)| ≤ As−2 (m = 0, 1),

|r2(s)| ≤ A2s−2 log(s),

|r−(y, s)| ≤ As−2(1 + |y|3),
|re(y, s)| ≤ As−1/2,

where
re(y, s) = (1− χc(y, s))r(y, s),

r−(s) = P−(r),

for m ∈ N, where rm(y, s) and P− are defined in (2.20) and (2.21).

• (ii) Estimates in R2: For all 0 ≤ |x| ≤ ε0
4 , |u(x, t)| ≤ η0.

This definition yields the following priori estimates on the functions in V(s).

Proposition 3.2. For any s > 1, let r be in the shrinking set V(s) defined in
Definition 3.1. Then the following estimates hold.

1. ∥r∥L∞(R) ≤ C(K)A
2

√
s
,

2. for all y ∈ R, |r(y)| ≤ CA log s
s2 (1 + |y|3)

Proof. The proof is the same as Proposition 4.1 in [MZ08], we hence omit it
here.

3.2 Preparation of initial data

In this part, we aim to give a suitable family of initial data for our problem.
Let us consider (d0, d1) ∈ R2, T > 0, we consider initial data for the equation
(1.1) defined for all x ∈ R2 by:

(3.1) u0(x, d0, d1) = T− 1
p−1

{
φ(y, s0)X(

ye−s0/2

ε0
) +

A

s20
(d0 + d1y)Xc

}
,

where s0 = −logT , y = |x|−1√
T

, X is defined in (2.3) and Xc is given by (2.17).

Lemma 3.3. [ Decomposition of Initial Data in Different Components ] There
exists K0 > 0 such that for ε0 > 0, A ≥ 1, there exists s0(K0, ε0, A) ≥ e such
that :

1. There exists a rectangle

(3.2) DK0,ε0,A,T = DT ⊂ [−2, 2]2,

such that the mapping (d0, d1) → (q0(s0), q1(s0)) is linear and one-to-one
from DT onto [− A

s20
, A
s20
]2 and maps the boundary ∂DT into the boundary

∂[− A
s20
, A
s20
]2. Moreover, it is of degree one on the boundary.

9



2. For all (d0, d1) ∈ DT , we have:

(3.3)
|q2(s0)| ≤ CAe−s0 , |q−(y, s0)| ≤

c

s20
(1 + |y|3),

and qe(y, s0) = 0, |d0|+ |d1| ≤ 1.

3. For all (d0, d1) ∈ DT and |x| ≤ ε0/4, we have u(x, d0, d1) = 0.

Proof. The proof is purely technical and follows as the analogous step in [MNZ16]
and [MZ97], for that reason we refer the reader to Lemma 3.5 page 156 and
Lemma 3.9 page 160 in [MZ97].

3.3 Reduction to a finite-dimensional problem

In this part, we show that the control of the infinite problem is reduced to a
finite-dimensional one. Since the definition of the bootstrap S(s) shows two
different types of estimates, in the regions R1 and R2, accordingly, we need two
different approaches to handle those estimates:

• In R1, we work in similarity variables (2.7), in particular we crucially use
the projection of equation (2.13) with respect to the decomposition given
in (2.22).

• In, R2, we directly work in the variables u(x, t), using standard parabolic
estimates. For more details see subsection 4.2.

In the following, we restrict ourselves to the blow-up region. It is sufficient
to prove there exists a unique global solution q on [s0,+∞) for some s0 large
enough such that

q(s) ∈ V(s), ∀s ≥ s0.

In particular, we show that the control of the infinite problem is reduced to a
finite-dimensional one. To obtain this key result, we first claim the following
priori estimates. We should emphasize that the parametersK, A,T and s0 in the
following lemmas are allowed to vary from one to one. When proving Proposition
3.4, we will prove that the conclusions of all lemmas are simultaneously valid
for values of K, A, T and s0 as described in the proposition.

Proposition 3.4 (A prior estimates). There exists A ≥ 1 and s0 ≥ 0 such that
for all s ≥ s0 if q(s) ∈ V(s) is true, then the following holds:

1. (ODE satisfied by the expanding models) For m = 0, or 1, we have

(3.4)
∣∣∣q′m − (1− m

2
)qm

∣∣∣ ≤ AC

s2
.

