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Abstract

The dynamics of the mountain vegetation is governed by multiple climatic drivers including
temperature, precipitation, radiation and snow cover variability. However, in the Mediterranean
environment, little is known about the relative importance of each variable. In this study we assess
how different snowpack indices (the maximum annual accumulation, the length of the snow
season, and the melt-out date) and key climate variables (precipitation, temperature and shortwave
solar radiation) control the interannual variability of the maximum Normalized Difference
Vegetation Index (peak NDVI) in the Pyrenees. We use a 33 year long remote sensing dataset
(1981-2014) to build a statistical model relating the annual peak NDVI with snow and climate
variables. In elevated areas characterized by a well developed seasonal snowpack the melt-out date
was the most important climatic variable for predicting the annual peak NDVI. However, at lower
elevations where snow presence is ephemeral, shortwave solar radiation was the most important
variable. This change in the relative importance of climatic variables occurs around 1300 m a.s.l.
The results do not show a significant contribution of maximum snow accumulation, suggesting
that indicators of snow presence (i.e. melt-out date or snow season duration), which are
significantly easier to obtain than snow mass indicators from remote sensing, could be used to
model the influence of the snowpack on peak NDVI at regional scale.

1. Introduction

Mediterranean mountains are recognized as biod-
iversity hotspots and water towers for the surround-
ing lowlands (Viviroli et al 2007, Grobler and Cowling
2022). Despite the relatively mild winter temperatures
of the Mediterranean climate, their mountains often
exhibit deep and long-lasting snowpacks (approx. 3 m
maximum depth and over 50% of days with snow
presence above 2000 m in Iberia (Alonso-Gonzélez
et al 2020a)). Mediterranean snowpacks are also
known for their high interannual variability (Fayad

© 2024 The Author(s). Published by IOP Publishing Ltd

et al 2017). The snowpack in the Mediterranean
region is generally close to isothermal for most of
the season, making it particularly sensitive to climate
warming (Bonsoms et al 2023).

Due to the air trapped between the ice crystals,
the snowpack is a strong thermal insulator, which
regulates the soil temperature (Edwards et al 2007).
Additionally, fresh water released during the melt
season replenishes soil moisture before the grow-
ing season (Harpold et al 2015). Although these
characteristics tend to have a positive impact on plant
activity, snow can also damage the vegetation through
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avalanches (Camarero et al 2000) and occasional
heavy snowfalls (Martin-Alcén et al 2010). As a result,
snow-induced damages, in addition to wind-induced
damages, are the primary factors responsible for the
spatial patterns of the subalpine forest in the Pyrenees
(Camarero et al 2000). All these effects are manifes-
ted in forest greening, which exhibits a response to
the snowpack variations as found in the Sierra Nevada
Mountains (California, USA) (Trujillo et al 2012).

Trees and shrubs also have great capacity to
affect the snowpack distribution as trunks and can-
opy impact on the snow energy and mass balance
(Mazzotti et al 2020). In the Pyrenees, forests reduce
snow accumulation and snowmelt rates compared to
open areas and gaps within the forests, leading to an
overall earlier melt out date. Thus, forest manage-
ment can be utilized to modify the snow storage capa-
city of forested areas. Managing forest density can reg-
ulate the dynamics of snowpack accumulation and
melting rates, with a positive or negative correlation
depending on the climatic conditions of the region
(Gleason et al 2021).

In addition to the forest dynamics, the vegetation
beneath the snowpack benefits from efficient thermal
insulation and improved water resources. Thus, other
biomes such as grasslands and shrubs have shown a
strong relation to the snowpack dynamics. Revuelto
et al (2022) proved that the snow melt-out dates
explains the maximum greening in an experimental
catchment in the Pyrenees. Xie et al (2020) proved
that melt out dates affect the land surface pheno-
logy in the Alps, with a varying response among elev-
ations. Francon et al (2020) found that the shrub
radial growth is also controlled by the snow melt-
out dates, specially at high elevations in the north-
ern French Alps. In the Alps, the snow cover duration
(or equivalently, the length of the snow free period)
was identified as the primary driver of inter-annual
variations in primary productivity of mountain grass-
lands over a 13 year period (Choler 2015). Thus, an
improved understanding of the relationship between
snow and NDVI may enhance the management cap-
abilities of high mountain systems, especially under
the current warming scenario where changes in the
snowpack dynamics are expected. The recent availab-
ility of satellite data and snow reanalysis that spans
longer time periods opens the opportunity to fur-
ther investigate these effects. Despite this, the regional
impact of snowpack on the dynamics of vegetation
activity in the Pyrenees has not yet been investigated.

