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Abstract

This article presents the benefits of using Bayesian algorithms to fit regime switching models to daily
financial returns data in order to design trading strategies. Our study focuses on a Gaussian hidden
Markov model. We show how the application of a simple smoothing technique preserves the hidden
Markov structure and facilitates regime detection even in instances of highly volatile data. The ef-
fectiveness of a trading strategy, based on regime detection, may be hindered by a high rate of false
signals, leading to numerous trades and, consequently, an escalation in transaction costs. By reducing
variance through data smoothing, we enhance the persistence of regimes over time. We validate our
statistical learning procedures using synthetic data prior to their application to real-world financial
data.
Keywords: Hidden Markov Models ; Bayesian Inference ; Market Regimes ; Financial Time Series
; Smoothing ; Transaction Costs Mitigation
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1 Introduction

The price dynamics of stocks and stock indices are known to switch between regimes, depending on the
global behaviour of the market. In finance, when dealing with two states switching models, these regimes
are usually referred to as bull and bear markets as described, for instance, in the work Gonzalez et al.
(2005). A bull market is characterized by rising stock prices, relatively low volatility, and a generally
positive outlook among investors. Conversely, a bear market is characterized by falling stock prices,
increased market volatility, and a generally negative outlook among investors. Bull and bear markets are
part of a normal market cycle and both can present opportunities and challenges for investors. In a bull
market, investors may be able to generate significant returns by undertaking higher risk and investing in
high-growth stocks. However, in a bear market, investors may need to focus on preserving capital and
reducing risk by investing in more defensive assets, such as bonds or gold. Market regimes can change
quickly and unexpectedly. The role of a financial advisor is to develop an investment strategy to weather
different market conditions over the long term. For a more comprehensive understanding of bull and bear
markets, see the analysis of historical turning points after bull and bear markets dating in Gonzalez et al.
(2005) and Gonzalez et al. (2006).

Financial assets are usually modeled via stochastic processes. The most commonly used model assumes
that stock prices are governed by geometric Brownian motions, we refer the reader to the pioneering
works of Merton (1969) and Black and Scholes (1973). This process has two parameters: the expected
return µ and volatility σ. This simple model does not account for changes in the regime of the financial
markets and is therefore suitable only for short periods. One workaround consists in assuming that the
alternation of market regime is governed by a Markov chain. This idea goes back to the work of Hamilton
(1989) and has been applied to stock returns by Schaller and Norden (1997). The Markov-modulated
geometric Brownian motion has been extensively studied by the financial mathematics community to do
option pricing in Jobert and Rogers (2006), optimal trading in Zhang (2001) and portfolio optimization
in Yin and Zhou (2004). Our work focuses on statistical calibration. The data at hand consists of daily
logarithmic returns which should be normally distributed under the considered model.

One of the main challenges in modeling market regimes arises from their lack of direct observability.
To address this issue, statisticians and econometricians commonly use Hidden Markov Models (HMM).
HMMs are probabilistic models that use a sequence of observed data to guess the hidden states which
generated the data, based on the assumption that the hidden states follow a Markov process. The para-
metric inference of such models requires going back and forth between (1) estimating the parameters that
characterize each regime and (2) associating each observation to a regime. The learning procedure relies
on the optimization of the likelihood function through an expectation maximization algorithm like the
famous Baum-Welch algorithm, introduced by Baum et al. (1970). For an overview, we refer the reader
to the book of Cappé et al. (2007).

We explore in this paper the benefit of applying a Bayesian approach on smoothed data to detect regime
changes and adapt our investment strategies accordingly. The computational burden associated with
sampling the posterior distribution is alleviated by the use of Gibbs sampling and conjugate prior distri-
bution, see for instance the works of Richardson and Green (1997) and Rydén (2008). Gibbs sampling
is a Markov Chain Monte Carlo technique used for Bayesian inference, where one samples from the pos-
terior distribution by iteratively sampling from the conditional distributions of the variables given the
other variables. The incorporation of the uncertainty around the estimated parameters and the Markov
chain path provided by the posterior distribution in the investment strategies is one of our contributions.
Generating a vast number of potential hidden state sequences contrasts with the frequentist approach
that only returns the most probable hidden state sequence.

Our model translates data into a signal used to inform investment decisions. Within a two states model,
e.g. bull and bear, we increase exposure when the market is trending upward and progressively shift
toward a more defensive position when it is trending downward. This paper explores a trend-following
strategy on a benchmark index, adjusting positions according to market regimes, similar to that consid-
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ered by Cheng et al. (2018) and Bulla et al. (2011). It aligns with Chen et al. (2020)’s long-short strategy,
which involves taking long positions in bull markets and short positions in bear markets (though we ex-
clusively take long positions). Nguyen (2018) implementes a trend-following strategy based on predicted
stock prices inferred from an HMM rather than relying on the detected signal. Dai et al. (2010) develop
a trend-following trading strategy based on market regimes to identify optimal buying and selling times
using an optimal stopping problem.

An alternative strategy is factor investing, which assumes that certain risk factors are profitable in bull
regimes and protective in bear regimes. Erlwein et al. (2009) and Ammann and Verhofen (2006) rec-
ommend using a value factor for protection in bearish phases, and growth or momentum factors for
maximizing returns in bullish phases.

Lastly, market regimes can be used for portfolio optimization through stock picking, selecting bullish
stocks as discussed in Nguyen and Nguyen (2015) and Kim et al. (2019). Alternatively, Ang and Bekaert
(2004) optimize portfolio weights by incorporating signals into the capital asset pricing model (CAPM),
while Graflund and Nilsson (2003) does so, based on expectations of future regime probabilities and
returns. Finally, the Markov regime-switching framework can be integrated into a factor model for port-
folio optimization, as demonstrated by Costa and Kwon (2018) for risk-parity optimization and Costa
and Kwon (2019) for mean-variance optimization.

By switching positions, an investor incurs transaction costs. Thus, the level of false alarm, that is to
say, non-existent but detected changes of regime, must be controlled. A trade-off must be found between
accurately reconstructing the Markov chain path while favoring scenarios with fewer regime changes. In-
deed, excessive regime shifts may result in higher transaction costs compared to delaying a regime change.

When the data exhibits high levels of volatility, the signal coming out of the model is noisy. Our second
contribution mitigates the impact of data variability by replacing the raw data with a smoothed version
of it resulting from a simple moving average procedure. Averaging the data coming from a Gaussian
HMM outputs data again distributed as a Gaussian HMM. The same algorithms can then be used to
both fit the raw and the smoothed data. We discuss the pros and cons of replacing the raw data with
its moving average when fitting an HMM. The novely of this approach is particularly beneficial for
practitioners who struggle to obtain a consistent real-time signal on data that is often highly variable,
and it has not been utilized in financial literature to our knowledge..

