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Live Tracking and Dense Reconstruction for Hand-held Monocular
Endoscopy

Nader Mahmoud1,2, Toby Collins1, Alexandre Hostettler1, Luc Soler3, Christophe Doignon2, J.M.M. Montiel4

Abstract—Contemporary endoscopic Simultaneous Localiza-
tion And Mapping (SLAM) methods accurately compute en-
doscope poses, however, they only provide a sparse 3D recon-
struction that poorly describes the surgical scene. We propose a
novel dense SLAM method whose qualities are: 1) Monocular,
requiring only RGB images of a hand-held monocular endoscope.
2) Fast, providing endoscope positional tracking and 3D scene
reconstruction, running in parallel threads. 3) Dense, yielding an
accurate dense reconstruction. 4) Robust, to the severe illumina-
tion changes, poor texture and small deformations that are typical
in endoscopy. 5) Self-contained, without needing any fiducials nor
external tracking devices, therefore it can be smoothly integrated
into the surgical workflow. It works as follows. Firstly, accurate
cluster frame poses are estimated using the sparse SLAM feature
matches. The system segments clusters of video frames according
to a parallax criteria. Next, dense matches between cluster frames
are computed in parallel by a variational approach that combines
Zero Mean Normalized Cross Correlation (ZNCC) and a gradient
Huber norm regularizer. This combination copes with challenging
lighting and textures at an affordable time budget on a modern
GPU. It can outperform pure stereo reconstructions because the
frames cluster can provide larger parallax from the endoscope’s
motion. We provide an extensive experimental validation on real
sequences of the porcine abdominal cavity, both in-vivo and ex-
vivo. We also show a qualitative evaluation on human liver.
Additionally, we show a comparison with other dense SLAM
methods showing the performance gain in terms of accuracy,
density and computation time.

Index Terms—Endoscopy, Laparoscopy, Augmented Reality,
Dense Reconstruction, Tracking, SLAM.

I. INTRODUCTION

Minimally invasive surgical (MIS) intervention has gained
substantial popularity over the past decade. Surgeons perform
such interventions by manipulating an endoscope and surgical
tools whose motions are controlled either by the surgeon, an
assistant or a surgical robot. Recovering dense 3D information
from intra-operative endoscopic images together with rela-
tive endoscope position are fundamental blocks for accurate
computer-assisted guidance in MIS.

External rigid laparoscope tracking devices can provide
accurate relative camera pose with respect to the Operating
Room (OR), however they have limitations. The need for
“line-of-sight” visibility of the optical markers requires careful
planning of the tracking devices. Secondly, it requires more
equipment in the OR, adds to cost, and can add to setup
time because a hand-eye calibration is required. Thirdly, it
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cannot provide directly the camera pose relative to the internal
surgical environment, which in most applications is needed.
Furthermore, the optical markers are not at the tip of the scope,
so pose uncertainty propagates significantly to the endpscope’s
tip. On the other hand, active reconstruction techniques such as
structured light [1], shape-from-polarization [2], and time-of-
flight [3] can recover depth and/or surface normal information
without external tracking, but they require adapted endoscopic
hardware, and hence have had limited practical use.

Vision-based techniques such as SLAM, has received par-
ticular attention because they can reconstruct the internal
surgical environment while keeping track of the camera with
respect to the internal environment, from the sole input
of monocular video. Current robust monocular endoscopic
SLAM approaches [4], [5] use sparse features points to recover
3D scene geometry, thus the resulting scene representation
is sparsely furnished and incomplete. Recently, dense SLAM
approaches [6], [7] can achieve high quality dense reconstruc-
tions in real-time for non-medical applications, however these
techniques have been of limited use in endoscopy. They require
constant illumination and unchanged pixel brightness with
respect to the view direction. They have been experimentally
proven to perform robustly for indoor scenes, however the
assumptions are violated in endoscopy where the light source
is attached to the endoscope tip, which produces significant
illumination variability, in addition to specular reflection. In
general, surgical scenes are challenging for vision based
reconstruction techniques because of poor textures, occlusions,
specular reflection, discontinuities and organ deformation.