The main objective of this work is to explore
how various snow and climate indices impact the
annual fluctuations of the maximum normalized
difference vegetation index (peak NDVI) in the
Pyrenees, to understand the underlying dynamics
driving this interannual variability and how this rela-
tion evolves with elevation. This primary objective

E Alonso-Gonzalez et al

will be accomplished by developing statistical mod-
els capable of predicting the year-to-year variations in
peak NDVI based on climatological and snow cover
indicators. Despite its Mediterranean character, there
is an evident climatological gradient in the Pyrenees,
which makes it an interesting study area. We have
used new sources of meteorological and phenolo-
gical information, based on numerical simulations
and remote sensing. This allowed us to study the
response of the peak NDVI to the snowpack variab-
ility and other climatic factors for the period 1981-
2014. Hence, we have used machine learning tech-
niques to disentangle the complex relations between
the snow and other climatic variables and the veget-
ation dynamics through NDVI retrievals, exploiting
the recent availability of long term data.

2. Study area

The Pyrenees are the northern boundary of the
Iberian Peninsula and constitute a natural border
between Spain and France (figure 1). It runs from
west to east over 400 km from the Atlantic Ocean to
the Mediterranean Sea with 150 km at their widest
point (along a north-south axis) in the central area.
It is a cross-border mountainous area that includes
the territory of three European countries: France,
Spain and Andorra. The Pyrenean mountain range is
a key source of runoff providing hydroelectric power
and irrigation resources, as the headwaters include
the main tributaries of important rivers as the Ebro
(Spain) and Garonne (France). The Pyrenees have
several peaks above 3,000 m a.s.l. being the Aneto the
highest (3,404 m a.s..).

The climate of the Pyrenees is highly variable in
an east-west direction, with a transition from the
Atlantic influence to the Mediterranean climate. The
northern and southern slopes exhibit a marked differ-
ence along the main axis of the range, the former often
exhibiting higher precipitation rates. Annual precip-
itation ranges from 600 mm in the drier areas of the
eastern part of the Spanish Pyrenees to 3000 mm in
some areas of the northwest facing slopes (Serrano-
Notivoli et al 2017). Above 2000 ma.s.l. the duration
of the snowpack usually exceeds six months (Gascoin
etal 2015).

The regional dynamics of the snowpack, which
exhibits a decreasing trend towards the east of the
range, induces changes in the vegetation, which
tends to exhibit more xerophytic and continental
behavior (Ninot et al 2007). The forest stands of
the Pyrenees are highly exposed to the seasonal
snowpack, which conditions its dynamics through
its accumulation patterns (Sanmiguel-Vallelado et al
2019) and through the damages caused by avalanches
and wind (Camarero et al 2000) being the main
drivers of tree cover distribution at high elevations.
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Figure 1. Boundary of the study area, with its topography, average snow water equivalent (SWE) duration and land use. The white
areas in the lower panel represent the grid cells not included in the analysis due to no available information or non forest and
semi-natural areas category derived from CORINE (see 3.4 Land cover map).
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Pyrenean grasslands are also affected by the snow
dynamics, as the melt out date controls the intensity
of the greening (Revuelto et al 2022).

3. Data

3.1. Remotely sensed normalized difference
vegetation index

The NDVI is a spectral index that can be estim-
ated from information obtained from space-based
sensors. This index has a strong correlation with vari-
ous vegetation parameters such as the leaf area index
(Shabanov er al 2005), green biomass (Wylie et al
2002) or vegetation cover (Gouveia et al 2016).