The remainder of the paper is organized as follows. A description of the model, the data, and the
estimation procedure is provided in Section 2. Section 3 explains how the outputs of the model are
exploited in the implementation of an investment strategy. A simulation study is conducted in Section 4
to assess the soundness of our investment strategies in a controlled environment. Section 5 illustrates our
procedure on real-world financial datasets.

2 Model settings and statistical learning procedure

2.1 Hidden Markov chain and logarithmic returns data
The price of a stock or the value of a stock index (St)t≥0 is a stochastic process observed in discrete time

s0:n = (s0, . . . , sn).

We assume that (St)t≥0 is governed by a Markov-modulated geometric Brownian motion which means
that the parameters of the geometric Brownian motion depends on the current state of a Markov chain
(Xt)t≥0 with state space X . Denote by

x1:n = (x1, . . . , xn),

the sequence of market states. Under such model the log-returns defined by

yk = ln(sk/sk−1), k = 1, 2 . . . , n,

conditionnaly on the state of the Markov chains, are independent and normally distributed. We have

yk|xk ∼ Normal(µxk
, σxk

), k = 1, 2 . . . , n.
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Denote by M = (µx)x∈X and Σ = (σx)x∈X the drift and volatility parameters associated to each state.
Further denote by ν = (νx)x∈X the initial distribution of the Markov chain and Q = (q(x, x′))(x,x′)∈X 2

its transition probability matrix. Figure 1 shows simulated trajectories of s1:n, y1:n and x1:n when
X = {1, 2, 3}, that is the state space contains three states, with parameters ν =

(
0.025 0.025 0.95

)
,

Q =

 0.95 0.025 0.025
0.05 0.95 0.025
0.025 0.025 0.95

, M =
(
−0.02 0 0.02

)
, Σ =

(
0.01 0.01 0.01

)
and N = 1000.

0 200 400 600 800 1000
Time t

0.04

0.02

0.00

0.02

0.04

Tr
aj

ec
to

ry
 o

f y

0.0

0.2

0.4

0.6

0.8

1.0

Regime 1
Regime 2
Regime 3

Trajectories of s1:n and x1:n on X = {1, 2, 3}

0 200 400 600 800 1000
Time t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Tr
aj

ec
to

ry
 o

f S

Regime 1
Regime 2
Regime 3

Trajectories of y1:n and x1:n on X = {1, 2, 3}

Figure 1: Simulated trajectories

On Figure 1, regime 1 corresponds to a downward trend, regime 3 an upward trend and regime 2 a
stabilization of the stock value. Our aim is to find the parameters θ = (ν,Q,M,Σ) that best explains
the observed data y1:n. The main difficulty is that the state sequence x1:n is unvailable which is why we
refer to this model as a Hidden Markov Model (HMM). Since the observations are normally distributed,
we further refer to the model considered in this work as a Gaussian HMM with parameter θ. The next
section presents a Gibbs sampler to estimate the model parameters and reconstruct the sequence x1:n of
hidden states.

2.2 Bayesian inference via Gibbs sampling
In Bayesian statistics, the model’s parameters are random variables having a joint prior distribution
θ ∼ π(θ). Inference then relies on the posterior distribution

π(θ|y1:n) ∝ p(y1:n|θ)π(θ),

where ∝ stands for "proportional to", that updates the prior distribution using the likelihood function
of the model. In hidden Markov models, the likelihood function depends on the sequence of unknown
states x1:n. The posterior distribution we aim for becomes

π(θ, x1:n|y1:n) ∝ p(y1:n|θ, x1:n)p(x1:n|θ)π(θ), (1)

where

p(y1:n|θ, x1:n) =

N∏
n=1

gθ(yn|xn), (2)

with

gθ(yn|xn) =
1

σxn

√
2π

exp

[
− (yn − µxn

)2

2σ2
xn

]
,

and

p(x1:n|θ) = ν(x1)

n∏
k=2

q(xn, xn−1).

The posterior distribution in (1) is known up to a constant which prevents us from direct evaluation.
A standard workaround in Bayesian statistics is to draw samples from the posterior distribution using
Markov Chain Monte Carlo (MCMC) algorithms. A Gibbs sampler is a MCMC algorithm that samples
from a joint distribution π(θ, x1:n|y1:n) by sampling sequentially the univariate conditional distributions

π(ϑ| . . .), for every component ϑ of θ, (3)
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where ". . ." refers to all the other parameters, the data y1:n and the trajectory of the hidden Markov
chain x1:n. The trajectory x1:n is not a parameter per se and is recovered by a filtering procedure that
we append to the Gibbs iterations. In our model, the prior distribution can be chosen to yield tractable
posterior distributions (3). The settings of the prior and posterior distributions are taken from Rydén
(2008) originally inspired by Richardson and Green (1997), and are provided in Appendix A.

The Gibbs algorithm returns a set of values for the parameters equal to the number of iterations it
performs I, minus the burn-in iterations, denoted by θ1, . . . , θI , as well as for the sequences of hidden
states denoted by x1

1:n, . . . , x
I
1:n, each corresponding to a distinct possible scenario. Our objective is to

use these scenarios for the investment strategies as described in Section 3.

2.3 How to handle high volatility?
In the context of designing an optimal trading strategy, our focus lies in detecting trend regimes rather
than volatility regimes. When σx, the standard deviation of a state x, surpasses the gap between the
mean parameters associated with this state x and another state x

′
, our algorithm encounters difficulty

distinguishing between them. To address this challenge, we introduce a variant of the coefficient of
variation commonly used in statistics, that we shall call the state detection score (SDS):

SDSx =
σx

min
x′∈X\{x}

|µx − µx′ |
,

where σx represents the standard deviation of the state x and µx denote the means associated with state
x. This measure allows us to compare the standard deviation to the gap between the mean parameters.
Intuitively, a high SDS corresponds to a (relatively) small mean difference between the state x and the
other states. Conversely, if the mean of a state x differs significally (with regard to its variability σx)
from those of the other states, we expect a high associated SDS.
Figure 2 shows the posterior predictive distribution of the data with different values of SDS. The
synthetic data y1:N are simulated by an HMM on X = {1, 2, 3} with parameters ν =

(
0.05 0.05 0.9

)
,

Q =

 0.8 0.05 0.15
0.05 0.8 0.15
0.025 0.025 0.95

, M =
(
−0.04 0 0.02

)
and N = 1000.
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Figure 2: Posterior predictive distributions of the three-state model