2. (Control of null and negative modes)

|q2(s)| ≤
(τ
s

)2
q2(τ) + CA2s−2 log(s/τ)∥∥∥∥ q−(s)

1 + |y|3

∥∥∥∥
L∞

≤ e−
3
4 (s−τ)

∥∥∥∥ q−(τ)

1 + |y|3

∥∥∥∥
L∞

+
CA2

.
s2

10



3. (Control of outer part qe)

∥qe(s)∥L∞ ≤ e−
(s−τ)
2(p−1) ∥qe(τ)∥L∞ + C

A2

√
τ
(1 + s− τ).

The idea of the proof of Proposition 3.4 is to project (2.13) according to the
decomposition (2.22). The computations become too long, so we postpone the
proof of Proposition 3.4 That is why the whole section 4.1 is devoted to the
proof of Proposition 3.4.

Consequently, we have the following result

Proposition 3.5 (Control of q(s) in V(s) by (q0(s), q1(s))). There exists A > 1
such that there exists T (A) ∈ (0, 1/e) such that the following holds: If q is a
solution of (21)–(51) with initial data at s = s0 = − log T given by (45) with
(d0, d1) ∈ DT , and q(s) ∈ S(s) for all s ∈ [s0, s1] with q(s1) ∈ ∂S(s1) for some
s1 > s0, then:

(i) (q0(s1), q1(s1)) ∈ ∂[− A
s21
, A
s21
]2.

(ii) (Transverse crossing) There exist m ∈ {0, 1} and ω ∈ {−1, 1} such that

ωqm(s1) =
A

s21
and ω

d

ds
qm(s1) > 0.

Remark 3.6. In (ii) of Proposition 3.5, we show that the solution q(s) crosses
the boundary ∂V(s) at s1, with positive speed, in other words, that all points on
∂V(s1) are strict exit points. The construction is essentially an adaptation of
Wazewski’s principle (see [Con78], chapter II and the references given there).

Proof of Proposition 3.5. : Assuming Proposition 3.4, we argue as in the proof
of Proposition 4.5, page 1632 from [MZ08]. By choosing proper A and T , we
can use the conclusions of Proposition 4.6.

To prove (i), we notice that from Definition 3.1 and the fact that q0(s) = 0,
it is enough to show that for all s ∈ [s0, s1],

(3.5)

∥qe∥L∞(R) ≤
A

2
√
s
,

∥q−(y)∥L∞(R) ≤
A(1 + |y|)3

2s2
,

|q2| ≤
A2

2s2
.

Define σ = logA and take s0 ≥ σ (that is, T = e−σ = 1/A) so that for all
τ ≥ s0 and s ∈ [τ, τ + σ], we have

τ ≤ s ≤ τ + σ ≤ τ + s0 ≤ 2τ =⇒ 1

2
≤ τ

s
≤ s

τ
.

We consider two cases in the proof.
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Case 1: s ≤ s0 + σ. Note that (54) holds with τ = s0. Using (ii) of
Proposition 3.4 and estimate (ii) of Proposition 4.2 on the initial data q(·, s0),
we write

∥q2(s)∥ ≤ CA2e−γs/2 +
CA2

s2
,

∥ q−(s)

1 + |y|3
∥L∞ ≤ C

A

(s/2)3
+ C

A2

s2
,

∥qe(s)∥L∞ ≤ CA3(s/2)−1/2(1 + logA).

Thus, for sufficiently large A and s0 we see that (3.5) holds.
Case 2: s > s0 + σ. Let τ = s− σ > s0, by Proposition 3.4 and using the

fact that q(τ) ∈ V(τ), we write

∥q2(s)∥ ≤ A2(s/2)−2 log(s) +
CA2

2
s−2 log(s),∥∥∥∥ q−(s)

1 + |y|3

∥∥∥∥
L∞

≤ e−
3
4σ

A

(s/2)2
+ C

A2

s2
,

∥qe(s)∥L∞ ≤ e−
σ

2(p−1)
A

(s/2)1/2
+

CA2

(s/2)1/2
(1 + σ).

Thus in this case, we see clearly that there exists sufficiently large A and s0
such that conditions in (3.5) are satisfied.

Conclusion of (i): We select A, and s0 large enough so that (3.5) are verified.
Then the fact that q(s1) ∈ ∂V(s1) together with the definition of V(s) shows
that (i) of 3.5 is true. From (i) in 3.5 we deduce (ii) as follows:

Firstly from (i), there is (m,ω) ∈ {0, 1} × {−1, 1} such that qm(s1) = ω A
s21

using 1 of 3.4 we see that

(3.6) ωq′m(s1) ≥
(
1− m

2

)
ωqm(s1)−

C

s21
≥ (1−m/2)A− C

s21
.

Taking A large enough concludes the proof of Proposition 3.5.