We have used a NDVI database (Vicente-Serrano
et al 2020) generated from the daily observations
of the Advanced Very-High-Resolution Radiometer
onboard the National Oceanic and Atmospheric
Administration (AVHRR-NOAA) orbiting platforms.
The images correspond to the midday passes in
ascending mode, which means more than 10100
images covering the period 1981-2015 with a 1.1 km
spatial resolution. Despite being a relatively old
sensor, its performance in retrieving NDIV has
proved to be close to more recent sensors such as
MODIS or Spot (Fontana et al 2008). The product
is a grid composite of the best (and also highest)

observation available during two weeks without gaps
as a consequence of the cloud cover, covering the
period 1980-2015. Vicente-Serrano et al (2020),
provides a full description of the algorithm to develop
the product and more details about its validation.
Since the database is a composite of the best and
highest observed NDVI, it is particularly suitable
for estimating peak NDVI values. In addition, the
maximum NDVI ensures minimal contamination
due to the sun-sensor-topography geometry and the
atmosphere.

3.2. Snowpack derived indices from numerical
simulations

We have used a daily gridded snowpack database
to estimate different indicators of the snowpack
(Alonso-Gonzélez et al 2018). This snowpack data-
base has daily resolution, providing information
about the snow water equivalent (SWE) for the period
1980-2014.

It was created by coupling numerical simula-
tions of the atmosphere with a physically based
snowpack model. More specifically an atmospheric
simulation of 0.088° x 0.088° (~9 km) resolution,
generated using the Weather Research and Forecast
(WRF) meso-atmospheric model was used to gener-
ate meteorological forcing over Iberia. A downscaling

3
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algorithm was developed to improve the resolution of
the WRF meteorological fields to 1 km before simu-
lating the snowpack using the Factorial Snow Model
(FSM, Essery 2015). The authors reported a coeffi-
cient of determination (R?) of 0.72 compared with
MODIS snow cover observations, and kappa values
generally above 0.6 for most of the accumulation per-
centiles compared with in situ snow depth observa-
tions, demonstrating the ability of the database to
reproduce the interannual variability of snow cover.

We have used this database to calculate differ-
ent snowpack indicators. The indices calculated were
annual maximum SWE (peak SWE), snow season
length (duration SWE) and the melt-out day. These
indices were only calculated on snow seasons (hydro-
logical years, i.e. from October to September) that
showed snow for more than 30 d with more than
30 mm SWE. These thresholds where selected to fil-
ter out ephemeral snowpack, as well as sporadic off-
season snowfalls, following the parameters proposed
by Sturm et al (1995), but adapted to the characterist-
ics of the Pyrenean snowpack (Alonso-Gonzélez et al
2020a).

3.3. Climatological indicators derived from
reanalysis

The ERA5-Land reanalysis (Munoz-Sabater et al
2021) has been used to obtain seasonal climatic data
on temperature, total precipitation (TP) and short-
wave radiation (SW). The use of ERA5-Land instead
of WRF enhances the independence of the snowpack
numerical simulations with respect to the climatic
indicators, which would otherwise show a (non-
linear) relationship through FSM. Using ERA5-Land,
we have calculated the yearly values of mean temper-
ature (Temp winter, Temp spring, Temp summer),
shortwave radiation (SW winter, SW spring SW sum-
mer) and total precipitation (TP winter, TP spring,
TP summer), for the winter (December, January,
February), spring (March, April, May), and summer
(June, July, August) seasons, respectively.