When SDS ≥ 1 for any regime, it overlaps with another one, hindering the estimation of the param-
eters associated with these states. The first workaround involves reducing the number of states. For
Σ =

(
0.02 0.02 0.02

)
and Σ =

(
0.03 0.03 0.03

)
, two SDS are greater than or equal to 1, thus

transitioning from 3 states to 2 states will naturally merge the two indistinguishable states together (i.e.,
states 2 and 3). Then M =

(
µ1

µ2+µ3

2

)
=
(
−0.04 0.01

)
. We can thus recalculate the values of SDS

in a two-state model, as depicted in Figure 3.
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Figure 3: Posterior predictive distributions of the two-state model

The SDS for Σ =
(
0.06 0.06 0.06

)
are still greater than 1 making the state indistinguishable. We

must then settle for a single state, as depicted in Figure 4.
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When we cannot or do not wish to reduce the size of the state space X , we can directly act on the
volatility of the data through a simple smoothing procedure to enhance the distinguishability of states.
Consider taking a moving average given by

z(L)
n =

1

L

L∑
l=1

yn−l+1,

where y1:n is our initial data. Figure 5 illustrates the influence of this smoothing process on the log
returns for various moving average depth L ∈ {2, 5, 8, 10}.
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Figure 5: Smoothing with moving averages on some synthetic data y1:n simulated by an HMM on X = {1, 2, 3} with parameters

ν =
(
0.05 0.05 0.9

)
, Q =

 0.8 0.05 0.15
0.05 0.8 0.15
0.025 0.025 0.95

, M =
(
−0.04 0 0.02

)
, Σ =

(
0.06 0.06 0.06

)
and N = 1000

Figure 5 shows that adequate smoothing make the states nearly observable to the naked eye. This sug-
gests that the decoding algorithm may benefit from smoother returns, increasing states distinguishability.

The interesting feature of the Gaussian HMM is that the smoothed observations z
(L)
1:n yields a Gaussian

HMM referred to as MA(L)-HMM which we describe hereafter. The state space of the Markov chain
is XL, with xL

n = x(n−L+1):n ∈ XL for n ≥ L. We denote by ν(L) and Q(L) the initial distribution and
transition matrix. The set up is similar to a higher-order HMM discussed in Zhang et al. (2019). The
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mean and variance vector of the smoothed observations are given by

M (L) =

{
µxL =

1

L

L∑
i=1

µxi

}
xL∈XL

and Σ(L) =

σxL =

√√√√ 1

L

L∑
i=1

σ2
xi


xL∈XL

.

Despite the increase in the dimension of states, the number of parameters involved in the MA(L)-HMM
is the same as that of the HMM. We illustrate this fact in Example 1 where we consider a two-state
space and L = 2.

Example 1. Take a Gaussian HMM with two state X = {0, 1}, the HMM associated to the two-day
moving average (L = 2) has the following state space X (2) = {(0, 0), (0, 1), (1, 0), (1, 1)}. The transition
matrix is given by

Q(L) =


q(0,0)→(0,0) q(0,0)→(0,1) q(0,0)→(1,0) q(0,0)→(1,1)

q(0,1)→(0,0) q(0,1)→(0,1) q(0,1)→(1,0) q(0,1)→(1,1)

q(1,0)→(0,0) q(1,0)→(0,1) q(1,0)→(1,0) q(1,0)→(1,1)

q(1,1)→(0,0) q(1,1)→(0,1) q(1,1)→(1,0) q(1,1)→(1,1)

 ,

where
q(i,j)→(k,l) = P(Xn = l,Xn−1 = k|Xn−1 = j,Xn−2 = i).

We note that many transitions are impossible, indeed q(i,j)→(k,l) = 0, for j ̸= k. We further note that

q(i,k)→(k,l) = P(Xn = l,Xn−1 = k|Xn−1 = k,Xn−2 = i) = P(Xn = l|Xn−1 = k) = qk→l,

where qk→l is the element in the kth row and the lth of the transition matrix Q. The matrix Q(L) then
becomes

Q(L) =


q0→0 q0→1 0 0
0 0 q1→0 q1→1

q0→0 q0→1 0 0
0 0 q1→0 q1→1

 .

The initial probabilities are given by

ν(L) =
(
ν0q0→0 ν0q0→1 ν1q1→0 ν1q1→1

)
.

Lastly, the vectors of means and standard deviations are given by

M (L) =
(
µ0

µ0+µ1

2
µ1+µ0

2 µ1

)
and Σ(L) =

(√
2σ0

2

√
σ2
0+σ2

1

2

√
σ2
1+σ2

0

2

√
2σ1

2

)
.

Our learning algorithm alternates between (1) estimating parameters based on their posterior conditional
distribution using the moving average and (2) decoding hidden states from the smoothed data using the
estimated parameters.

In the simulation study discussed in Section 4, we examine the influence of the moving average depth L
on the hidden state decoding task, depending on the value of the theoretical SDS.

3 Investment strategies

We treat the sequence of hidden states as a signal that we leverage to develop investment strategies.
Based on our training sample y1:n, we obtain probable sequences of hidden states x1:n. Each new data
point yn+1 must be labeled as xn+1, potentially resulting in a change of position. For simplicity, we
consider only two choices: buying shares of a risky asset or holding cash. The next section describes two
ways of processing our signal and make an investment call.
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3.1 Strategy construction
We consider a portfolio with value Vn and return Rp,n. A fraction wn of the portfolio is invested in the
risky asset R, and the remainder in a riskfree asset RF. At time n, the portfolio return is expressed as

Rp,n = wnRn + (1− wn)RFn,

and the portfolio value is
Vn = Vn−1(1 +Rp,n), for n > 0,

with V0 the initial investment in the portfolio.

The value wn corresponds to the portfolio’s position in the risky asset and can vary depending on the
asset manager’s choices. If wn varies, then we introduce transaction costs f which are proportional to
the variation of the value invested in the risky asset (wn − wn−1). The portfolio return becomes:

Rp,n = wnRn + (1− wn)RFn − |wn − wn−1|f , for n > 0,

and
Rp,0 = w0R0 + (1− w0)RF0 − w0f.

We will vary wn based on a signal constructed from the sequences of hidden states xk
1:n for k = 1, . . . ,K

generated by the Gibbs algorithm. When this signal is favorable wn will increase, and vice versa.

