
HAL Id: hal-04608973
https://hal.science/hal-04608973

Submitted on 12 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Soil moisture profile estimation under bare and
vegetated soils using combined L-band and P-band
radiometer observations: An incoherent modeling

approach
Foad Brakhasi, Jeffrey P Walker, Jasmeet Judge, Pang-Wei Liu, Xiaoji Shen,

Nan Ye, Xiaoling Wu, In-Young Yeo, Edward Kim, Yann H. Kerr, et al.

To cite this version:
Foad Brakhasi, Jeffrey P Walker, Jasmeet Judge, Pang-Wei Liu, Xiaoji Shen, et al.. Soil moisture
profile estimation under bare and vegetated soils using combined L-band and P-band radiometer ob-
servations: An incoherent modeling approach. Remote Sensing of Environment, 2024, 307, pp.114148.
�10.1016/j.rse.2024.114148�. �hal-04608973�

https://hal.science/hal-04608973
https://hal.archives-ouvertes.fr


1 

 

Soil moisture profile estimation under bare and vegetated soils using combined L-band 1 

and P-band radiometer observations: An incoherent modeling approach  2 

Foad Brakhasi
a, ⁎

, Jeffrey P. Walker
a
, Jasmeet Judge

b
, Pang-Wei Liu

c
, Xiaoji Shen

d
, Nan Ye

a
, 3 

Xiaoling Wu
a
, In-Young Yeo

e
, Edward Kim

c
, Yann Kerr

f
, and Thomas Jackson

g
 4 

 
5 

a
 Department of Civil Engineering, Monash University, Clayton, Australia 6 

b
 Department of Agricultural and Biological Engineering, University of Florida, Gainesville, USA 7 

c
 Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, USA 8 

d 
Yangtze Institute for Conservation and Development, Hohai University, Nanjing, China 9 

e 
School of Engineering, The University of Newcastle, Callaghan, Australia 10 

f
 Centre d'Etudes Spatiales de la Biosphère, Toulouse, France 11 

g 
USDA ARS Hydrology and Remote Sensing Laboratory (Retired), Beltsville, USA  12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

*
Corresponding author. 29 

E-mail addresses: foad.brakhasi@monash.edu, brakhasi.f@gmail.com.  30 

mailto:brakhasi.f@gmail.com


2 

 

ABSTRACT 31 

Understanding the distribution of moisture throughout the soil profile is crucial for effective 32 

water management in the field of agriculture. This knowledge enables farmers and water 33 

managers to make informed decisions regarding the timing and amount of irrigation needed 34 

to optimize crop growth. To estimate the soil moisture profile, this study utilized L-band and 35 

P-band radiometry with three multilayer incoherent models, based on a zero-order (IZ), first 36 

order (IF), and incoherent solution (IS) approximation, as well as the conventional tau-omega 37 

(TO) model. The result of these models was also compared with the coherent model results 38 

published by Brakhasi et al. (2023). Two mathematical shape functions - linear (Li) and 39 

second-order polynomial (Pn2) - were used to represent the soil moisture profile. 40 

Observations from a tower-based experiment were used under different land cover 41 

conditions, namely bare, bare-weed, grass, wheat, and corn. The Root Mean Square Error 42 

(RMSE) was calculated between the observed and estimated soil moisture profiles, with the 43 

results indicating that RMSE values were similar for all four radiative transfer models, with 44 

the Pn2 function outperforming the Li function in deeper layers. The multilayer incoherent 45 

models generated slightly better results than the conventional TO model, particularly for the 46 

shallow layers, but their complexity was not justified for the small gain in performance. 47 

Additionally, the comparison between conventional and multi-layer incoherent models with 48 

stratified coherent Njoku model was reveal that the latter slightly outperformed the formers 49 

under dry bare soil condition.  The conventional TO model provided an average profile 50 

estimation depth ranging from 1cm (under corn) to 39cm (under bare), depending on the soil 51 

moisture profile gradient and value in the shallow layers. These findings pave the way for 52 

estimating soil moisture profile on a global scale using combined L-band and P-band 53 

radiometry from future satellite missions operating at these two bands. 54 

Keywords: Soil moisture profile, P-band, L-band, Incoherent, tau-omega, Estimation depth 55 
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1. Introduction 56 