3.4. Land cover map

In order to mask areas out of the interest of the
present study, and take into account the changes in
the land cover along the time period (1980-2014), we
have included information of the land cover extrac-
ted from the CORINE Land Cover inventory. The
CORINE inventory was initiated in 1985, and is com-
posed by different updates for the 2000, 2006, 2016
and 2018 years. We have included in our analyses the
classes included in the forest and semi-natural areas
category of CORINE, which involves Broad-leaved
forest, Coniferous forest and Mixed forest, as well as
Natural grassland, Transitional woodland/shrub and
Sclerophyllous vegetation (These classes have been
grouped into forest and shrub/herbaceous vegeta-
tion to facilitate map visualization in figure 1). We

4

E Alonso-Gonzalez et al

removed several land cover from the analyses (non-
natural areas, areas with little or no vegetation, as
non-vegetated expanses of sand or bare rock/ground,
burnt areas and water bodies), as they are not relevant
for the present study. Andorra, which is not included
in CORINE, was also removed from the analyses.

4. Methods

We modeled the annual peak NDVI using climato-
logical, land cover and snow-derived indices as pre-
dictors. However, before training the models, we per-
formed various pre-processing steps. First we aligned
the geometries of all the gridded products to make
them consistent across all data sources using a bilinear
interpolation for the continuous variables. In the case
of the categorical variables, the labeled category was
the dominant, covering in most cases more than 50%
of the cell area (supplementary figure 1). To evaluate
the effect of resampling, the experiment was repeated
using only cells where a single class accounted for
more than 80% of the cell area.

We removed any long-term temporal trends from
the variables in the analysis, as otherwise its presence
would force a correlation between some of the indices,
influencing the modeling performance. Time series of
each variable were extracted cell by cell, and then the
slope of the linear trend was calculated with the Theil-
Sen slope. This index is a robust way of obtaining the
slope of a time series, which, unlike trend removal
methods based on linear regression, is less sensitive
to outliers. To eliminate the influence of land cover
changes we used the CORINE products to mask those
cells where changes were detected. We calculated the
correlation matrix between the predictors in order to
evaluate potential collinearities that could affect the
modeling phase, particularly the interpretation of the
relative importances of the predictors.

We used gradient boosting machines (GBMs) as
the algorithm for modeling the peak NDVI value.
We used the open-source implementation XGBoost
(Chen and Guestrin 2016). GBMs are based on
ensembles of weak models that are used to solve
regression and prediction problems. We trained a dif-
ferent GMB for each elevation band in the range of
900-1800 m (50 m intervals) to completely isolate
the effect of the elevation. The models were trained
using 30% of the available data, using the remaining
70% for validation ensuring that the models were not
overfitted. The selection of the training and valida-
tion samples was performed by sampling randomly
among all the available data. As validation statistics we
used the Pearson’s R correlation, mean squared error
(RMSE) and mean absolute error (MAE) between
predicted and observed peak NDVI values.

The GBM model hyperparameters, namely the
maximum depth of the trees, the percentage of sub-
sampled data at each iteration, the learning rate and
the minimum number of instances in each node
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Figure 2. Correlation matrix between all non-categorical predictors.

was automatically selected using a grid approxim-
ation through the Machine Learning in R (mlr)
package (Bischl et al 2016). In addition, we mon-
itored the model improvement in each iteration,
and used an early-stopping criteria when more than
ten rounds without improvements occurred through
cross-validation. The objective function to minim-
ize was the squared error. Finally, from each model
we extracted the relative feature importances and cal-
culated the SHAP contributions (SHapley Additive
exPlanation) (Lundberg and Lee 2017) of the most
relevant snow index to estimate their marginal con-
tribution to the peak NDVI prediction. The SHAP
method is based on the concept of Shapley values
from cooperative game theory, which are used to
determine how much each player in a collaborative
game contributes to its success.

5. Results

First, we computed a correlation matrix among
the non-categorical (all but the ones derived from
CORINE) predictor variables. As expected, sev-
eral variables exhibited high values of correlation
(figure 2), with many of them exhibiting Pearson’s
R values greater than 0.5. This is particularly relev-
ant for the snowpack variables (namely the melt rate,
season duration and melt-out day), as they exhibit an
obvious relationship.

Cross-validation of the GMB models con-
sistently show statistical significance of the rela-
tionship between predicted and observed values
(p-value <0.05) and generally high Pearson’s R val-
ues (ranging between a maximum of 0.92 and a

minimum of 0.64) and very low MAE and RMSE
metrics across the entire range of elevations, as depic-
ted in figure 3.