3.2 Binary signal versus continuous signal
Two ways of processing the signals for the strategies are considered in this work. The first is referred
to as the binary signal. The states x ∈ X in the scenarios k = 1, . . . ,K are deemed favorable if µk

x > 0
and unfavorable otherwise. Scenarios here are understood as values of the parameters and hidden state
sequence output by the Gibbs sampler. We denote by K the number of iteration in the Gibbs sampler
minus the burn-in period. The binary signals is defined as

bsn = H

(
K∑

k=1

1µk

xk
n
>0 −K/2

)
,

where

H(x) =

{
1 if x ≥ 0,

0 otherwise.

denotes the heaviside function. The effective investment strategy involves holding the risky asset (wn = 1)
when the binary signal is 1 that is favorable or bullish, and selling the position (wn = 0) when it is 0,
that is unfavorable or bearish.

Our second approach consists in defining a continuous signal as

csn =
1

K

K∑
k=1

1µk

xk
n
>0.

The continuous signal ranges between 0 and 1, where 0 corresponds to the bearish binary signal (no
exposure to the risky asset), 1 represents the bullish binary signal (total exposure to the risky asset), and
values in between indicate a gradual exposure.

Our position then follows from

wn =

{
bsn, if the binary signal is used,
csn, if the continuous signal is used.

To ensure that the model is as accurate as possible in reflecting real-world conditions, we introduce a
one-day delay to the signals. This delay accounts for the fact that the hidden states are estimated based
on returns computed on the closing price St, but since the market is closed at that time, we have to wait
until the next day to process the information using the price St+1. This introduces a one-day lag between

9



the detection of the state and the processing date, which is necessary for a more realistic and accurate
representation of market conditions. To assess the sensitivity of our proposed strategies to transaction
costs, we incorporate various fee levels ranging from 0.5 basis points (bp) to 2 basis points. We then
compare the outcomes against those of a strategy with no fees. When using the binary signal, the full
charge fees is applied as soon as there is a position change, because |wn − wn−1|f is either 0 or f . With
the continuous signal, on the other hand, only a portion of the fee corresponding to the position change
is applied (0 ≤ |wn − wn−1|f ≤ f).

3.3 Evaluation and metrics
The evaluation of a strategy is conducted through backtesting, involving the retrospective calculation of
returns using the signal as if it had been determined at each historical date. Assessing the performance
of strategies with historical data provides insights into their effectiveness and potential profitability. The
backtest offers valuable information on the strategy’s performance across various market regimes, en-
abling us to evaluate its robustness.

Strategies’ performance is assessed by comparing their backtests to corresponding benchmarks’, consid-
ering relative performance adjusted for volatility. A benchmark is a predefined index or portfolio used to
measure the performance of a trading strategy. It serves as a reference point for evaluating the relative
success of the strategy against the broader market. In addition, the strategies’ performance is compared
to that of the riskfree rate to assess their absolute performance, given the level of risk involved. Ul-
timately, our objective is to determine if we have correctly timed the growth and crash periods of the
market and if we have employed suitable strategies to maximize returns while minimizing risk.

To assess the effectiveness of our strategies, we take two key metrics. The first is the widely used Sharpe
ratio (Sharpe (1966), Sharpe (1994)), which compares the strategy’s performance and volatility to the
risk-free rate, allowing us to evaluate the risk-adjusted returns:

SRn =
Rp,n −RFn

σp,n
.

Here, Rp,n represents the expected return of the portfolio, RFn is the risk-free rate of return, and σp,n is
the standard deviation of the portfolio’s expected return. Roughly speaking, a Sharpe ratio greater than
1 indicates a good strategy, 2 indicates a very good strategy and 3 indicates an excellent strategy.

The second metric is the information ratio, derived from the Sharpe ratio by substituting the risk-free
asset with a benchmark (Sharpe (1966)), assesses strategy effectiveness relative to direct benchmark
investment (Sharpe (1966)):

IRn =
Rp,n −Rb,n

σ(Rp,n −Rb,n)
.

Here, Rb,n represents the expected return of the benchmark, and σ(Rp,n −Rb,n) represents the standard
deviation of the difference between the portfolio’s and benchmark’s expected return. A positive informa-
tion ratio indicates a better strategy than the benchmark, while a negative information ratio suggests a
less effective strategy than direct investment in the benchmark.

4 Simulation experiments on the impact of L and strategies

We generate synthetic data y1:n, where n = 1, 000, from an HMM with parameters given by

ν =
(
0.05 0.9 0.05

)
, Q =

 0.8 0.05 0.15
0.05 0.8 0.15
0.025 0.025 0.95

 , and M =
(
−0.04 0 0.02

)
.

Our goal is to evaluate our capability to retrieve the sequence of hidden states across various levels of
volatility σ ∈ {0.01, 0.02, 0.04, 0.06, 0.08, 0.1}. We focus on the trend regimes and thus assign the same
volatility σ to all states. We can define an average SDS accross the regimes as

ASDS =

∑
x∈X SDSx

|X |
.

10



The average values for the different levels of volatilities are presented in Table 1.

σ 0.01 0.02 0.04 0.06 0.08 0.1

ASDS 0.42 0.83 1.67 2.5 3.33 4.17

Table 1: ASDS for the different volatility levels.

The experiment is repeated 1, 000 times for each value of σ. The Gibbs sampler is configured to run
1, 500 iterations, with 500 iterations dedicated to a burn-in phase.

A preliminary study on the accuracy and persistence of the signal generated by the MA(L)-HMM is
conducted in Section 4.1. Then, in Section 4.2, we implement the strategies outlined in Section 3.1 to
examine the performance of the MA(L)-HMM and compare strategies on binary and continuous signals.

We compare the MA(L)-HMM to the traditional Gaussian HMM by considering several lag values
L ∈ {2, 5, 8, 10}. It is worth noting that the HMM corresponds to an MA(0)-HMM, and consequently
we will use this terminology from now on.

4.1 Signals study
We start by looking into the accuracy, defined as

accuracy =

∑N
n=1 1{xn=x̂n}

N
,

of the estimated hidden state sequence x̂1:N generated by our Gibbs sampler. The accuracy, for each run,
is shown as a boxplot on Figure 6 depending on the ASDS level.
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Figure 6: Out-of-sample accuracies

Nearly perfect decoding is achieved when the data volatility is low relative to the differences between the
means of the states (ASDS ≤ 1). The accuracy sharply declines as volatility increases when using the
raw data. Conversely, the use of smoothed data counteract the volatility making accuracy more robust.
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As the volatility increases, the gap between the HMM and MA(L)-HMM results widens.