In this paper, we propose a novel real-time dense SLAM
system that is able to cope with the above challenges, and has
been successfully applied in laparoscopy. The proposed system
extends the state-of-the-art sparse ORB-SLAM [8] with a
novel dense multi-view stereo-like approach. The proposed
system exploits the parallel tracking and sparse reconstruction
obtained by fine tuning ORB-SLAM as proposed in [9] and
adds a new thread performing dense reconstruction to ORB-
SLAM pipeline. It does this without interrupting the sparse
SLAM threads, to maintain real time tracking. It effectively
selects keyframe images, and a cluster for each keyframe of
neighbor images, and computes their relative poses and a high
quality dense reconstruction. The crux of the dense reconstruc-
tion is a variational approach where the data term is based
on illumination invariant ZNCC instead of sum of squared
differences (SSD) or sum of absolute difference (SAD) used
by previous dense SLAM methods [6], [7]. Furthermore, the
proposed system provides a live global and consistent dense
reconstruction of the surgical scene by merging and aligning
the depth maps on-line.

The obtained dense reconstruction together with the esti-



mated relative endoscope pose has several important applica-
tions. It enables Augmented Reality (AR) applications, e.g.
[10], [11], where pre-operative/intra-operative 3D models are
registered with dense reconstruction and hence allow internal
organ structures to be visualized in real-time. It can also be
used to compensate for breathing motion and track tissue for
laser ablation. Furthermore, dense 3D reconstruction facilitates
the extraction of 3D features for recognition and classification
applications in gastro-endoscopy, e.g. polyp classification [12].

The remainder of this paper is organized as follows: Sec.
II provides a review of the related work. Sec. III gives a
detailed description of the proposed system. Sec. IV provides
an experimental evaluation of the proposed system. Conclusion
and future directions are presented in Sec. V.

II. RELEATED WORK

Vision-based reconstruction techniques are a key enabling
technology for recovering the 3D tissue geometry from the
surgical site without invasive instruments [13]. Approaches
such as SLAM and Structure from Motion (SfM) have been
successfully applied to a variety of anatomical settings such
as gastroscopy [5], skull surgery [14], hernia repair [4] and
laparoscopic organ tracking [11]. Sparse reconstruction meth-
ods consider salient image features for 3D reconstruction,
and estimate camera poses by minimizing re-projection errors.
The use of discriminative and rotation-invariant features [15],
[16] achieves robustness to illumination changes, rotations and
small deformation, that are typical in endoscopy. However,
these methods poorly describe the surgical scene, because they
only reconstruct features, and not dense surfaces.

A seminal work in providing SLAM-based dense surgical
scene reconstruction was proposed by Mountney et al. [17].
Sparse Extended Kalman Filter (EKF) SLAM reconstruc-
tions are meshed and textured with images from a stereo-
laparoscope sequence. Due to the sparse representation of the
scene, artefacts are unavoidable in the final reconstruction.
Totz et al. [18] have expanded stereo EKF SLAM with
additional virtual features, then applied dense stereo algorithm
for better describing tissue surface. EKF SLAM approaches
suffer from poor scaling thus the dense reconstructions were
limited to smaller regions.

In contrast, dense Multi-View Stereo (MVS) approaches
attempt to recover the depth of every pixel in the images
using known camera poses. Dense MVS takes a possibly
very large set of images [19], [20] and can reconstruct highly
detailed 3D geometry that explains the images under some
assumptions e.g. rigid Lambertian surfaces, photo-consistent,
known object silhouettes or shape priors [21], [22]. However,
the computational complexity of estimating dense geometry
with MVS has been a practical barrier to its use for real-
time applications, such as computer-assisted endoscopy. There
is growing interest to import MVS methods to real time
constraint [23]. Recently, the unique combination of stereo-
based reconstruction and Shape from Shading (SfS) in a single
optimization scheme [24] allows to obtain reconstructions with
varying albedo and illumination.

Newcombe et. at. [25] made a significant performance boost
towards dense real-time SLAM and showed the advantage

of reconstruction from large number of video frames taken
from very close viewpoints, where photometric-consistency is
possible. They formulated and solved an energy optimization
with a photometric data term and a regularizer term to obtain
a dense model. The model is further exploited to improve
the tracking performance [6]. Generally, the photometric con-
stancy assumed by [25], [6] does not hold for images captured
over a wide baseline or when lighting changes significantly,
which is the normal situation in endoscopy.