Soil moisture information is a must for all important ecological aspects and plays a critical 57 

role in all physiological processes (Swaroop Meena and Datta, 2021). From a hydrological 58 

perspective it is a small fraction (0.05%) of the freshwater globally (2.5%). However, its 59 

importance to water, energy, and carbon cycles and the distribution of precipitation far 60 

surpasses its physical amount (Oki and Kanae, 2006; Robinson et al., 2008). It is highly 61 

variable both in space, especially in the top 20cm of the soil (Shi et al., 2014), and time, due 62 

to variability in precipitation (Schoener and Stone, 2020; Manoj et al., 2022), vegetation, and 63 

soil texture (Baroni et al., 2013). The roots of major agricultural crops with the highest 64 

density are found at depths of 20cm or less, according to Haberle and Svoboda (2015). Lack 65 

of adequate soil moisture in this region can therefore restrict plant growth and crop yield 66 

(Svoboda, P. et al., 2020), thereby impacting food security (Sadri et al., 2020). In a study 67 

conducted by Ma et al (2023), the effects of surface drip irrigation and direct root-zone 68 

irrigation on the productivity of grapevine and berry were compared. The results revealed that 69 

the implementation of direct root-zone irrigation substantially improved the crop productivity 70 

and quality of Chardonnay grapes by 23 – 34%, while also reducing the necessary irrigation 71 

amount by 16 – 23%.  72 

Passive microwave remote sensing is a well-accepted technique for estimation of soil 73 

moisture, with the two current missions of SMOS (Soil Moisture and Ocean Salinity) and 74 

SMAP (Soil Moisture Active Passive) operating at L-band (~ 21cm wavelength). However, 75 

they are limited to estimating soil moisture in the top ~ 5cm of the soil column. Currently 76 

there are eight global root zone soil moisture products, including GLDAS NOAH, ERA-5, 77 

MERRA-2, NCEP R1, NCEP R2, JRA-55, SMAP level 4 and SMOS level 4, which are 78 

derived by model-based simulations sometimes combined with the shallow soil moisture 79 

observations from satellite. But the accuracy of these products is highly dependent on several 80 
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factors, such as the forcing data, model structure and parameterization, data assimilation 81 

method and assimilated variables (Xu et al., 2021). 82 

The advent of P-band radiometry presents a novel opportunity for the remote sensing 83 

community, enabling the investigation of soil moisture at deeper layers. Having a wavelength 84 

of approximately 40cm, means that emissions can be observed from deeper in the soil than 85 

other frequencies (Shen et al., 2020), such as L-band, and are also comparatively less 86 

susceptible to interference from vegetation and surface roughness (Shen et al., 2022a, 2022b). 87 

By integrating L-band and P-band signals, emanating from different depths of the soil, it is 88 

expected that soil moisture can be estimated beyond the extent of each frequency 89 

individually. Accordingly, Brakhasi et al. (2023a) successfully estimated the soil moisture 90 

profile using a multilayer coherent approach through the utilization of combined L-band and 91 

P-band radiometry on bare soil. Upon implementation of a second-order polynomial (linear) 92 

profile shape function, the outcome yielded 28cm(20cm) and 5cm(5cm) as the respective soil 93 

moisture profile estimation depths during dry and wet periods respectively. 94 

The estimation of soil moisture variation within the profile from microwave observations 95 

becomes increasingly complex when there is a layer of vegetation present on the surface, as 96 

opposed to barren soil conditions. Furthermore, in comparison to incoherent models, coherent 97 

models are more computationally intensive, yet their accuracy in estimated brightness 98 

temperature is comparable to that of incoherent models (Brakhasi et al. 2023b). Additionally, 99 

the linearity of soil moisture at depths of less than 30cm potentially allows for the utilization 100 

of the conventional Tau Omega model as a replacement for multilayer incoherent models. 101 

Therefore, this study assessed the multi-frequency soil moisture profile estimation capability 102 

using combined L- and P-band with incoherent models under conditions of bare, bare-weed, 103 

grass, wheat and corn.  104 

 105 
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2. Experimental Data 106 

This study is based on radiometric measurements acquired from a tower-based experiment 107 

established from December 2017 to June 2022 at Coral Lynn, Victoria, Australia (Brakhasi et 108 

al, 2023b). The tower carrying two radiometers, namely PLMR (Polarimetric L-band Multi-109 

beam Radiometer) and PPMR (Polarimetric P-band Multi-beam Radiometer), was at the 110 

center of a paddock (150m×150m). The paddock was divided into four quadrants and 111 

managed with different conditions in terms of surface roughness and vegetation. For this 112 

study, a variety of land surface conditions are explored, including dry and wet profiles under 113 

two different bare soil periods (2
nd

 to 30
th

 April 2019, 3
rd

 to16
th

 March 2020), one bare soil 114 

with weeds (18
th

 November 2020 to 8
th

 December 2020), one grass (1
st
 to 27

th
 March 2018), 115 

one wheat (1
st
 to 23

rd
 December 2018), and one corn (20

th
 December 2020 to 4

th
 March 2021) 116 

with very low to high vegetation water contents (VWC from 0.5 to 22 kg/m
3
).  117 