We further turn our attention to signal stability and persistence through the average state duration given
by the inverse of the state switching probability p,

p =

∑N−1
n=1 1{xn ̸=xn+1}

N − 1
,

and through the back-and-forth switching rate over one day,

baf =
∑N−2

n=1 1x̂n=x̂n+2 ̸=x̂n+1

N − 2
.

The latter corresponds to the number of times in the period where a regime lasted only one day, resembling
a detection error. This metric is particularly important because these shifts can lead to substantial
financial losses, with transaction costs doubling due to entry and exit expenses, potentially outweighing
any performance gains. Duration and back-and-forth switching rate are shown on Figure 7 and Figure 8
respectively, depending on the ASDS level.
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Figure 7: Average state durations
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Figure 8: Back-and-forth shifting rates

The average duration of the true hidden state sequence is approximately 11 days. As illustrated in Fig-
ure 7, as the volatility of the data increases, the median duration of the sequences of states estimated by
the HMM decreases, reaching 3 days for ASDS = 4.17. The MA(L)-HMM tends to produce higher
and stable level of duration even for high level volatility. Note that in the context of investment strategies
high durations are desirable to reduce trading costs.

This pattern is also discernible in the back-and-forth switching rate in Figure 8. The limited persistence in
the regimes of the HMM presents a notable challenge for effective strategy implementation, as transaction
costs can become substantial. The MA(L)-HMM successfully addresses this issue with back-and-forth
shifting rates consistently lower than 5% for all values of L and volatilities, and even 2% for L = {5, 8, 10}.

This simulation study demonstrates the overall effectiveness of smoothing the data to achieve better
regime-switching detection when the variance is high. We anticipate that the impact on strategies will
follow a similar pattern, and this is precisely what we will now investigate.

4.2 Strategies study
In this section, we aim to examine two aspects: the comparison of the binary signal bs and the continu-
ous signal cs in strategies, as defined in Section 3.2, and the impact of L in the MA(L)-HMM on the
strategy outcomes.

First, we explore the influence of transaction fees on strategies employing the binary and continuous
signals, by varying the fees from 0, 0.5bp, 1bp and 2bp. The total cost of the strategies in terms of fees
are depicted in Figure 9.
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Figure 9: Cumulated transaction fees

In Figure 9, we observe that the continuous signal lower the costs of the strategy compared to the binary
signal, particularly as the volatility increases. However, for all strategies, as volatility increases, so do
the costs, which is closely related to the distinguishability of states: as the SDS increases, states become
less distinguishable, leading to more state changes and consequently higher transaction costs.

We will now compare the Sharpe ratios for strategies based on the MA(L)-HMM for different values
of L, while varying volatility levels and transaction costs. Figure 10 displays the results for the binary
signal, and Figure 11 shows the results for the continuous signal.
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Figure 10: Out-of-sample Sharpe ratio

The Sharpe ratios depicted in Figure 10 show that the MA(L)-HMM enables an improvement in
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strategy performances as soon as volatility or fees increase. At lower fees, higher volatility is required
for the Sharpe ratio of the MA(L)-HMM to surpass that of the HMM, particularly with lower values
of L. However, at higher fees (2bp), the MA(L)-HMM consistently maintains a higher Sharpe ratio
compared to the HMM. In the absence of transaction fees, all models are equivalent in terms of Sharpe
ratios when volatility is high. However, the HMM outperforms other models when volatility is lower.
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Figure 11: Out-of-sample Sharpe ratio

The exact same trend appears in Figure 11 for both binary and continuous signals. The only difference
observed is in terms of magnitude. When there are no transaction fees, the levels are similar, but as we
increase the fees, strategies on the binary signal are more affected compared to those on the continuous
signal, resulting in diminished Sharpe ratios.

We also want to examine the performance of our strategies relative to the benchmark. In our simulations,
we consider the benchmark to be the sequence of simulated observations upon which we construct the
signals and strategies. We look at the information ratio, which is positive when the strategy outper-
forms the benchmark. The median values for each strategy are reported in Table 2, with bold values
corresponding to positive values for better visibility.
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Binary signal Continuous signal

L = 0 L = 2 L = 5 L = 8 L = 10 L = 0 L = 2 L = 5 L = 8 L = 10

No transaction fee
ASDS ≃ 0.42 17.18 14.72 13.21 11.78 11.00 17.29 15.58 13.36 12.09 11.36
ASDS ≃ 0.83 10.99 10.19 9.33 8.55 8.14 10.61 10.33 9.39 8.78 8.51
ASDS ≃ 1.67 5.22 5.13 4.88 4.56 4.43 5.17 5.39 5.16 4.94 4.85
ASDS ≃ 2.50 3.15 3.20 3.06 2.88 2.83 3.38 3.47 3.39 3.25 3.22
ASDS ≃ 3.33 2.28 2.27 2.17 2.11 2.07 2.49 2.53 2.48 2.41 2.35
ASDS ≃ 4.17 1.69 1.75 1.66 1.63 1.59 1.96 2.00 1.97 1.91 1.88

0.5bp transaction fees
ASDS ≃ 0.42 9.34 7.14 8.06 7.94 7.64 9.52 7.88 9.04 8.91 8.64
ASDS ≃ 0.83 6.81 3.13 5.07 5.46 5.47 5.96 4.35 6.13 6.41 6.46
ASDS ≃ 1.67 3.31 -0.32 1.72 2.26 2.45 2.32 0.89 2.86 3.35 3.46
ASDS ≃ 2.50 0.75 -1.08 0.55 1.12 1.30 0.55 -0.04 1.63 2.02 2.15
ASDS ≃ 3.33 -0.29 -1.23 0.14 0.63 0.78 0.10 -0.30 1.09 1.41 1.50
ASDS ≃ 4.17 -0.95 -1.17 -0.01 0.39 0.52 -0.03 -0.35 0.79 1.05 1.13

1bp transaction fees
ASDS ≃ 0.42 4.27 2.40 3.95 4.38 4.40 4.02 2.38 5.25 5.93 6.09
ASDS ≃ 0.83 3.40 -0.87 1.76 2.64 2.95 1.96 -0.62 3.05 4.08 4.45
ASDS ≃ 1.67 1.71 -3.65 -0.71 0.32 0.64 -0.18 -3.10 0.69 1.79 2.07
ASDS ≃ 2.50 -0.95 -4.07 -1.49 -0.49 -0.09 -1.87 -3.22 -0.11 0.81 1.10
ASDS ≃ 3.33 -2.43 -3.93 -1.57 -0.69 -0.38 -2.12 -2.90 -0.31 0.43 0.63
ASDS ≃ 4.17 -2.97 -3.55 -1.53 -0.77 -0.49 -1.94 -2.56 -0.38 0.22 0.43