3.4 Control of the solution in the bootstrap regime and
proof of Theorem 1.1

We prove Theorem 1.1 using the previous results. We proceed in two parts:
Part 1: Solution of the finite-dimensional problem

Let A, and T (= e−s0) be chosen that Proposition 3.5 and Proposition 3.4
valid, We will find the parameters (d0, d1) ∈ DT defined in (3.2) and advance
by assuming that for all (d0, d1) ∈ DT , there exists s∗(d0, d1) ≥ − log T such
that qd0,d1

(s) ∈ V(s) for all s ∈ [− log T, s∗] and qd0,d1
(s∗) ∈ ∂V(s∗). From (i)

of Proposition 3.5, we see that (q̃0(s∗), q̃1(s∗)) ∈ ∂[− A
s2∗
, A
s2∗
]2 and the following

function is well defined:

(3.7)

Φ : DT → ∂[−1, 1]

(d0, d1) →
s2∗
A
(q̃0, q̃1)d0,d1(s∗).

12



This function is continuous by (ii) of Proposition 3.5. If we manage to show
that Φ is of degree 1 on the boundary, then we have a contradiction from the
degree theory. We now focus on proving that.

Using the fact that q(− log T ) = ψd0,d1 , we see that when (d0, d1) is on the
boundary of the quadrilateralDT , (q̃0, q̃1)(− log T ) ∈ ∂[−A(log T )−2, A(log T )−2]2

and q(− log T ) ∈ VA(− log T ) with strict inequalities for the other components.
Applying the transverse crossing property of Proposition 3.5, we see that q(s)
leaves V(s) at s = − log T , hence s∗(d0, d1) = − log T . Using (3.7), we see
that the restriction of Φ to the boundary is of degree 1. A contradiction then
follows. Thus, there exists a value (d0, d1) ∈ DT such that for all s ≥ − log T ,
qd0,d1(s) ∈ V(s).
Part 2: Proof of Theorem 1

Consider the solution constructed in Part 1, such that q(s) ∈ V(s). Then by
Definition 3.1, we see that

∀y ∈ R, ∀s ≥ − log T, |q(y, s)| ≤ CA2

√
s
.

By definitions (2.7) (2.11), we see that

∀s ≥ − log T, ∀|x| ≥ ε0
4
,

∣∣∣∣W (y, s)− f

(
y√
s

)∣∣∣∣ ≤ CA2

√
s

+
C

s
.

By definition (2.7) of W , we see that ∀t ∈ [0, T ), ∀|x| ≥ ε0
4 ,∣∣∣∣∣(T − t)1/(p−1)u(r, t)− f

(
r − rmax√

(T − t) log(T − t)

)∣∣∣∣∣ ≤ C(A)√
| log(T − t)|

.

(i) If r = rmax, then we see from above that |u(0, t)| ∼ κ(T − t)−1/(p−1) as
t→ T . Hence u blows up at time T at r = rmax.

It remains to prove that any r0 ̸= rmax is not a blow-up point. Since we know
from item (ii) in Definition 3.1, that if r0 ≤ ε0

4 , and 0 ≤ t ≤ T , |u(θ, t)| ≤ η0, it
follows that r0 is not a blow-up point, provided r ≤ ε0

4 .
Now, if r0 ≥ ε0

4 , the following result from Giga and Kohn [13] allows us to
conclude.

Proposition 3.7 (Giga and Kohn). For all C0 > 0, there is η0 > 0 such that
if v(ξ, τ) solves

|vτ −∆v| ≤ C0(1 + |v|p),

and satisfies
|v(ξ, τ)| ≤ η0(T − t)−1/(p−1),

for all (ξ, τ) ∈ B(a,R) × [T − R2, T ) for some a ∈ R and R > 0, then v does
not blow up at (a, T ).

Proof. See Theorem 2.1 page 850 in [GK85]. □
Since r ≥ ε0

4 , the estimate∣∣∣∣∣(T − t)1/(p−1)u(r, t)− f

(
r − rmax√

(T − t) log(T − t)

)∣∣∣∣∣ ≤ C(A)√
| log(T − t)|

.

together with Proposition 3.7 concludes that r0 is not a blow-up point.
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4 Reduction to a finite-dimensional problem

Since the definition of the shrinking set S, given by Definition 3.1, shows two dif-
ferent types of estimates, in the blow-up region and regular region, accordingly,
we need two different approaches to handle those estimates:

• In the blow-up region, we work in similarity variables (2.7), in particu-
lar, we crucially use the projection of equation (2.13) with respect to the
decomposition given in (2.22).