The dataset includes brightness temperature at L- and P-band frequencies at an incidence 118 

angle of ~ 40°, soil moisture and soil temperature profile measurements at ground stations 119 

installed at the border of the quadrants from the surface to a depth of 60cm in 5cm 120 

increments, and weekly measurements of VWC and surface roughness. The radiometer was 121 

calibrated weekly using cold/warm targets, and the representativeness of the ground stations 122 

were investigate using weekly near-surface soil moisture measurements (~5cm) by the 123 

Hydra-probe Data Acquisition System (HDAS; Merlin et al., 2007). The composition of the 124 

soil texture, at an average depth of 0 to 60cm, is made up of 18.3% clay, 13.7% sand, and 125 

68% silt. This composition indicates a silty loam type, with a surface layer having a bulk 126 

density of 0.87 kg/m
3
. 127 

The shapes of the soil moisture profile observed at the ground stations are presented in Fig. 2 128 

for the periods investigated in this study. It is evident that the surface soil moisture has a 129 

higher degree of variation compared to the bottom soil moisture in most cases, except during 130 
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the corn period. Interestingly, the soil moisture at a depth of 15 to 40cm exhibits a higher 131 

degree of variability than the surface and bottom soil moisture during the corn period. During 132 

the bare period with weeds (bare-weed), the surface soil moisture shows a greater degree of 133 

variability than the deeper layer, although some variability is still observed. Notably, during 134 

the second bare period (bare2), as the depth increased, the variability of soil moisture 135 

Fig. 1. Collected data over six periods including bare, grass, wheat, and corn conditions: a) 

TB observations from PLMR and PPMR instruments at 6 AM and PM; b) station time-series 

soil moisture; and c) station time-series soil temperature. The vegetation height (VH), 

vegetation water content (VWC) and RMS height are plotted as a secondary axis on the 

brightness temperature, soil moisture and soil temperature profile plots respectively. The gray 

area in the corn period is a 17-day gap where the tower was lowered due to unscheduled 

maintenance.  
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decreased. During the first bare period (bare1), grass and wheat periods, the variability of soil 136 

moisture was observed to be mainly below 25cm. Low soil moisture values were noted 137 

throughout the grass period with the exception being a heavy rainfall event towards the end, 138 

resulting in a wet soil moisture profile with a high gradient in the shallow layer. Overall, 139 

these observations provide important insights into the distribution and variability of soil 140 

moisture across the different periods and depths.  141 

3. Methodology 142 

The goal of this study is to investigate the performance of the incoherent models for 143 

estimating soil moisture profile variation using combined L-band and P-band radiometer 144 

observations. Furthermore, these models will be evaluated in comparison to the performance 145 

of the stratified coherent Njoku model utilized by Brakhasi et al. (2023). Estimating soil 146 

moisture throughout the profile allows for a more detailed understanding of the distribution 147 

and availability of water in the soil, which can inform irrigation and water management 148 

decisions, as well as predictions of crop yield and water use efficiency. Additionally, 149 

monitoring soil moisture at different depths can provide insight into the movement of water 150 

Fig. 2. Shape of the soil moisture profile (one profile per day) under different land cover 

conditions including a) bare1, b) bare2, c) bare-weed, d) grass, e) wheat, and f) corn. 
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through the soil and the dynamics of the water cycle in a given area. In this study, the 151 

performance of four different incoherent models is compared, including the conventional tau-152 

omega model and three multilayer incoherent models based on zero-order, first order and 153 

incoherent solution approximation of volume scattering inside the soil, to determine which is 154 

most effective at estimating the soil moisture profile. 155 

3.1 Radiative transfer models 156 

The soil moisture content of a near-surface layer of soil can be estimated by utilizing a 157 

microwave emission model that converts brightness temperature observations from a 158 

microwave radiometer to soil moisture. Almost all of the efforts from the early 1970s to 159 

1990s were concentrated on developing, verifying and improving the basic microwave 160 

emission models for smooth and rough soils (i.e. Mo et al., 1982; Njoku, 1976; Stogryn, 161 