Additionally, the variance of the residuals
remained relatively constant across the entire range
of peak NDVI values (figure 3), not showing obvious
heteroscedasticity. The GBM models accurately cap-
tured the interannual variability of the peak NDVI,
exhibiting high correlation with the validation dataset
(Pearson’s R between 0.64 and 0.92 in all the elevation
bands, figure 4). The model performances declined
with increasing elevation, both in terms of cell by
cell correlation and in temporal dynamics. Despite
the high collinearity between the predictor variables,
GBM has proved to be a powerful tool for explaining
a significant portion of the variance of the peak NDVI
based on the predictor variables.

Figure 5 illustrates the ranking of the top ten most
important variables, with 1 being the most import-
ant and 10 the least important, at each elevatiol band.
Certain snow indices were found to have the most
significant impact on predicting the peak NDVI in
the elevations where they are present, specially the
melt-out date and to a lesser degree the snow season
duration.

The maximum annual snow accumulation (Peak
SWE) has not been found to be a significant variable
in any of the elevation bands. Thus, considering the
results, the snow mass is not a determining factor in
influencing peak NDVI, despite its obvious relation-
ship with the duration of the snow season (Duration
SWE). As both predictors are highly correlated, we
can not conclude that snow mass is not important, as
it can exert its influence throughout its relationship
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with other variables that show a stronger signal. Land
cover variables were not found to be relevant even if
only those cells with more than 80% of the same cov-
erture were used (supplementary figure 2).

Although figure 5 depicts the top ten variables, it
should be noted that there are no discernible patterns
among the less important predictors. Figure 6 shows
that the largest contributions of the snow variables
occur at mid-elevation, while at higher elevation their
relative contribution decreases.

According to the SHAP values (figure 7), the
relation between the peak NDVI and the melt-out

date exhibits a high nonlinear behavior. While low
melt out dates (below the average) seems to slightly
negatively affect the peak NDVI values, its influ-
ence becomes high with intermediate snowmelt
dates. In particular, values close to the mean (or
slightly above the mean) seem to maximize the
peak NDVI as found in previous field experiments
(Revuelto et al 2022). However the peak NDVI exhib-
its an abrupt decline as the melt-out day delays
towards the latest values, in line with previous find-
ings (Choler 2015, Sanmiguel-Vallelado et al 2019,
Francon et al 2020).
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6. Discussion

In this work we have studied the main factors con-
trolling the interannual variability of the annual peak
NDVI. We have used GBMs to model the peak NDVI
from different climatological variables and land cat-
egories including vegetation types derived from both
remote sensing and numerical modeling using phys-
ically based models. Despite the associated uncer-
tainty to the predictors derived from numerical sim-
ulations and remotely sensed variables, GBMs have
been able to predict annual peak NDVI with Pearson’s
R values ranging from a maximum of 0.9 to a min-
imum of 0.6, exhibiting decreasing performance with
elevation. It is likely that predictive ability has over-
come uncertainty, given that we use standardized sea-
sonal values. Since we find inter-annual variability
much easier to simulate than intra-annual variab-
ility, other experimental designs aiming at simulat-
ing higher frequency time series are likely to present
greater challenges. The decreased model performance
with increasing elevation may be attributed to the
lack of interannual variability in some of the predict-
ors. Particularly those related to the snowpack, exhibit
an important decrease in interannual variability as
elevation increases (Alonso-Gonzdlez et al 2020a).
Moreover, in biomes associated with higher eleva-
tions and cold regions such as shrublands and grass-
lands, inter-annual climate variability has a stronger
impact on the date of occurrence of the peak NDVI
rather than the peak annual NDVI (Paruelo and
Lauenroth 1998, Pirk et al 2023).