Recent research has been done to improve the variational
approach of Newcombe et. at. [6] to handle the challenges
in endoscopic scenes [26], [27]. Marecinczak et al. [26] con-
sidered the spherical color model as an illumination-invariant
image representation, with a data term that relies on measuring
pixels similarities. This data term is very sensitive to minor
transformation, both in geometry (shifts and rotation) and in
imaging conditions (noise and blurring). Chang et al. [27]
considered the use of the ZNCC, proposed by [28], to gain
more tolerance to camera gain or bias and provide better
fidelity in textureless regions. In [27] high reconstruction
accuracy was obtained to within few millimeters with real-
time performance using a GPU-based implementation, but is
applicable only to stereo-endoscopes. Both [26], [27] provides
only local reconstruction of the visible region in either a stereo
pair or a reference monocular image, but not a global and
complete reconstruction of all captured regions in the scene.

Recently, Turan et. al. [29] have proposed a dense monoc-
ular SLAM method for global reconstruction of the surgical
scene that fusing several depth maps obtained by SfS tech-
niques. SfS techniques exploit the relationship between geom-
etry, pixels intensities and scene illumination, and can recover
dense 3D geometry from a single image. Although SfS has a
superior performance in texture-less regions, it cannot handle
surface discontinuities or spatially varying albedo which is
common in endoscope images [30]. Additionally, the dense
SLAM of [29] is only validated on synthetic datasets.

The closest approach to us is our previous work [31], where
ORB-SLAM is used to explore the abdominal cavity and
acquire a set of registered keyframes. After the exploration
phase, the acquired keyframes were then processed as a set
of stereo pairs, with a dense stereo algorithm run on each
pair. This paper is a extension of [31] in several important
ways. Firstly, we extended ORB-SLAM with a new thread
performing the dense reconstruction that runs live and in
parallel with ORB-SLAM tracking and mapping threads. This
eliminates the wait for the abdominal exploration to finish
before densification. Secondly, we select only the important
keyframes, and around each keyframe a cluster of frames is
automatically selected to the dense reconstruction, using a
variational approach inspired from [25].

III. PROPOSED APPROACH

A. Approach Overview

We outline our approach in Fig. 1. We note that our system
is applicable to any movable endoscope with a monocular
camera, but here we focus on monocular laparoscopes. We
assume laparosocpe is pre-calibrated with fixed intrinsic using
[32] and lens distortion has been eliminated. We give the



default values for all free parameters in Sec. IV-E. The sparse
keyframes-based SLAM system (ORB-SLAM) is extended
with a new thread for dense reconstruction. We define the
keyframe set as the selected frames used in ORB-SLAM for
its Bundle Adjustment (BA) process.

Fig. 1: System Architecture.

The dense reconstruction thread consists of four sequential
modules. In the first module, we select a subset of keyframes,
during live camera tracking, among all available keyframes.
For each considered keyframe (Ir), a cluster of neighbor frames
{I1 . . . In} is selected to have partially overlapping surface
visibility (cf. Sec. III-C). In the second module, we exploit
the sparse reconstruction to define the range of depths used
to construct a 3D cost volume (cf. Sec. III-D4). In the third
module, we perform dense reconstruction for each selected
keyframe using a variational approach based on Newcombe
et al. [6]. We differ by minimizing a global energy with
an illumination-invariant ZNCC data term and Huber norm
regularizer (cf. Sec. III-D5). In the fourth module, we obtain
a globally consistent reconstruction by aligning the keyframe
depth maps with the sparse SLAM map (cf. Sec. III-E). The
scene is incrementally densified during the live tracking.

B. Review of Sparse Tracking and Reconstruction

1) Sparse Tracking Thread: This is responsible for frame-
to-frame endoscope tracking in real-time (cf. Fig. 1). On the
arrival of a new frame i, the endoscope pose Ti ∈ SE(3), is
roughly estimated using constant velocity motion model from
the pose of last frame.