2bp transaction fees
ASDS ≃ 0.42 0.06 -1.25 0.25 0.85 1.01 -0.88 -2.89 0.17 1.52 2.05
ASDS ≃ 0.83 -0.08 -3.80 -1.32 -0.37 0.11 -2.71 -6.17 -1.72 0.17 0.84
ASDS ≃ 1.67 -0.37 -6.14 -3.14 -1.97 -1.53 -4.42 -8.48 -3.23 -1.18 -0.52
ASDS ≃ 2.50 -3.27 -6.65 -3.79 -2.49 -2.00 -6.35 -8.01 -3.21 -1.48 -0.92
ASDS ≃ 3.33 -5.10 -6.58 -3.73 -2.57 -2.16 -6.02 -7.11 -2.89 -1.48 -1.03
ASDS ≃ 4.17 -5.50 -6.21 -3.62 -2.48 -2.08 -5.45 -6.29 -2.55 -1.39 -1.01

Table 2: Information ratio

In Table 2, we notice a consistent trend: with no transaction fee, information ratios remain positive
and increase further as volatility decreases. However, as fees rise, it becomes progressively challenging
to maintain positive information ratios. Increasing the value of L becomes necessary, particularly as
volatility levels elevate. Ultimately, at a certain threshold, all ratios turn negative. Combining the
continuous signal with an increased value of L in the MA(L)-HMM emerges as a promising strategy
when dealing with volatile data and transaction fees.

5 Results and investment strategies on real data

Our dataset is the MSCI World Index, denominated in USD and sourced from the Bloomberg platform
from January 2, 1990, to Novembre 11, 2023. These prices are transformed into daily logarithmic returns,
employing the calculation method outlined in Section 2.1. The model’s calibration period is set to one
year to capture recent trends and patterns while counteracting the inherent non-stationarity. The learning
period is rolled over monthly.

5.1 Model selection
In Section 2.3, we discussed how data volatility exceeding the difference between state means can cause
the model to fail in distinguishing between states. In the simulation study of Section 4, we knew the true
mean parameters, so we could draw accurate conclusions from the SDS. However, this is not the case
with real data.
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The SDS associated to the real data is unkown so we estimate it by

ŜDSx = mode

 σ̂k
x

min
x′∈X\{x}

|µ̂k
x − µ̂k

x′ |
, k = 1, . . . ,K

 ,

with K the number of iteration in the Gibbs sampler, minus the burn-in period. The values of µ̂k
x and

σ̂k
x are the parameters of the log-returns distribution within in each state x ∈ X and sweep of the Gibbs

sampler k = 1, . . . ,K. We consider MA(L)-HMM with two- or three-state and for different values of
L = {0, 2, 5, 8, 10}. We assume that this approach provides a reasonable approximation of the SDS, and
we base our analysis on the findings in Section 2.3.

Figure 12 illustrates the approximated ratio for each year of data obtained with the different models.
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Figure 12: Average yearly ŜDS for different models

Figure 12 tells us that there are only two distinguishable states in these data, as the ŜDS is only lower
than 1 for two-state space models. However, even with two states, the HMM produces an estimated
ratio no lower than 1, so we need to choose a lag L > 0. Figure 13 and Figure 14 respectively show the
average duration and the back-and-forth switching rate obtained through out-of-sample decoding of the
different models.
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Figure 13: Average state durations
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Figure 14: Back-and-forth shifting rates

Figure 13 illustrates that duration gradually increases with L, a trend observed in Section 4, as well as
their dispersion across the data series. Figure 14 indicates that lags L = {5, 8, 10} for the two-state model
significantly reduce the back-and-forth switching rate, with L = {8, 10} even approaching zero.

The choice of L is not as straightforward as the choice of number of states. While some series have
estimated ratios below 1 with L = {2, 5, 8}, the dispersion of the ratio for L = 10 is much higher. In
terms of duration, L = 10 generally prevails, but not on all series. Notably, L = 10 consistently reduced
the back-and-forth switching rate.
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In the following sections, we shall compare the obtained signal and its performance in terms of strategy
for different models. We compare the HMM with the MA(L)-HMM for fixed values of L, where
L = {2, 5, 8, 10}, as in the simulation section, along with an MA(L)-HMM with a variable L based on
the data profile of the learning set.
In the latter case, the selection of L is conducted as follows. We begin by estimating the ASDS for
MA(L)-HMM models with L ∈ [5, 10], as we believe that from L ≥ 5, the back and forth switching
rate is sufficiently reduced. We choose the value of L that maximizes the ASDS and is greater than 1. If
there is no such ratio, we reproduce the same procedure for L ∈ [0, 4]. If again no value of L is found, we
conclude that the model has only one regime, determining it as bullish if the mean parameter is positive
and bearish if negative.

5.2 Signals study
In this section, we compare the signals obtained with the different methods outlined in Section 5.1 over
ten years from 2013 to 2023. Table 3 shows the average ŜDS, duration of states and back-and-forth
switching rate for each of the signals, and Figure 15 and Figure 16 respectively display the estimated
binary and continuous signal for each model.

Average ŜDS Average state duration (days) Back-and-forth switching rate
Bull regime Bear regime Bull regime Bear regime

HMM 5.27 2.55 19.65 7.47 2.29%
MA(2)-HMM 0.60 0.50 7.94 4.87 1.90%
MA(5)-HMM 0.61 0.48 12.83 8.27 1.06%
MA(8)-HMM 0.64 0.45 15.07 10.29 0.77%

MA(10)-HMM 0.67 0.49 17.18 11.80 0.25%
MA(L)-HMM with varying L 0.54 0.43 13.84 9.91 1.02%

Table 3: Hidden states detection for different models on the MSCI World Index

In Table 3, we first observe that the estimated values of the SDS align with what we observed in the
historical data in Section 5.1: only the average ŜDS of the HMM are by far greater than 1. We also
observe that the average duration of both states increases with L for L > 0. The same inverse trend
is observed for the back-and-forth switching rate. Regarding the HMM, we notice a long duration in
the bull regime and a moderate duration in the bear regime, with a significantly higher back-and-forth
change rate compared to all other models. This situation indicates a challenge for the model to accurately
distinguish between the two states and to capture changes over an extended period. This is a scenario
frequently encountered when the SDS exceeds 1. Finally, the model with varying L has the lowest ŜDS
values without compromising the persistence of states.
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Figure 15: Binary signal on the MSCI World Index