Snowpack has proven to be a crucial factor for
controlling the dynamics of NDVI at the regional
scale. These findings could assess the basis of a poten-
tial seasonal prediction of peak NDVI, as there is
potential in the predictability of snow cover dynamics
through atmospheric teleconnection indices. More
specifically for the Iberian Peninsula, the North
Atlantic Oscillation (NAO) has proved to be an
important predictor of the snow season (Lépez-
Moreno and Vicente-Serrano 2007, Alonso-Gonzalez
et al 2020b). Actually, the relationship between the
NAO index and the NDVI dynamics in Iberia has
already been proven (Vicente-Serrano and Heredia-
Laclaustra 2004). Some potential exists to predict the
NAO in a year in advance (Dunstone et al 2016), and
even up to a decade (Eden et al 2002).

The snowpack influence in predicting the max-
imum NDVI has been mostly manifested through
the melt-out date, but also through the length of the
snow season, in line with previous findings in the Alps
(Jonas et al 2008). This control exhibits a non-linear
behavior, where late melt-out dates seem to exert a
higher influence on the peak NDVI (figure 7). This
is in line with previous findings in grasslands in the
Alps (Choler 2015) and the Pyrenees (Revuelto et al
2022), where the influence of the snow season was not
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linear. Similar conclusions were drawn from dendro-
chronological studies in shrubs in the Alps (Francon
et al 2020), and in mountain forests in the Pyrenees
(Sanmiguel-Vallelado et al 2019). All these biomes
showed the same response to snow cover duration
according to previous studies, which explains why the
relative importance of the land cover was not high in
our study compared to the snow and climatic vari-
ables (figure 5), suggesting the potential generaliza-
tion of the conclusions to different biomes.

In addition to the fact that the length of the snow
season limits the growing season in the low vegeta-
tion areas, previous studies have related NDVI pat-
terns to soil temperature. For example, Piedallu et al
(2019) conducted a study looking at the impact of
some climatic and soil factors on NDVI patterns on
the French side of the Eastern Pyrenees (Occitania,
France). They found that the major constraint for
high NDVI values was low soil temperatures in spring
together with low water supply in summer. These
two factors are strongly related to the melt out day,
due to the insulating effect and water storage cap-
abilities of the snowpack. Furthermore, local stud-
ies using dendrochronology and soil temperature
monitoring in the Central Pyrenees (Aragon, Spain)
demonstrated that snowpack influences radial growth
of high mountain pine forests through the control
of soil temperature (Sanmiguel-Vallelado et al 2021).
Figure 4 shows how the melt-out day progressively
increases importance as elevation increases. In its
place, summer SW radiation and spring SW become
progressively less important. In the absence of a
snowpack, shortwave radiation influences ground
temperature dynamics. The increasing importance of
the melt-out day with elevation in predicting the peak
NDVI (also observed in previous studies, but mani-
fested through the snow depth (Trujillo et al 2012),
together with the decreasing importance of shortwave
solar radiation with elevation, could suggest that the
most important mechanism of snow cover influence
on peak NDVI would be the control of soil temperat-
ure dynamics. This effect has been proven at the local
scale through field experiments (Sanmiguel-Vallelado
et al 2021), but to our knowledge this is the first time
it has been shown at regional scales. The results high-
light the influence of the snowpack in the dynam-
ics of mountain vegetation communities, and thus
recommend to consider the expected evolution of the
snowpack in land management climate change adapt-
ation policies.