Ti ,

(
Ri ti
0T 1

)
(1)

where Ti is the transformation from reconstruction coordinates
to camera coordinates at frame i. All map features are pro-
jected onto frame i and matched with detected ORB features.
The endoscope pose Ti is refined by Huber ρh() robustified
non-linear minimization of the reprojection error:

argmin
Ti

∑
j

ρh

(∥∥xi, j−π (Ti,X j)
∥∥2
)

(2)

π (Ti,X j) , h(K(RiX j + ti))

h((u j,v j,s j)
T ) ,

1
s j

(u j,v j)
T

where xi, j is the image point for jth map point X j in frame i
and K is the endoscope intrinsic matrix.

2) Sparse Reconstruction Thread: This is responsible for
triangulating new feature points from selected keyframes (cf.
Fig. 1). The system estimates new matches across the set of
keyframes and their 3D positions are triangulated. Outliers
are detected and removed with strong filters, then all points
and keyframes poses are further refined through BA, that
minimizes eq. (2) across all keyframes. Robustness of ORB-
SLAM allows it to handle the challenges in endoscopy. Points
created in specular reflection and deformable regions are
eliminated automatically, avoiding their negative effects on
tracking performance and map corruption.

C. Frames Cluster Selection for Densification and Cluster
Bundle Adjustment

Our dense reconstruction thread aims to estimate the depth
of every pixel in a subset of selected keyframes. This can be
computationally expensive, so we automatically choose only
a subset of keyframes to densify. The selection criterion is
the coverage of the current dense reconstruction in a given
keyframe Ir. This reconstruction coverage is determined by
projecting the current dense reconstruction to Ir, and if the
reconstructed pixels fraction below 50%, Ir is selected for
densification.

Upon selecting Ir, we define a cluster of n neighbor frames,
{Ii1 . . . Iin}. The criterion for including the frames in the cluster
is a measure of parallax. This is defined as the ratio between
the sparse SLAM points median depth and the baseline be-
tween Ir and Iin . Frames (i.e: images and estimated poses) are
stored according to their temporal location in the sequence.
We then search sequentially starting from frame Ir until we
find a frame whose parallax with respect to Ir exceeds a
threshold α1. This extreme frame and all intermediate frames
are added to the cluster. The threshold α1 controls the tradeoff
between depth accuracy and frames overlap, where a small
α1 (i.e. small parallax) leads to noisy depths, but a higher
value reduces the percentage of the overlapping pixels. It
also balance the rendered parallax with photometric distortion
caused by strong viewpoint change. In a second stage, frames
in the cluster are reduced to remove frames from the cluster
with low relative parallax, to reduce the computation cost. The
condition applied is that if the parallax between frame Iim and
its neighbors Iim−1 and Iim+1 is lower than a α2 threshold, frame
Iim is removed from the cluster.

The poses of the frames in the cluster are not accurate
because ORB-SLAM does not perform any BA on them.
Hence, we refine those poses accurately by a full BA that
uses the tracked features from ORB-SLAM and minimizes eq.
(3) across all the frames in the cluster and some of the other
ORB-SLAM keyframes (up to 15 keyframe). The keyframes
are selected as those with the most features common to Ir.

argmin
Ti,X j

∑
i, j

ρh
(∥∥xi, j−π (Ti,X j)

∥∥2
)

(3)

The index i ranges over all images in the frames cluster and
selected SLAM keyframes, and j ranges over feature points
observed by more than two cameras in the BA. The global
reference is fixed during the BA to the keyframe Ir. We use
Levenberg-Marquardt implemented in g2o [33] to carry out



that BA. The result of this computation is a set of relative
poses {Ti1r . . .Tinr} from Ir to {Ii1 . . . Iin}.