1970; Wilheit, 1978) using the data acquired from some controlled field campaigns including 162 

ground-based (by a flatbed truck or a mobile tower; Lee, 1974; Wang et al., 1982) and 163 

airborne ( by an airplane or a helicopter; Ferrazzoli et al., 1992; Paloscia et al., 1993).  164 

From these investigations, baseline approaches to account for three major variables; physical 165 

temperature, surface roughness and vegetation water content, were developed. These 166 

advances resulted in the current form of the radiative transfer equation that has been applied 167 

to vegetative conditions (the tau-omega model; Mo et al., 1982), which serves as the basis for 168 

almost all operational retrieval algorithms, including those used by the SMOS and SMAP 169 

missions (Entekhabi et al., 2014; Kerr et al., 2012; Mladenova et al., 2014; Wigneron et al., 170 

2007). The conventional tau-omega model is a is a zero-order solution of the radiative 171 

transfer equations which assumes that the scattering phase matrix term can be neglected. 172 

Mathematically, brightness temperature at the top of vegetation (     ) can be estimated 173 

from the tau-omega model by 174 
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   (1) 

where            is the downward atmospheric contribution calculated to be to 5.3K and 175 

13.9K at L-band and P-band respectively (ITU, 2015), and      is the effective physical 176 

temperature of the soil layer (K). When the soil temperature is non-uniform over the radiative 177 

emission depths the temperature is considered as an “effective” temperature (weighted 178 

average over the emission path). This is particularly important at lower frequencies which can 179 

penetrate into a deeper layer of the soil and has a greater sensing depth. Wigneron et al. 180 

(2008) developed a simple parametrization for this variable using just the surface temperature 181 

(      in Kelvin) and the deep-soil temperature (      in Kelvin) such that 182 

                                       
    (2) 

where    and    depend on specific characteristics of the soil such as texture, structure and 183 

density, and were set to be 0.35 and 0.58 (Lv et al., 2014), respectively. The variable    is 184 

the average soil moisture from the soil surface to a depth of 5cm for L-band and 7cm for P-185 

band according to Shen et al. (2021). The variable    (K) is the physical temperature of the 186 

vegetation. The thermal differences between land cover types and the differences between 187 

canopy and soil temperatures is typically a minimum at 6 am (Fagerlund et al., 1970; Jackson 188 

and Kimball, 2009), and so it has been assumed that soil surface and vegetation continuum 189 

have equal temperatures (i.e.       ≅   ) at that time.  190 

The vegetation attenuation factor (  ) and single scattering albedo (  ) account for the 191 

vegetation attenuation (where   is polarization H or V), and are dependent on vegetation 192 

water content, vegetation structure, incidence angle, frequency and polarization. 193 

Consequently,    is calculated from the optical depth of the standing vegetation (        by 194 

        
      

    
 ,  (3) 
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where   is the incidence angle. Moreover, Jackson and Schmugge (1991) found that         195 

can be linearly related to VWC (kg/m
2
) through  196 

            , (4) 

where   is a factor which is mainly dependent on the frequency, the canopy type, and the 197 

vegetation dielectric constant. In this study, the   parameter was calibrated for L-band and P-198 

band under grass (0.11, 0.11; by the authors from another period of the data), wheat (0.11, 199 

0.099; Shen et al., 2022), and corn (0.094, 0.053; Shen et al., 2023) conditions, respectively. 200 

The variable    is defined as the ratio of the vegetation scattering to extinction coefficient 201 

ratio, calibrated for grass (0.05, 0.05; by the authors from another period of the data), wheat 202 

(0.05, 0.134; Shen et al., 2022), and corn (0.070, 0.086; Shen et al., 2023) conditions for L-203 

band and P-band, respectively. It worth mentioning here that all of the models used in this 204 

study ignore multiple scattering within the vegetation layer, which is considered a reasonable 205 

assumption at the (low) frequency range used for soil moisture sensing. 206 

The variable    is rough surface reflectivity and is calculated from the semi-empirical 207 

approach (referred here to as the     model) proposed by Wang and Choudhury (1981) and 208 

further developed by Wigneron et al. (2001) such that  209 

           
 
     

 
 
            

        (5) 

where     is the smooth surface reflectivity (with     and  =V or     and  =H) and 210 

calculated for H (Eq.6) and V (Eq.7) polarizations by the Fresnel equations  211 

     
                  

                  
 

 

 
(6) 

     
                     

                     
 

 