• In the regular region, we directly work in the variables u(x, t), using stan-
dard parabolic estimates.

4.1 Estimates in the blow-up region

Proof of Proposition 3.4
In this section, we prove Proposition 3.4. More precisely, we project the lin-
earized equation (2.13) on the Hermite polynomials to get the equations satisfied
by the different coordinates of the decomposition (2.22).

In the following, we will find the main contribution in the projections Pi (for
0 ≤ i ≤ 2) and P− of the different terms appearing in equation (2.13). More
precisely, the proof will be carried out in 2 parts,

• In the first subsection, we write equations satisfied by qj , for 0 ≤ j ≤ 2,
and q−. Then, we prove (1) and (2) of Proposition 4.5.

• In the second subsection, we first derive from equation (2.13) the equation
satisfied by qe and prove the last identity in (3) of Proposition 3.4.

Part 1: Proof of items (1) and (2) from Proposition 3.4

First term ∂sq
Let Pi and P− defined as in (2.20) and (2.21), then the following holds:

(4.1)
Pi(∂sq) = ∂sqi with i ∈ {0, 1, 2},
P−(∂sq) = ∂sq−.

Second term Lq
By the definition of hi given by (2.19), we easily obtain the projection of Lq as
follows

Lemma 4.1. Let Pi and P− defined as in (2.20) and (2.21), then the following
holds:

(4.2)
Pi(Lq) =

(
1− i

2

)
qi, for i = 0, 1, 2.

P−(Lq) = Lq−.

Third term V q
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Lemma 4.2. For all A > 0, there exists an s0 ≥ 0 such that for all s ≥ s0, if
q(s) ∈ V(s), the following estimations holds:

(4.3)

Pi(V q) ≤ ACs−2 i = 0 or 1,∣∣P2(V q) + 2s−1q2
∣∣ ≤ 2As−3,

P−(V q) ≤ CA2s−3log(s)(1 + |y|3).

Proof. Let us recall that V = pφp−1 − p
p−1 , then using Taylor expansion for

{|y| ≤
√
s}, we obtain:

(4.4)

V = p

(
(p− 1 + b

y2

s
)−1/(p−1) +

κ

2ps

)p−1

− p

p− 1
,

=
1

2s
− bpy2

s(p− 1)2
+O(

y4

s2
).

Using the fact that q ∈ V(s), q0 and q1 are then controlled by s−2. Therefore,
(4.5)
|P0(V q)| = |

∫
R V qh0dµ|,

≤ |
∫
|y|≤

√
s
C y2

s (
∑2

i=0 qihi + q−)h0dµ|+ |
∫
|y|>

√
s
C y2

s (
∑2

i=0 qihi + q−)h0dµ|,

≤ C|
∫
|y|≤

√
s
(
∑2

i=0 qihi + q−)h0dµ|+ |
∫
|y|>

√
s
C y2

s (
∑2

i=0 qihi + q−)h0
e−

y2

4

(4π)1/2
dy|,

≤ C|q0|+ |
∫
|y|>

√
s
C y2

s (
∑2

i=0 qihi + q−)h0
e−

y2

4

(4π)1/2
dy|.

Notice that q(s) is in V(s), then by Definition 3.1 and Proposition 3.2. We
obtain that:

(4.6) |P0(V q)| ≤
AC

s2
+ Ce−

s
8 ≤ AC

s2
.

This is exactly the desired result for P0(V q). The proof for P1(V q) ≤ e−
Ks2

2 is
parallel to above, we hence omit it. Using (4.4) and argue as above, we obtain:
(4.7)

|P2(V q) + 2s−1q2| ≤ |
∫
R
− bp

(p− 1)2
(s−1)(y2)(

2∑
i=0

qihi + q−)h2dµ+ 2s−1q2|

≤ ACs−3.

The above implies that

(4.8) P−(V q) =

∣∣∣∣∣V q −
2∑

i=0

Pi(V q)

∣∣∣∣∣ ≤ CA2s−3 log(s)(1 + |y|3).

Fourth term R(y, s)

Lemma 4.3 (Estimates for term R). For i ≤ 1

(4.9) |Pi(R)| ≤ Cs−2,

(4.10) |P2(R)| ≤ Cs−3,
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and we have also:

(4.11) |P−(R)| ≤ Cs−2(1 + |y|3)

Proof. To give the estimates on R, we first compute each term in R for |y| <
√
s

with Taylor expansion. To have a better vision of this, we remind the readers
that

R(y, s) = ∂2yφ− 1

2
y∂yφ− 1

p− 1
φ+ φp − ∂sφ,

with φ(y, s) =
[
(p− 1 + by

2

s )−
1

p−1 + a
s

]
.