D. Reconstruction of a Keyframe’s Depth Map

1) The Variational Formulation: We propose a variational
energy minimization to estimate the inverse depth map ρ(u)
: Ω→R for a given keyframe image Ir. We use the grayscale
image, denoted by Ir : Ω → R, where Ω ⊂ R2 is the 2D
image domain. Our energy is the sum of a regularization term
R(u,ρ(u)), and a weighted ZNCC data term C (u,ρ(u)) with
the form:

E(ρ) =
∫

Ω

{λ (u)C (u,ρ(u))+R(u,ρ(u))}du (4)

λ (u) , λρ(u)

where λ is a constant and λ (u) is a spatially-varying weighting
factor that determines importance of the data term of pixel
u. Our empirical studies have shown that the geometrical
accuracy of the recovered depth is lower for distant scene
points than for closer ones because they generally have lower
parallax. Thus, differently from [6], we scale the weight by
ρ(u) to reduce the data term strength for distant points.

To avoid introducing outliers in the dense reconstruction,
we first detect specular reflections in Ir. This is done by
thresholding saturation in HSV space with a free parameter τ .
All pixels in these areas are eliminated after the optimization,
because there is high uncertainty in their estimated depths.

2) ZNCC data term: In [6] a per-pixel SAD of intensity
values across a cluster of images is used. In contrast, our
data term is based on the ZNCC over a window around
each pixel, summed for all the images in the cluster, to
obtain an illumination invariant data term that can cope with
the severe illumination variability in endoscopy. Each pixel
u = (u,v)T ∈Ω in Ir is first back-projected using ρ(u) in the
coordinate system of Ir:

X = π
−1 (u,ρ(u)) (5)

π
−1 (u,ρ(u)) ,

1
ρ(u)

K−1

 u
v
1

 (6)

We then project X to each frame Ii in the cluster {Ii1 . . . Iin},
denoted by the 2D point ui:

ui = π (Tir,X) (7)

where Tir is the transformation from the reference keyframe
Ir to frame Ii, computed by BA in Section III-C. The data term
C (u,ρ(u)) is computed by projecting pixel u in the reference
image Ir onto Ii ∈ {Ii1 . . . Iin} using eq. (7), and a ZNCC with
correlation window size W :

C (u,ρ(u)) =
−1
n

n

∑
l=1

ZNCC
(
Ir (u) , Iil

(
uil

))
(8)

The pixels that are non-visible in all cluster frames (which
project outside the image dimension) are assigned zero in
the data term and eliminated after the optimization to avoid
inaccurate estimation of their depths. Those ignored pixels
are highly likely to be reconstructed from another reference
keframe if they become visible.

3) The Regualrizer: We use a regularizer term R(u,ρ(u)).
To enable a smoother reconstruction of the scene, but also
to preserve depth discontinuities. This is achieved with a
weighted Huber norm over the gradient of the inverse depth
image:

R(u,ρ(u)) = g(u)‖5ρ(u)‖∈ (9)

where ∈ is a free parameter of the Huber norm which
determines when L1 forming Total Variation (TV) or L2 norm
are used [6], to reduce the effect of the undesired stair-casing
resultant from a pure TV. To maintain depth discontinuities
across image edges, we use a per-pixel weight g(u), with free
parameter ω , to decrease the regularization strength at high
gradient pixels in the reference keyframe Ir:

g(u) = e−ω‖5Ir(u)‖2 (10)

4) Initialization: The ZNCC data term C (u,ρ(u)) is eval-
uated for keyframe Ir by means of a 3D cost volume. This has
dimension M x N x ξ , where M x N is the image resolution of
Ir and ξ is number of points sampling the inverse depth, that
ranges between ρmin and ρmax. This cost volume is computed
only once and an initial depth map is estimated from the cost
volume by selecting ρ(u) that minimize eq. (8) for each pixel
u. This is performed with an exhaustive search optimization
over the range of inverse depths [ρmin,ρmax].

The range [ρmin,ρmax] is automatically defined for each
keyframe from the depths provided by the sparse SLAM map.
A histogram of inverse depths of all visible sparse map points
in Ir (projected inside Ir) is computed, and the 20% extreme
closer and farther depths are ignored, to be robust to outliers.
This range is different for each keyframe depending on the
depths of the visible sparse points. To include the extreme
points which may have been incorrectly excluded, this interval
is extended with two empirical factors βmin and βmax yielding
the final interval as [βminρmin,βmaxρmax]. This range of inverse
depths is evenly discretized into ξ sampling points.