  
(7) 
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where      
      

   is the relative soil dielectric constant which includes real (  ) and 212 

imaginary (  ) parts. Using this model    accounts for the intensity of the roughness effects 213 

and is calculated using the formulation of Wigneron et al. (2001)  214 

           
   

  
 
      

  
(8) 

where     and    are the RMS surface roughness height and correlation length as measured 215 

in the field,    is a polarization decoupling factor set to zero for both L- and P- bands, while 216 

   accounts for multi-angular and dual-polarization measurements and was calibrated to 217 

another period of the data and set to -0.50 (1.80) and -0.333 (0.415) at H (V) polarizations for 218 

L-band and P-band respectively.  219 

A stratified incoherent radiative transfer model was introduced by Stogryn (1970) to obtain 220 

approximate values of brightness temperature for media in which the dielectric constant 221 

profile is slowly-varying and in which the absorption is small. The model is fairly 222 

straightforward to implement and an assumption is made that the imaginary part of   
   is 223 

small such that   
   <<   

 . Their model is based on a zero-order radiative transfer 224 

approximation in which reflections at interfaces are ignored (Ulaby et al., 1986) such that 225 

            
 

  

 
  

  
 
  

     

     
   
               

 

 

      
(9) 

where the expression in round parentheses represents the attenuation coefficient     , the 226 

integral expression in curly brackets represents the effective temperature, and    is the free-227 

space wavelength (m). This model is referred to as IZ throughout this paper. In the existing 228 

literature, it is also commonly known as a radiative transfer model. 229 

Burke and Paris (1975) and Liu et al. (2013), further developed the zero-order model 230 

presented (Eq.9) to a first-order model (referred to as IF) and an incoherent solution (IS) 231 

radiative transfer model, respectively. In the IF model, a single reflection at the layer 232 
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interfaces is considered, while in the IS model, the propagation of radiance through each 233 

layer is taken into account. Detailed descriptions of these models are provided in Burke and 234 

Paris (1975) and Liu et al. (2013) and so are not repeated here. The models IZ, IF, and IS are 235 

multilayer and the number of layers and the profile depth were set to 100 and 1m 236 

respectively. It is worth mentioning here that the differences between these models is in the 237 

way that how they calculate the effective temperature. Thus, the output of these models is 238 

primarily the effective temperature so and by inserting      into Eq.1 the brightness 239 

temperature at the top of vegetation (       ) accounting for surface roughness and 240 

vegetation is calculated.  241 

These radiative transfer models require an appropriate soil dielectric model to convert soil 242 

moisture content to soil dielectric constant. Accordingly, the multi-relaxation generalized 243 

refractive mixing dielectric model of Mironov et al. (2013) was utilized, as it accounts for the 244 

interfacial (Maxwell-Wagner) relaxation of water in the soil, which is significant at P band 245 

(Zhang et al., 2020).  246 

3.2 Soil moisture profile shape functions and inversion 247 

In this study, the soil moisture profile was considered as unknown, while the soil temperature 248 

profile, VWC, and surface roughness were considered as known variables. Brakhasi et al. 249 

(2023) found that when approximating the soil temperature profile with a simple method that 250 

uses a trend of the profile together with a surface soil temperature measurement, there is little 251 

degradation on the result as compared with condition when soil temperature considered 252 

known. As a result, to minimize errors in soil moisture profile estimation, this variable is 253 

considered as a known parameter. From their study it was also revealed that a linear 254 

(hereafter referred to as Li; Eq.10) and a second-order polynomial function (hereafter referred 255 

to as Pn2; Eq.11) were the most representative for soil moisture profile estimation when 256 

compared with exponential, third-order polynomial, piecewise linear, simplified solution of 257 
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Richard Equation and a parametrized second-order polynomial shape functions (Brakhasi et 258 

al., 2023). According, the  259 

soil moisture profile shape functions used herein are given as 260 

where   is depth (positive downward) and     and   are coefficients of the related function. 261 

Parameter   is the surface soil moisture while parameter   in Eq.10 represents the profile 262 

slope of the near-surface soil moisture content, whereas Eq.11 has an additional parameter   263 

that controls the curvilinear shape of the profile. These parameters are generated in such a 264 

way that strange profile shapes cannot be formed and that change (maximum – minimum) of 265 

soil moisture value throughout the profile does not exceed 0.35m
3
/m

3
. The parameter 266 

boundaries of these function are shown in Table 1.  267 

The estimation of soil moisture profile using L-band and P-band radiometry was done by 268 

employing two profile shape functions and a time series retrieval approach. The time series 269 

approach involved dividing the time series data of TB into dry down periods. During each 270 

period, the cost function's global minimum values exhibit a distinctive pattern resulting from 271 

           (10) 

                (11) 

Table 1. The boundaries of parameters used in the mathematical functions. Parameter   is the 

surface soil moisture (m
3
/m

3
),   in equation 10 is the slope of the soil moisture profile and 

along with   in equation 11 represent the shape of the profile. The numbers in the brackets 

show the boundary [lower, upper] of each parameter. 