In Figure 15, we observe that the HMM binary signal appears persistent at first glance, but the detected
states are not always consistent, as seen in 2016 or 2022, and it struggles to detect rebounds, particularly
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in the beginning of 2019 and mid-2020. It is worth noting that at this scale, the back-and-forth changes
are not visible. As the value of L increases, it appears that the decoded states adhere more closely
to the data. In the case of MA(10)-HMM, distinct bearish phases are clearly depicted in blue and
bullish phases in white, with the model seemingly capturing all trends, which is less apparent for the
MA(2)-HMM, for example. Short-term stays are less frequent with a higher order moving average.
The model with a varying L resembles the model with MA(10)-HMM, but during strongly defined
periods such as in 2021, there is less uncertainty, likely because during such periods, there is only one
state and this model allows for switching to a 1-state model when the obtained ŜDS are not satisfactory.
The model with a varying L is more flexible in adapting to special market periods. Overall, rebounds are
the hardest to detect quickly, and this is true for all moving average depths, due to data noise for short
moving averages, and lag for long moving averages.
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Figure 16: Continuous signal on the MSCI World Index

Figure 16 illustrates that as the value of L increases, the continuous signal oscillates less, ensuring better
persistence of regimes. The continuous signal of the MA(L)-HMM with varying L approaches that of
an MA(L)-HMM with a high value of L, such as 8 or 10, but it notably remains at 100% during the
bullish periods of late 2017 and late 2020, which aligns with the behavior of the one-state model. The
selection of this model in this situation is completely justified based on the price history, validating our
model selection protocol.

5.3 Strategies study
For the analysis of strategies, we rely on the Sharpe ratio, which represents the performance-volatility
tradeoff. We display the annual Sharpe ratio of strategies based on binary signals in Figure 17, and those
of strategies based on continuous signals in Figure 18.
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Figure 17: Sharpe ratio of the binary signal strategies on the MSCI World Index.

On Figure 17, we observe that the behavior of the HMM is erratic and not well-controlled. During
strongly bullish phases, it alternates between being fully invested (2017), not invested at all (2019), and
partially invested (2014). This inconsistency highlights a lack of coherence in its approach. Moreover,
during bearish market conditions, the model consistently underperforms further, providing no protection
against downturns.
The MA(L)-HMM consistently reduces losses during bearish periods compared to the HMM, notably
outperforming the benchmark in 2022. During bullish periods, it significantly outperforms the HMM
twice and maintains a Sharpe ratio close in other cases, except for 2017 when it mistakenly deactivated
unlike the HMM.
These findings demonstrate that the MA(L)-HMM manages to adopt a more defensive strategy than
the HMM during bearish periods, while maintaining a similar level of aggressiveness during bullish
phases across different years.

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

1

0

1

2

3

Sh
ar

pe
 ra

tio

Benchmark
HMM
MA(L)-HMM with varying L

Figure 18: Sharpe ratio of the continuous signal strategies on the MSCI World Index

Figure 18 shows that using the continuous signal leads to better results for both models. The MA(L)-
HMM manages to outperform the benchmark twice during bearish periods, making it even more pro-
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tective. Over the entire period, it outperforms the HMM significantly five times, slightly three times,
and once it has a Sharpe ratio very close to that of the HMM. Overall, except for 2017, it consistently
performs at least as well as, and generally better than, the HMM.

We also examine the performance of strategies relative to their benchmark, the MSCI World Index.
Specifically, we are interested in identifying any positive values among the information ratios, indicating
that the benchmark has been outperformed over the period. The annual information ratios of each
strategy are displayed in Table 4.

Binary signal Continuous signal

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
HMM −0.05 −0.11 −0.09 0.00 −0.00 −0.19 0.00 −0.12 0.04 −0.11 −0.10 −0.07 −0.06 −0.22 0.03 −0.18 0.01 −0.16 0.05 −0.13

MA(L)-HMM with varying L −0.04 −0.02 −0.05 −0.17 0.03 −0.11 0.03 −0.07 0.08 −0.07 −0.06 −0.03 −0.04 −0.21 0.05 −0.12 0.01 −0.09 0.07 −0.05

Table 4: Information ratio of the strategies on the MSCI World Index

According to Table 4, we observe that we struggle to outperform the benchmark. Apart from 2018, 2020,
and 2022, the information ratios are almost always negative, indicating that we have underperformed the
benchmark concerning both the volatility and the performance of our strategy. However, in these specific
cases, we notice that using the MA(L)-HMM improves the information ratio, confirming that it is more
protective than the HMM. Conversely, it is often the binary signal that displays the highest IR.

6 Conclusion and perspectives

This article explores the use of Bayesian statistics together with moving average smoothing to detect
changes in market regimes and design investment strategies. The focus is on tailoring the HMM to serve
as a foundation for designing a market regime indicator for financial strategies. Decoding and calibration
of the HMM are done in a Bayesian way which allows us to generate several hidden states sequences
and parameter values.

As data volatility increases the accuracy of HMM based regime declines. The lack of persistence with
increasing volatility is detrimental to the investment strategies performance as the number of false alarm
increases. To address these issues, we have adapted the HMM to accomodate smoothed data coming
from a simple moving average procedure. The resulting model ressembled a higher order HMM along
the line of models considered in Zhang et al. (2019) for instance. Smoothing the data allowed to act on
the volatility to improve decoding accuracy and increase state persistence as a byproduct.

Alongside this work, we have come up with an indicator, referred to as the State Detection Score (SDS),
to measure the distinguishability of states within our model. This highlights that when the intra-regime
volatility estimated by σx is higher than the inter-regime gap between the means µx , then the states are no
longer distinguishable. We use this indicator as a model selection tool to choose how many states to keep.

The outcomes of MA(L)-HMM demonstrated significant enhancements over the standard HMM.
Notably, the MA(L)-HMM outperformed the standard HMM, showing improved accuracy in both
high-volatility offline and online decoding. It enhanced state persistence, making it viable for investment
strategies when accounting for transaction fees. Real-world data even demonstrated superior performance
of the MA(L)-HMM based strategy over the benchmark in some years. Integrating a continuous sig-
nal reduces transaction costs and appears to be particularly efficient at mitigating significant losses, as
indicated by the Sharpe ratios. The performance gap between continuous and binary decoding remains
relatively low, however.