5) Energy minimization: Eq. (4) is non-convex in the
data term λ (u)C (u,ρ(u)) and convex in regularizer term
g(u)‖5ρ(u)‖∈. To find a strong local minimum, we approx-
imate the energy function with an auxiliary map a : Ω→ R
used to couple the two terms, as done in [6], [34]:

E(ρ,a) =
∫

Ω

{λ (u)C(u,a(u))+
1

(2θ)
(ρ(u)−a(u))2

+R(u,ρ(u))}du
(11)

The coupling term
1

(2θ)
(ρ(u)− a(u))2 enforces ρ(u) and

a(u) to be equal as θ → 0, at which point E(ρ,a = 0) =

E(ρ). The global minimum of the convex term
1

(2θ)
(ρ(u)−

a(u))2 + R(u,ρ(u)) is iteratively computed using primal-
dual algorithm [35], [36]. At each iteration, given a solu-
tion for ρ(u), the global minimum of the non-convex-term

λ (u)C(u,a(u))+
1

(2θ)
(ρ(u)−a(u))2 is found by performing

an exhaustive search on a(u) among the range [ρmin,ρmax]:

arg min
a(u)

λ (u)C (u,a(u))+
1

(2θ)
(ρ(u)−a(u))2 (12)



The complete optimization is solved iteratively, starting at
iteration t = 1 where θ initialized at θ 1. Both ρ (u) and
a(u) are initialized with the initial depth map obtained from
Sec. III-D4. The optimization ends when θ (t+1) = θ t(1−κt)
exceeds a termination threshold θend . The accuracy depends on
the discretization level used for the cost volume construction.
To obtain a sub pixel accuracy, we perform a single Newton
step proposed by [6] at each iteration.

E. Live Alignment of Keyframe Depthmaps

To obtain a globally consistent reconstruction, we combine
the computed depth maps in a single coordinate frame, which
is the coordinate frame of the SLAM map. Most sparse SLAM
points have a corresponding 3D point in the dense maps, and
we use these as anchors. The anchors are used to keep depth
maps aligned with the sparse SLAM map, so that any update
in the SLAM map leads to a realignment of the dense maps.

Recall that after each SLAM BA, both the sparse points
and the keyframe poses are refined. This refinement may
produce a misalignment of the dense maps with respect to the
SLAM map. This refinement may not only involve rotation and
translation but also a scale change. For this reason, we propose
to align each depth map with a similarity transformation.
For depth map computed from keyframe Ir, we perform a
non-linear minimization of the reprojection error of sparse
SLAM points P to estimate the similarity transform S, using
K neighboring keyframes that share the most feature points
with Ir:

arg min
S∈Sim(3)

∑
j∈P,i∈K

ρh

(∥∥xi, j−π (Ti,SX j)
∥∥2
)

(13)

where xi, j is the image observation of sparse SLAM point j
in keyframe i and X j is its 3D location from the dense map of
keyframe Ir, in reconstruction coordinates. Eq. (13) is repeated
for every keyframe to align its corresponding depth map.

IV. EXPERIMENTAL RESULTS

A. Benchmark Hardware and Compared Methods

The proposed system is implemented in C++ and OpenCV
using a desktop computer with 8GB RAM and GeForce GTX
680 GPU with an Intel(R) Core i7 CPU 3.4GHz. We provide
a quantitative evaluation of the reconstruction accuracy with
respect to two ground truth methods: 1) two leading dense
stereo methods [37], [27] (cf. Sec. IV-B); 2) gold-standard
Computed Tomography (CT) surface (cf. Sec. IV-C). Fur-
thermore, we compare the proposed system with the closest
dense SLAM method: LSD-SLAM [7] and one of the top
performing multiview stereo method where camera poses are
computed from SfM [24] (cf. Sec. IV-B5). Additionally, we
qualitatively evaluated the proposed system on an in-vivo
exploratory sequence of human abdominal cavity (cf. Sec.
IV-D). More details can be seen in the accompanying video.

B. Quantitative Evaluation Using Dense Stereo

We used the dense reconstruction of two leading stereo
methods [37], [27] as our reconstruction gold-standard. Ac-
cording to [38] the stereo method of Chang et al. [27] is a top
performing method for endoscopic images.