Equation   (-)   (-)   (m
3
/m

3
) 

11 [-0.83, 0.83] -  [0, 0.5] 

12 [-1, 1] [-1, 1]   [0, 0.5] 
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the temporal correlation of the soil moisture profile and are located in specific areas of the 272 

search space. As a result, it is easier to find multiple global minimum values at once rather 273 

than searching for them individually. Furthermore, the Particle Swarm Optimization (PSO; 274 

Eberhart and Kennedy, 1995) algorithm, which involves sharing information among the 275 

populations, was utilized as an optimization algorithm to invert the employed forward 276 

models. The PSO algorithm, when used in conjunction with the time series approach, proved 277 

to be more effective as it was able to utilize prior knowledge from the previous time step to 278 

determine the value for the next time step. The PSO algorithm with the parameter settings 279 

noted in Brakhasi et al. (2023) was employed to minimize the cost function 280 

   
   

 

 
          

         
 

        + 
             

   

   
     

(12) 

to invert the above models for the soil moisture profile, where   
   represents the parameters 281 

of interest (soil moisture profile shape function parameters in this study),      and        
   282 

are the calculated and observed TB,    is the number of observations,         is the soil 283 

moisture at the bottom of the profile (depth of 60cm in this study), and   and   represent the 284 

polarization (H or V) and frequency (L or P), respectively. The invented term in round 285 

parentheses was employed to control the fluctuation of soil moisture at the bottom for the 286 

profile (here 60 cm).  287 

4. Results and discussion 288 

This study aimed to estimate the soil moisture profile under different land cover conditions 289 

including bare, grass, wheat, and corn using alternative incoherent models and it were also 290 

compared with the stratified coherent model results of Njoku model (NM; Njoku and Kong, 291 

1977) employed in Brakhasi et al. (2023). To ensure a fair comparison, the results was 292 

compared to a modified version of the Brakhasi et al. (2023) approach, which incorporated a 293 

new cost function as shown in Eq.12. To achieve this, an approach based on a combination of 294 
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L-band and P-band radiometry was employed, utilizing the incoherent TO, IZ, IF, and IS 295 
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models. The cumulative Root Mean Square Error (RMSE) was then calculated between the 296 
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observed and estimated soil moisture profiles at various depths, ranging from 0-5cm to 0-297 

60cm. The results of this study contribute to the development of a more accurate 298 

understanding of soil moisture profile estimation under varying land cover conditions, with 299 

potential implications for a range of applications in the field of agriculture and hydrology. 300 

Fig. 3. Soil moisture profile estimation using combined L-band and P-band observations by 

utilizing the tau-omega model (TO) or a multilayer incoherent model based on zero-order 

(IZ), first-order (IF), or incoherent solution (IS) scattering and employing a linear profile 

shape function. The gray area in the corn period is a 17-day gap where the tower was lowered 

due to unscheduled maintenance.    



18 

 

The RMSE of the soil moisture estimate at different depths was calculated from comparing 301 

the observed and estimated soil moisture profiles obtained from the four different incoherent 302 

models. Fig. 3 and Fig. 4 present the RMSE results obtained when using the Li and Pn2 303 

profile shape functions, respectively. The results confirmed that irrespective of the selected 304 

model, profile shape function, and the landcover conditions, the RMSE values were 305 

consistently lower for the shallow layers when compared to the deeper layers. This can be 306 

attributed to two key reasons. First, the emission contribution at L-band and P-band decreases 307 