We note that for|y| <
√
s, f is bounded. By Taylor expansion, we obtain

the following

(4.12)

R(y, s) =

(
a− wbκ

(p− 1)2

)
1

s
+O

(
1

s2

)
+

(
− abp

(p− 1)2
+

bκ

(p− 1)2

(
6bp

(p− 1)2
− 1

))
y2

s2
+O

(
y6

s3

)
.

From the above Taylor expansion, one can easily see that:

(4.13) P0(R) =

(
a− 2bκ

(p− 1)2

)
1

s
+O

(
1

s2

)
,

and

(4.14) P2(R) =2

(
− abp

(p− 1)2
+

bκ

(p− 1)2

(
6bp

(p− 1)2
− 1

))
1

s2
+O

(
1

s3

)
.

Together with our choice of a, b:

(4.15) a =
(p− 1)−

1
p−1

2p
, b =

(p− 1)2

4p
,

we therefore obtain P0(R) = O
(

1
s2

)
and P2(R) = O

(
1
s3

)
. The estimation for

P1(R) can be argued as in Corollary 5.13 and Lemma 5.18 in [MZ08], we hence
omit here.

Using (2.21),(4.12),(4.13) and (4.14), we obtain the following:

|P−(R)| ≤

∣∣∣∣∣R−
2∑

i=0

Pi(R)

∣∣∣∣∣ ≤ Cs−2(1 + |y|3).

Fifth term B:
For the quadratic term B, we first remind the readers of the following

Lemma:

Lemma 4.4. For all A > 0, there exists s0 ≥ 0 such that for all τ ≥ s0, if
q(τ) ∈ V(τ), then

(4.16) |χc(y, τ)B(q(y, τ))| ≤ C|q|2,

and

(4.17) |B(q)| ≤ C|q|p̄,

where p̄ = min(p, 2).

16



Proof. This Lemma was argued in Lemma 3.6 of [MZ97], interested readers are
invited to read the proof in [MZ97].

Then we are enabled to claim the following lemma:

Lemma 4.5. There exits s0 ≥ 0 such that if q(s) ∈ V(s) for s > s0, then B
verifies:

(4.18)
Pi(B) ≤ CA2s−3, i ∈ {0, 1, 2}
P−(B) ≤ CAs−2(1 + |y|3).

Proof. We argue as in the proof of Lemma 5.10 and Lemma 5.17 in [MZ08].

Sixth term H:

Lemma 4.6. The following estimations holds:

(4.19)
Pi(H) ≤ Ce−s/2 i = 0, 1 or 2,

P−(H) ≤ Ce−s/2(1 + |y|3),

Proof. We argue it as in the proof of Lemma 3.9 from [MNZ16].

Seventh term ∂yG:

Lemma 4.7. For ∂yG we have the following estimations:

(4.20)
Pi(∂yG) ≤ Ce−s/2 i = 0, 1 or 2,

P−(∂yG) ≤ Ce−s/2(1 + |y|3),

Proof. This can be done with integration by part, interested readers are invited
to see the proof of Lemma 5.19 in [MNZ16].

Eighth term N :

Lemma 4.8 (projection of the last term: N ).

(4.21) |Pi(N)| ≤ Ce−s where i = 0, 1 or 2.

and

(4.22) |P−(N)| ≤ e−s/2(1 + |y|3).

Proof. Let us first recall that

N(y, s) =
d− 1

y + es/2
W∂yX,

where W is defined by (2.8) and X is the cut-off function defined in (2.3).
We will now give the estimation on the terms Pi(N), i ∈ {0, 1, 2}. From Lemma
A.1, we have that for |y| ≥ e

s
2 ( 38ε0 − 1), ∥W (s)∥L∞ ≤ κ+ 2. By the definition

(2.3) of X we easily have that

(4.23) |∂yX| ≤ e−s/2 C

ε0
I{( 3

8 ε0−1)es/2≤y≤( 3
4 ε0−1)es/2}.
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Using the estimations above, we get

(4.24)

|P0(N)| ≤ e−s/2

∫
R

∣∣∣∣ d− 1

ye−s/2 + 1
W∂yX

∣∣∣∣ e− |y|2
4

(4π)1/2
dy,

≤ Ce−s

∫
{y≥( 3

8 ε0−1)es/2}

∣∣∣∣ d− 1

ye−s/2 + 1

∣∣∣∣ e− |y|2
4

(4π)1/2
dy,

≤ Ce−s

∫
{y≥( 3

8 ε0−1)es/2}

e−
|y|2
4

(4π)1/2
dy ≤ Ce−s.