1) Datasets: For the evaluation, we used several sequences
from Hamlyn Centre Laparoscopic/Endoscopic dataset [39]
recorded by a stereo-laparoscope. Furthermore, we created
a new dataset of exploratory stereo-scope camera motion at
15-20cm distance from porcine liver surface. Figure 2[a-f],
shows the typical frames of the evaluation sequences. Figure
2[a,b,e] corresponds to sequences of live pigs with strong (cf.
Fig. 2[a]) or small (cf. Fig. 2[b,e]) respiration. Fig. 2[c,d,f]
corresponds to ex-vivo porcine sequences. The evaluation
sequences had different complexities such as weak textures (cf.
Fig. 2[b][e]) and repetitive textures (cf. Fig. 2[a][c][d][f]) with
either smooth or strongly curved surfaces. The length of the
evaluation sequences ranged between 20 seconds to 8 minutes.
For each dataset, our system was used to reconstruct the
scene using only images from the left laparoscope camera. To
evaluate, we used their associated right images, and obtained
a dense stereo reconstruction using two methods [37], [27].

(a) In-vivo liver 1 (public) (b) In-vivo abdomen 1 (public)

(c) Ex-vivo liver 2 (new) (d) Ex-vivo liver 3 (public)

(e) In-vivo abdomen 2 (public) (f) Ex-vivo ureter (public)

Fig. 2: Sample frames of the laparoscope porcine sequences
used from public Hamlyn [39] and our new datasets.

2) Evaluation Metrics: Table I reports the averaged recon-
struction error. Per each sequence we have varied α1 and α2
and yielded different reconstruction coverage, parallax, and
error. The reconstruction coverage per keyframe is the percent-
age of pixels reconstructed per keyframe. A reconstructed pixel
is one that is visible in all the frames of the cluster, not deleted
as a specularities and not located outside the laparoscope’s
optical ring. The stereo coverage metric is the percentage of
monocular reconstructed pixels for which the stereo method
provide depth estimation. For each reconstructed pixel we
computed the parallax rendered by the extreme frames of
the cluster, and larger parallax (i.e. larger values for α1 and
α2) leads to better reconstruction. Table I column 5 reports
the average parallax among all the reconstructed pixels in all
keyframes. We also report the average parallax rendered by the
stereo algorithm in Table I column 6. The Root Mean Squared
Error (RMSE) metric is computed as follows. We took all
pixels in all keyframes for which both our method and the
stereo method computed a depth estimate and measured the
distance in the estimated depths. We did this with respect to
both stereo methods [37] and [27]. Our reconstruction is up
to scale (as with any monocular method), thus before RMSE



computation we perform a scale-only alignment by means of a
Least Squares fit, where the initial guess is computed by means
of a Least Median of Squares robust estimator. This monocular
scale recovery is computed only once per each sequence, and
then used to scale all keyframes depth maps from the same
sequence. Fig 3 displays the monocular reconstruction and the
stereo ground truth after the scale alignment. The Euclidean
distances between all pixels from the two reconstructions are
visualized in Fig. 4. We also report the standard deviation (σ )
for the RMSE with respect to [27] in Table I, in addition to
average reconstruction coverage and reconstruction error of
LSD-SLAM except for liver 1 sequence because it has failed
due to the strong respiration.

Fig. 3: Monocular (in green) to stereo (in pixel intensi-
ties) reconstruction alignment. Stereo-laparoscope cameras are
shown in red with a line connecting their optical centers, and
monocular frames cluster is displayed in grey.

(a) In vivo liver 1 (b) In vivo abdomen 1

Fig. 4: Euclidean distance map.

3) Results Analysis: In the same or higher monocular
parallax cases with respect to the stereo methods we achieve
6 1.3 ± 0.9 RMSE. In such cases, it is difficult to identify
whether the remaining error comes from the monocular or
the stereo reconstruction. In low parallax cases, the RMSE is
higher as expected. Table I also shows a superior performance
of the proposed system compared to LSD-SLAM in terms
of reconstruction coverage and accuracy. Fig. 5, shows the
reconstruction of our system and LSD-SLAM from different
points of view, where the blue frustums are the estimated
camera poses at the keyframes selected by each SLAM system
during the camera exploration. For in-vivo sequences the
proposed method is robust to small respiration deformation
as inter-frame motion in the cluster was considerably small.