Fig. 4. Same as Fig.2 but using a second-order polynomial profile shape function. 
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with increasing depth, implying that the accuracy of the estimation should also reduce with 308 

increasing soil depth due to signal loss through absorption, scattering and reflection by the 309 

soil particles. Second, the correlation between soil moisture in the surface layer and the 310 

bottom layer tends to weaken as the distance between the layers increases. Despite some 311 

differences (black ovals in Fig. 3 and Fig. 4), the outcomes of all four models were quite 312 

similar, particularly for the Pn2 profile shape function. The similarities between the results 313 

obtained from the models is relatively higher during wet periods and lower during dry 314 

periods. In particular, during dry periods, such as grass or bare periods, the L-band and P-315 

band wavelengths carry soil moisture information of deep layers of the soil.  As a result, the 316 

strength and limitations of multilayer models and mathematical functions representing the 317 

soil moisture profile become more evident. Furthermore, the average RMSE across all land 318 

cover conditions indicated that the Pn2 profile shape function outperformed the Li shape 319 

function, particularly in deeper layers (Fig. 5). This suggests that Pn2 is more robust than Li, 320 

and is able to more accurately capture the profile shape in the deeper layers. As Fig. 5 (a) 321 

illustrates, there were only minor differences in the results of the mathematical functions and 322 

models up to a depth of 12 cm. Therefore, any of these models and functions can be used if 323 

the aim is to estimate soil moisture to this depth. Moreover, it also shows that there was only 324 

slightly superior outcomes of the multilayer incoherent models IZ, IF, and IS when compared 325 

to the conventional TO model, implying that utilizing a second-order mathematical function 326 

and the conventional model yields almost identical outcomes to the more complex multilayer 327 

incoherent models. This is an important finding, as the multilayer models also require 328 

information on soil temperature throughout the entire profile, which can sometimes be 329 

difficult to obtain, while the conventional model relies on soil temperature information from 330 

just the surface and bottom layer of the profile. Irrespective of the mathematical shape 331 

functions employed, the estimation performance was inferior at deeper layers during specific 332 
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periods, namely bare2, bare-weed, the last two days of grass (following the heavy rainfall 333 

after the prolonged dry period), and corn periods. The probable cause for this could be the 334 

high levels of near-surface soil moisture reducing the depth of emissions, and the steep 335 

gradient of soil moisture in the upper layers of the soil weakening the correlation between 336 

surface and deeper soil moisture (see Fig. 1 and Fig. 2). In contrast, during bare1, grass 337 

periods (excluding the last two days), and wheat period, the soil moisture value and its 338 

gradient at the upper layer were relatively lower as compared to the other periods, leading to 339 

a greater estimation depth. 340 
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The profile estimation depth (the depth over which reliable soil moisture profile information 341 

Fig. 5. Average RMSE between observed and estimated soil moisture profile as a function 

of depth over all the land cover conditions by utilizing the tau-omega model (TO) or 

multilayer incoherent model based on zero-order (IZ), first-order (IF) or incoherent 

solution (IS) scattering when employing the a) linear and b) second-order polynomial 

profile shape function. The vertical and horizontal dotted lines show the target RMSE 

(0.04 m
3
/m

3
) and the associated maximum estimation depth respectively. 
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could be estimated within a target RMSE) was calculated for different levels of RMSE 342 
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ranging from 0.01 m
3
/m

3
 to 0.15m

3
/m

3
, different incoherent models, and stratified coherent 343 
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model as shown in Fig. 6. The target RMSE 0.04m
3
/m

3 
as defined by SMOS and SMAP 344 

missions, excluding regions of frozen ground, snow and ice, open water, complex 345 

topography, urban areas, and areas with vegetation with water content greater than 5 kg/m
2
, 346 

was also used as a reference here. It was found that under this target RMSE, the conventional 347 

TO model achieved an average profile estimation depth of 39cm (bare1), 5cm (bare2), 7cm 348 

(bare-weed), 18cm (grass), 21cm (wheat), and 1cm (corn). Although there are minor 349 

differences between the results of the models during dry periods, they exhibit near-identical 350 

results during wet periods such as bare 2 and bare-weed periods, with the lowest RMSE being 351 

0.01m
3
/m

3
 during bare 2. As mentioned earlier, this is attributed to the shallow sensing depth 352 

of L-band and P-band frequencies during wet periods. Consequently, multi-layered and 353 

conventional models, as well as coherent and incoherent models, yield comparable results. 354 

Fig. 6. Maximum estimation depth of soil moisture profile using combined L-band and P-

band observations under different land cover conditions by utilizing a second-order 

polynomial profile shape function and employing a tau-omega model (TO), three multilayer 

incoherent models based on zero-order (IZ), first-order (IF), or incoherent solution (IS) 

scattering and the stratified coherent Njoku model (NM). The dashed line represents the 