Arguing in a similar fashion, we obtain the desired estimation for P1(N) and
P2(N).

We conclude the proof with the estimation of P−(N). Using Lemma A.1,
(4.21) and (4.23), we obtain,

(4.25) |P−(N)| = |N −
2∑

i=0

Pi(N)hi| ≤ e−s/2(1 + |y|3).

Proof of Proposition 3.4
Proof of item (1) and (2) of Proposition 3.4

Using Lemma 4.1, Lemma 4.2, Lemma 4.3, Lemma 4.5, Lemma 4.6, Lemma
4.7 and Lemma 4.8 and arguing as the proof of Proposition 4.6 in [MZ08], we
can easily obtain

|q′0(s)− q0(s)| ≤ AC
s2 and

∣∣q′1(s)− 1
2q1(s)

∣∣ ≤ AC
s2 ,

this conclude (1) from Proposition 3.4.
The case (2) is more delicate. From Lemma 4.1, Lemma 4.2, Lemma 4.3,

Lemma 4.5, Lemma 4.6, Lemma 4.7 and Lemma 4.8, we obtain:

(4.26)

∣∣∣∣q′2(s) + 2

s
q2(s)

∣∣∣∣ ≤ C
A2

s3
.

Integrating this inequality between τ and s gives the desired estimates on q2,

(4.27) |q2(s)| ≤
(τ
s

)2
q2τ + C

A2

s2
log(s/τ).

For q−, we can use the properties of the semi-group generated by L, and
obtain that for all s ∈ [τ, s1],

q−(s) = e(s−τ)Lq−(τ)

+

∫ s

τ

e(s−s′)LP−(V q +H(y, s) + ∂yG(y, s) +R(y, s) +B(y, s) +N(y, s))ds′.
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Arguing as Lemma A.2 in [MZ08] gives us:∥∥∥∥ q−(s)

1 + |y|3

∥∥∥∥
L∞

= e−
3
2 (s−τ)

∥∥∥∥ q−(τ)

1 + |y|3

∥∥∥∥
L∞

+

∫ s

τ

e−
3
2 (s−s′)

∥∥∥∥P−(V q +H(y, s) + ∂yG(y, s) +R(y, s′) +B(y, s′) +N(y, s′))

1 + |y|3

∥∥∥∥
L∞

ds′.

Assuming that q(s′) ∈ VA(s
′), the estimations Lemma 4.1, Lemma 4.2, Lemma

4.3, Lemma 4.5, Lemma 4.6, Lemma 4.7 and Lemma 4.8 implies the following∥∥∥∥ q−(s)

1 + |y|3

∥∥∥∥
L∞

= e−
3
2 (s−τ)

∥∥∥∥ q−(τ)

1 + |y|3

∥∥∥∥
L∞

+

∫ s

τ

e−
3
2 (s−s′)

[
A2

s′3
log(s′) +

C

s′2
+
CA

s′2
+ Ce−

s′
2

]
ds′.

Using Gronwall’s Lemma we deduce that:

e
3
2 s

∥∥∥∥ q−(s)

1 + |y|3

∥∥∥∥
L∞

= e−
3
4 (s−τ)e

3
2 (τ)

∥∥∥∥ q−(τ)

1 + |y|3

∥∥∥∥
L∞

+ e
3
2 s2

5
2

[
A2

s3
log(s) +

C

s2
+
CA

s2
+ Ce−

s
2

]
.

This concludes the estimation on P−(q).

Part 2: The outer region qe: proof of item (3) from Proposition
3.4

Here, we conclude the proof of Proposition 3.4 by demonstrating the final
inequality about qe. As q(s) ∈ V(s) for all s ∈ [τ, s1], it follows that

∥q(s)∥L∞(|y|<2K
√
s) ≤

CA2

√
s
.

We note that terms H, ∂yG and N defined in (2.16) are compactly supported
in
[
( 38ε0 − 1)es/2, ( 34ε0 − 1)es/2

]
. Then, we derive the equation satisfied by qe is

(4.28)

∂sqe =(L+ V )qe − q(s)

(
∂sXc +∆Xc +

1

2
y∇Xc

)
+ (R(y, s) +B(y, s) +H(y, s) + ∂yG(y, s) +N(y, s)) (1− Xc) + 2div(q(s)∇Xc).