There is room for further improvement. In the future, we aim to explore HMMs with diverse stochastic
dynamics, integrating factors such as credit spreads and interest rates. This joint modeling approach,
encompassing market indices, interest rates, and credit spreads, promises a deeper comprehension and
more accurate detection of market regimes. We anticipate that incorporating our detection methodology
into investment strategies based on factors, as in the works of Erlwein et al. (2009) and Ammann and
Verhofen (2006), could enhance performance, allowing for more efficient capitalization on both bullish
and bearish market conditions.
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All the results presented in this article are replicable and the code and data are available in the Github di-
rectory elchd/Data_driven_investment_strategies_using_Bayesian_inference_in_regime_switching_
models.
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Appendices
A Gibbs algorithm prior and posterior distributions

Suppose that the parameters are mutually independent a priori and distributed as

ν ∼ Dir(1, . . . , 1), q(x, ·) ∼ Dir(1, . . . , 1), µx ∼ Normal(ξ, κ−1 = R2), σx ∼ Gamma(α = 2, βx), (4)
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and βx ∼ Gamma(g = 0.2, h = 10/R2), where ξ = (min y1:N +max y1:N )/2 and R = max yn −min yn.

The posterior distribution of the initial distribution and the transition matrix of the Markov chain are
given by

ν| . . . ∼ Dir({1 + δx(x1)}x∈X ), and q(x, ·)| . . . ∼ Dir({1 + nx,y}x∈X ), for x ∈ X ,

where

δx(y) =

{
1, if x = y,

0, otherwise,

and nx,y = #{2 ≤ n ≤ N ; xn−1 = x and xn = y} is the number of transitions from state x to state
y. Note that q(x, ·) corresponds to a row of the transition matrix Q, and that each row is conditionally
independent a posteriori.

The posterior distribution of the expected logarithmic returns are given by

µx| . . . ∼ Normal

(∑
n:xn=x yn + ξσxκ

nx + σ2
xκ

,
σ2
x

nx + σ2
xκ

)
, for x ∈ X , (5)

where nx = #{1 ≤ n ≤ N , xn = x}.

The posterior distribution of the variance parameters is given by

σ−2
x | . . . ∼ Gamma

(
α+

1

2
N, β +

1

2

∑
n:xn=x

(yn − µx)
2

)
, for x ∈ X . (6)

The conditional distribution is a posteriori independent across the market regimes in X . Lastly, the
posterior distribution of the hyperparameters of the variance prior distribution is given by

β| . . . ∼ Gamma(g + α, h+ σ−2
x ). (7)

Conditionally on the data and the model parameters, the hidden sequence of states is a non-homogeneous
Markov chain with probability given by

P(X1 = x1|θ, y1:N ) ∝ ν(x1)gθ(y1|x1)p(y2:N |θ, x1), (8)

and
P(Xn = xn|Xn−1 = xn−1, θ, y1:N ) ∝ q(xn−1, xn)gθ(yn|xn)p(y(n+1):n|θ, xn). (9)

The probabilities p(y1:N |θ, x1) and p(y(n+1):N |θ, xn) corresponds to the so-called backward variable of
the celebrated Baum-Welch algorithm, see for instance Baum and Petrie (1966). The evaluation of these
probabilities is done recursively and backward over n starting from the last observations. Since at time
N there is no future information available to infer the current state,

p(yN |θ, xN = i) = bi(N) = 1.

Subsequently, we utilize this value to evaluate the preceding values with

p(yn:N |θ, xn = i) = bi(n) =

K∑
j=1

bj(n+ 1)q(xn = i, xn+1 = j)gθ(yn+1|xn+1 = j)

with K = 1, ..., d, the finite state space.

Since at time N there is no future information available to infer the current state,

p(yN |θ, xN = i) = bi(N) = 1.

The Gibbs sampler reduces to a for loop that sequentially samples from (4), (5), (6) and (7) followed by
a multinomial sampling from (8) and (9) to reconstruct the sequence of hidden states. It is worth noting
that a burn-in period is typically necessary for convergence, after which all estimations are retained for
further analysis. These estimates can be used by taking their average or through other methods once
this burn-in period has passed. The probability distribution involved in the Gibbs sampler is provided in
Appendix B. The sampling algorithm is summarized in Appendix C.
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B Table of probability distribution

Name Parameters p.d.f.

Dirichlet Dir(α) {α1, ..., αK}K≥2 > 0
∏K

i=1 x
αi−1

i

B(α) , α0 =
∑K

i=1 αi

Exponential Exp(δ) δ > 0 δe−δx, x > 0

Gamma Gamma(α, β) α, β > 0 xα−1e−βxβα

Γ(α) , x > 0

Normal Normal(µ, σ) µ ∈ R, σ > 0 1
σ
√
2π

exp
[
− (x−µ)2

2σ2

]
, x ∈ R

Table 5: List of distributions.

C Algorithmic details

Algorithm 1 Gibbs sampler for π(θ, x1:N |y1:N )

Input: The number of states K ∈ N, the observations y1:N , the prior distributions for θ and x1:N

Output: The sampled posterior distributions for θ and x1:N

1: initialize θ = {M,Σ, ν,Q} and β

2: for niter = 1 to max_iterations do

3: Sample M = {µi}Ki=1 from µi|... ∼ Normal
(

Si+κξσ2
i

ni+κσ2
i
,

σ2
i

ni+κσ2
i

)
4: Order ascendingly M

5: Sample Σ2 = {σ2
i }Ki=1 from σ2

i |... ∼ Inv − Gamma

(
α+ 1

2ni,
(
βi +

1
2

∑N
n=1(yn − µi)

2
)−1

)
6: Sample β = {βi}Ki=1 from βi|... ∼ Gamma

(
g + α, h+ σ−2

i

)
7: Sample Q = {qij}Ki,j=1 from (qi1, ...qiK)|... ∼ Dir (ni1 + 1, ...niK + 1)

8: Sample ν = {νi}Ki=1 from νi|... ∼ Dir (1X1=1 + 1, ...1XK=1 + 1)

9: Sample x1 ∼ Multinomial (ν1G(1, y1)b1(1), ...νKG(K, y1)bK(1))

10: Sample {xn}Nn=2 ∼ Multinomial
(∑K

i=1 qi1G(1, yn)b1(n), ...
∑K

i=1 qiKG(K, yn)bK(n)
)

11: end for

12: return (niter - nburnin) last samples of θ and x1:N

Si =
∑N

n=1 1xn=iyn, ni =
∑N

n=1 1xn=i and nij =
∑N

n=1 1xn−1=i,xn=j

To maintain consistent correspondence between the sampled parameters and their respective states in a
uniform order, we promptly order M upon sampling it, before sampling the remaining parameters given
our draw of M . The identification issue in Richardson and Green (1997) is no more in Rydén (2008) due
to the underlying Markov chain.
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