20cm estimation depth required by many applications.  
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The stratified coherent Njoku model exhibited superiority only during bare 1 period. This can 355 

be attributed to the fact that, in the absence of vegetation and with low soil moisture content, 356 

the sensing depth of both the bands increases. As a result, stratified coherent models can 357 

surpass the performance of both conventional and multilayer incoherent models under such 358 

conditions. The slight superiority of coherent models over incoherent models for estimating 359 

brightness temperature under bare soil condition was also proved by Brakhasi et al. (2023a).  360 

The estimation of soil moisture variation to a depth of 20cm is critical for two primary 361 

reasons. First, this zone is characterized by high variability in both the temporal and spatial 362 

domains, as noted by Shi et al. (2014). Second, the roots of major agricultural crops are 363 

primarily situated in this region, as highlighted by Haberle and Svoboda, (2015). All the 364 

employed models estimated the soil moisture profile to this depth with an RMSE of 365 

approximately 0.04m
3
/m

3
 in the periods bare1, grass and wheat. However, during bare2, 366 

bare-weed and corn periods, the RMSEs were somewhat higher, at 0.09, 0.10, and 367 

0.12m
3
/m

3
, respectively. The lower soil moisture profile estimation depth during the corn 368 

period could be attributed to the high soil moisture (average 0.21, 0.40, and 0.31m
3
/m

3
 at 369 

depth 0-5cm, 35-40cm, and 55-60cm respectively) and its steepness near the surface, and also 370 

the high vegetation water content (average 12.5 kg/m
2
 over the entire period). The evolution 371 

time series of estimated and observed soil moisture using the models is shown in Fig. 7 and 372 

Fig. 8 for depths of 0-30cm and 30-60cm respectively, in 5cm intervals. The results of the 373 

models for the surface layers show a narrow range of variation, but as the depth of the soil 374 

increases, differences between the models become more apparent. Moreover, the differences 375 

between the models during the dry periods, such as bare1, grass and wheat, are more obvious 376 

than during wet periods, such as bare2, bare-weed and corn, as depicted in Fig. 8. Except for 377 

the grass period, the models overestimated the soil moisture at the deeper layers during the 378 

dry periods and and underestimated during the wet periods.  379 
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 380 

Fig. 7. Time series observations, estimated soil moisture at different depths from the surface 

to 30cm using four incoherent models being the tau-omega model (TO) or a multilayer 

incoherent model based on zero-order (IZ), first-order (IF) or incoherent solution (IS) 

scattering and employing a second-order polynomial profile shape function.  Each row 

represents one depth.  
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 381 

Fig. 8. As for Fig. 7 but for depths from 30cm to 60cm.  



28 

 

5. Conclusions 382 

Four incoherent passive microwave models including the conventional tau-omega model 383 

(TO), and three multilayers models based on zero-order (IZ), first-order (IF) and incoherent 384 

solution (IS) scattering approximations were compared to estimate soil moisture profile. The 385 

result of these models was also compared with the stratified coherent model results of Njoku 386 

model (NM; Njoku and Kong, 1977) employed in Brakhasi et al. (2023). Observations from a 387 

tower-based experiment at Cora Lynn, Victoria, Australia under different land cover 388 

conditions (bare, bare-weed, grass, wheat, and corn) including L-band and P-band brightness 389 

temperature, soil moisture and temperature at different depths in the profile to 60cm, along 390 

with weekly measurements of vegetation water content and surface roughness were used. A 391 

time series approach was employed by combining L-band and P-band brightness temperature 392 

observations with either a linear (Li) or second-order polynomial (Pn2) profile shape function 393 

to represent the soil moisture profile variation with depth. The RMSE between observed and 394 

estimated soil moisture profiles was calculated at various depths, with the multilayer 395 

incoherent models IZ, IF, and IS having slightly better results than the conventional TO 396 

model, especially at shallow layers. However, the complexity of these multi-layer models and 397 

the additional information on soil temperature throughout the profile, was found to be 398 

unwarranted. Moreover, it was found that the Pn2 profile shape function outperformed the Li 399 

shape function in terms of accuracy and robustness, particularly at deeper layers. However, 400 

the estimation depth under the target RMSE of 0.04m
3
/m

3
 varied widely depending on the 401 

soil moisture conditions, ranging from 1cm to 39cm. Overall, the results of this study 402 

showcase the potential of integrating L-band and P-band radiometry to estimate soil moisture 403 

profile information at the global scale, utilizing incoherent models that perform just as 404 

effectively as the coherent model. This has important implications for a wide range of 405 

applications, including agriculture, climate science, and disaster management, and 406 
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demonstrates the value proposition for a combined L- and P-band passive microwave satellite 407 

mission for global soil moisture profile mapping. 408 
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