Writing this equation in its integral form and using the maximum principle
satisfied by eτL, we deduce that:

(4.29)

∥qe∥L∞ ≤ e−
s−τ
p−1 ∥qe(τ)∥L∞ ,

+

∫ s

τ

e−
s−s′
p−1 ∥ ((1− Xc)(R+B +H + ∂yG+N)) ∥L∞ds′,

+

∫ s

τ

e−
s−s′
p−1 ∥q(s′)

(
∂sXc +∆Xc +

1

2
y∇Xc

)
∥L∞ds′,

+

∫ τ

s

e−
s−s′
p−1

(
1√

1− e−(s−s′)

)
∥q(s′)∇Xc∥L∞ ds′.
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Notice that with Lemma 4.3, Lemma 4.5, Proposition 3.2 and (2.17), by arguing
as Section 5.3 in [MZ08], we obtain the following bound:

(4.30)

∥q(s′)
(
∂sXc +∆Xc +

1
2y∇Xc

)
∥L∞ ≤ C A2

√
s′
,

∥q(s′)∇Xc∥L∞ ≤ C A2

s′ ,
∥(1− Xc)R(y, s

′)∥L∞ ≤ C
s′ ,

∥(1− Xc)B(y, s′)∥L∞ ≤ 1
2(p−1)∥qe∥L∞ .

Then with Lemma A.1 and (4.23) we gain the following

(4.31) (1− Xc)(H(y, s′) + ∂yG(y, s
′) +N(y, s′)) ≤ Ce−

s′
2 ≤ C

s′

By choosing K large enough such that estimations (4.30) are verified, and we
write:
(4.32)

∥qe∥L∞ ≤ e−
s−τ
p−1 ∥qe(τ)∥L∞ ,

+

∫ s

τ

e−
s−s′
p−1

(
1

2(p− 1)
∥qe(s′)∥L∞ +

CA2

√
s′

+
A2

s′
1√

1− e−(s−s′)

)
ds′,

We then conclude with Gronwall’s inequality:

∥qe(s)∥L∞ ≤ e−
(s−τ)
2(p−1) ∥qe(τ)∥L∞ + C

A2

√
τ
(1 + s− τ).

4.2 Estimates in the regular region

Our goal here is to show that:

(4.33) |x| ≤ ε0
4
, then we have u(x, t∗) ≤ η

2
.

This is shown in 3 steps:

• In the first step, we improve the bounds on the solution u(x, t) in the
intermediate region.

• In the second step, we use parabolic regularity to obtain an estimation of
the solution in the region R2.

• Finally, we use the two steps above to get (4.33)

Step 1: Improved estimates in the intermediate region
Here, we refine the estimates on the solution in the following intermediate

region:

(4.34)
ε0
8

≤ |x| ≤ K
√

(T − t) log(T − t).

By Lemma A.1, we have

(4.35) ∀t ∈ [0, t∗], and ∀x ∈ Rn, |u(t)| ≤ C(T − t)−
1

p−1 ,
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valid in particular in the intermediate region given by (4.34). This bound is
unsatisfactory since it goes to infinity as t→ T . In order to refine it, given a x
small enough in norm |x| , we use this bound when t = t0(x) defined by

(4.36) |x| = K0

√
(T − t0(x)) |log(T − t0(x))|,

to see that the solution is, in fact, flat at that time. Then, advancing the PDE
(2.1), we see that the solution remains flat for later times. More precisely, we
claim the following:

Lemma 4.9 (Flatness of the Solution in the Intermediate Region in (4.34)).
There exists ζ0 > 0 such that for all K0 > 0, ε0 > 0, A ≥ 1, there exists
s0,9(K0, ε0, A) such that if s0 ≥ s0,9 and 0 < η0 ≤ 1, then, ∀t0(x) ≤ t ≤ t∗,

(4.37)

∣∣∣∣u(x, t)u∗(x)
− UK(x)

UK(1)

∣∣∣∣ ≤ C

|log |x||ζ0
,

where u∗ is defined in and

(4.38) UK(τ) = κ

(
(1− τ) +

(p− 1)K2

4p

)− 1
p−1

.

In particular, |u(x, t)| ≤ 2 |u∗(θ)|.

Proof. Proof see in [MNZ16] P.316 Lemma 3.12.

Step 2: A parabolic estimate in regular region:
Recall from the definition on V, that:

∀x ∈ R such that 0 ≤ |x| ≤ ε0
4
, u(x, t) ≤ η0.