On the other hand, peak SWE has not been
shown to be a determining variable in predicting
peak NDVI. Although large accumulations of snow
can trigger avalanches that may cause damage to
forest stands, and exceptional snow falls may dam-
age the vegetation, no correlation has been found
between the maximum annual snow accumulation
and the peak NDVI. Avalanches tend to occur in
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topographically favorable locations, and the dam-
age they cause is a crucial factor in determining the
distribution of vegetation in high mountain areas
(Camarero et al 2000). As these events occur con-
sistently in the same areas, they maintain similar
NDVI values over time, regardless of snow accumu-
lation levels. Another effect that seems to not influ-
ence the peak NDVI is the fact that the snowpack
is an effective water storage system. This surprising
conclusion highlights the complex dynamics of the
hydrological system, where even other directly related
phenomena such as the annual water balance is not
necessarily related with the peak accumulation values
(Lépez-Moreno et al 2020). However, this conclusion
should be taken with caution. Previous studies have
found a very high correlation between melt out day
and maximum soil moisture, independently of the
snow accumulation (Harpold et al 2015). Although
GBM is a robust algorithm able to deal with collin-
earity in the predictors, it still has some influence
on the results. Collinearity may not have a signific-
ant impact on the overall predictability of the mod-
els but the relative importance metrics may suffer in
case of high correlations. This effect should be taken
into consideration, as if one of the snowpack vari-
ables shows much higher relative importance than
the others, it may be a consequence of this effect.
Therefore, the model could be underestimating the
relative importance of some variables favoring its cor-
related counterpart. Thus, it is possible that the mod-
els are underestimating the hydrological effect given
the high correlation between the melt out day and the
water availability (figure 2). Including soil moisture
in the modeling pipeline could resolve this issue, but
more research is needed as soil moisture is a complic-
ated variable to estimate from both numerical sim-
ulations and observations. A potential line of future
work will be the hybridization of mechanistic models
with machine learning techniques instead of the use
of purely empirical data driven models, which could
help to solve this kind of issues (Razavi et al 2022).
Also, the use of purely empirical models makes it dif-
ficult to draw conclusions in the medium term where
conditions will differ significantly from the reference
period as a result of climate change impacts. The use
of mechanistic models may be the way to draw robust
conclusions about future climate change impacts, as
the reduction of assumptions allows for a better per-
formance in extrapolation mode.

In this work we have focused on the regional scale.
This has allowed us to benefit from long time series.
The fact that snow presence indicators (such as the
season length or the melt-out date) may be suffi-
cient to predict the annual peak NDVI paves the way
for a more systematic inclusion of snowpack vari-
ables in ecological studies, where the melt out date
seems to be a key predictor even at hyper-resolution
scales (Revuelto et al 2022). Obtaining information
of snow cover from remote sensing is significantly
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easier and more accurate than other products that
involve estimating snowpack mass, and it is even pos-
sible at high resolutions (Macander et al 2015). This
is particularly relevant in the context of operational
forest management, where resolution becomes a key
factor to consider. In addition, given the limitations
of resolution, our models are not spatially explicit,
which makes it difficult to extrapolate the conclu-
sions at the local scale, a limitation that could be
addressed in the future with the use of higher resol-
ution products. Using high-resolution satellites such
as Landsat and/or Sentinel 2 could allow the present
work to be extended to a wide number of ecosystems,
even if snow mass data is not readily accessible. The
obvious increase of data available with the increase of
resolution and the more detailed representation of the
vegetation spatial dynamics paves the way to develop
more detailed studies in the future.

7. Conclusions

In this work, we have used remote sensing data
sources and long-term numerical simulations to
model the influence of different climatic variables on
the control of peak NDVI at the regional scale. We
have used GBMs to model the ability of different cli-
mate and snow cover indices to predict peak NDVI
at different elevation bands, to study how the rel-
ative importance of the predictors evolves with the
elevation.

The results showed that snowpack plays a crucial
role in the dynamics of peak NDVI, becoming the
most important predictor of all those chosen at the
elevations where it is present. Among the snowpack
indices used, the models suggest that melt-out day
is the most informative predictor. The importance
of melt-out day increases progressively with eleva-
tion, replacing indicators related to shortwave radi-
ation which were found to be the most informative at
lower elevations. This could indicate that the control
mechanism exerted by snow on peak NDVI could be
manifested through the control of soil temperature.

The results have not shown that SWE-dependent
indicators of the snowpack are of significant benefit
over indicators based on the presence of snowcover.
The latter being significantly easier to obtain than the
former by remote sensing especially at higher resol-
utions, this opens the door to a multitude of stud-
ies relating snowpack to vegetation dynamics. This is
especially relevant in the context of the new genera-
tion of satellites, where high resolution information
is readily available.
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