Using parabolic estimation on the solution, for u(x, t) in region R2, we claim
the following:

Proposition 4.10. For all ε > 0, ε0 > 0, σ1 ≥ 0, there exists T ≥ 0 such that
for all t ≤ T , if u is a solution of

∂tu = ∆u+ |u|p−1u for all x ∈ [0, ε0/4], t ∈ [0, t],

which satisfies:

(i) For |x| ∈ [ ε08 ,
ε0
4 ], |u(x, t)| ≤ σ1.

(ii) For 0 ≤ |x| ≤ ε0
8 , u(x, 0) = 0.

Then, for all t in [0, t], for all |x| ≤ ε0
4 , |u(x, t)| ≤ ε.

Proof. Consider u, recalled here, after a trivial chain rule to transform the ∂xu
term:

∀t ∈ [0, t], ∀θ ∈ R, ∂tu = ∆u+ |u|p−1u− 2∇(χ′u) + χ′′u.

Therefore, since u(x, 0) ≡ 0, we write

∥u(t)∥L∞ ≤
∫ t

0

S(t−t′)
(
|u|p−1I|x|≤ ε0

4
u− 2∇

(
χ′uI|x|≤ ε0

4

))
+χ′′u(t′)I|x|≤ ε0

4
dt′.
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where S(t) is the heat kernel. Since χ′ and χ′′ are supported by
{

ε0
8 ≤ |x| ≤ ε0

4

}
and satisfy |χ′| ≤ C

ε0
, |χ′′| ≤ C

ε20
and using parabolic regularity, we write

∥u(t)∥L∞ ≤ σp−1
1

∫ t

0

∥u(t′)∥ dt′ + Cσ1
1

ε0

∫ t

0

1√
t− t′

dt′ + Cσ1
1

ε20

∫ t

0

dt′.

If t < 1, by Gronwall’s estimate, this implies that

∥u(t)∥L∞ ≤ Ceσ
p−1
1

(
σ1
ε0

√
t+

σ1
ε20
t

)
.

Taking t small enough, we can obtain ∀t ∈ [0, t], ∥u(t)∥L∞ ≤ ε.

Step 3:Proof of the improvement in Definition 3.1
Here, we use Step 1 and Step 2 to prove (4.33), for a suitable choice of

parameters.
Let us consider K > 0, and δ0(K) > 0 defined in Lemma 4.9. Then, we

consider ε0 ≤ 2δ0, 0 < η0 ≤ 1 defined in Lemma 4.9 and Proposition 4.10;
A ≥ 1, s0 sufficiently large such that conditions in (3.5) and Lemma 4.9 and
Proposition 4.10 holds.

Applying Lemma 4.9, we see that for all |x| ≤ δ0, A ≥ 1, for all t ∈ [0, t∗],
|u(x, t)| ≤ 2|u∗(x)|.

In particular, for all δ0 ≤ ε0
8 ≤ |x| ≤ ε0

4 , for all t ∈ [0, t∗], |u(|x|, t)| ≤
2|u∗( ε08 )|.

Using item (iii) of Lemma 3.3, we see that for all ≤ |θ| ≤ ε0
8 , u(|x|, 0) = 0.

Therefore Proposition 4.10 applies with ε = η0

2 and σ1 = 2u∗( ε04 ), and we
see that for all |x| ≤ ε0

4 , for all t ∈ [0, t∗], |u(|x|, t)| ≤ η0

2 and estimate (4.33)
holds.

A Appendix

Lemma A.1. For all K0 > 0, ε0 > 0, A ≥ 1, there exists s0 such that if s ≥ s0,
0 < η0 ≤ 1, and we assume that u(t) ∈ S(t) defined in Definition 3.1, where
t = T − e−s, then we have:

∥W (., s)∥L∞ ≤ κ+ 2.

Proof. For W we can see that:

• If |y| ≥ ε0e
s/2( 34ε0 − 1), then W (y, s) = w(y, s) = φ(y, s) + q(y, s). Since

|φ|L∞ ≤ κ+1 from(2.11), using (ii), we see that |W |L∞ ≤ κ+2 for s large
enough, which is for T small enough.

• If |y| < ε0e
s/2( 34ε0 − 1), then W (y, s) = e−s(p−1)u(θe−s/2, t) with |θ| ≥

ε20/2. By (ii) of Definition 3.1, we see that |W (y, s)| ≤ η0e
−s(p−1) ≤

η0T
1/(p−1) ≤ 1 if η0 ≤ 1 and T ≤ 1.
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