4) The Influence of The Regularizer and Number of Images
in The Cluster: We analyzed the effect of the regularizer in
low parallax cases in Figure 6[a,d]. It shows how the correction
made by the regularizer in the variational optimization is
proportionally bigger in low parallax cases. It can be seen
also how the RMSE is smaller in the case of the liver than in
the abdomen. We conjecture that it is due to the fact that the
liver surface geometry is smoother than that of the abdomen,
and hence fits better the regularizer prior, which favor smooth
reconstruction and because of that the final error is smaller.

TABLE I: Average reconstruction error with respect to stereo
methods ([37],[27]).

Sequence Method

Reconst.
coverage

per
keyFrame

%

Stereo
coverage

%

Mono
pllx

(deg)

Stereo
pllx

(deg)

Avg.
RMSE
(mm)
[37]

Avg.
RMSE
(mm)
[27]

σ

In-vivo
liver 1

Proposed
system

65 89 0.4

13.1

2.6 2.8 0.4
66 90 5.2 1.0 1.2 0.2
56 90 12.3 0.3 0.4 0.02

LSD-SLAM X X X X X X

In-vivo
abdomen 1

Proposed
system

66 79 1.4

8.9

4.5 4.7 0.2
47 88 6.1 2.9 3.3 0.2
32 86 10.1 1.2 1.7 0.1

LSD-SLAM 1.1 98 - 5.4 6.1 1.0

Ex-vivo
liver 2

Proposed
system

48 88 9.1
12

0.8 1.1 0.1
44 79 14.9 0.7 0.9 0.1

LSD-SLAM 1.6 85 - 2.1 2.6 1.0

Ex-vivo
liver 3

Proposed
system

35 98 9.8
11.4

0.6 0.7 0.1
27 98 14.5 0.4 0.5 0.1

LSD-SLAM 3 76 - 1.7 2.4 0.6

In-vivo
abdomen 2

Proposed
system

65 84 2.3

9.6

3.5 3.9 0.6
45 95 4.8 2.9 3.3 0.6
33 92 10.1 1.9 2.2 0.5

LSD-SLAM 2.1 98 - 4.1 5.3 0.7

Ex-vivo
ureter

Proposed
system

58 82 2.9

8.5

2.0 2.3 0.6
45 88 6 1.5 2.2 0.3
43 90 11.7 1.0 1.9 0.2

LSD-SLAM 1.4 92 - 2.9 3.7 1.1

Pllx. Num. of
used Images Initial Reconstruction (Sec. III-D4) Regularized

In
-v

iv
o

liv
er

1

0.37◦
All

images
in

cluster

RMSE = 40mm RMSE = 2.8mm
(a)

12.3◦
All

images
in

cluster

RMSE = 1.6mm RMSE = 0.4mm
(b)

12.3◦
Two

extreme
images

in
cluster

RMSE = 16.8mm RMSE = 2.5mm
(c)

In
-v

iv
o

ab
do

m
en

1

1.4◦
All

images
in

cluster

RMSE = 85.7mm RMSE = 5.9mm
(d)

10.1◦
All

images
in

cluster

RMSE = 7.9mm RMSE = 1.8mm
(e)

10.1◦
Two

extreme
images

in
cluster

RMSE = 65.6mm RMSE = 8.6mm
(f)

Fig. 6: Effect of the regularizer and the number of processed
images in the cluster.
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(d) Ex-vivo ureter
Fig. 5: Live incremental dense reconstruction of proposed system and LSD-SLAM on different sequences visualized as points
cloud. SLAM keyframes and points are colored in blue and in red, respectively. The selected keyframes used for the dense
reconstruction and frames cluster are colored in red and grey, respectively. The green frustum shows the current laparoscope
pose.



As expected the 3D regions with high depth gradient are
reconstructed with bigger errors, it can be verified in Fig. 4(b).
In high parallax cases, Fig. 6[b,e], the geometry is accurately
estimated, and the regularizer effect is minimal, only to remove
the stair-casing effect and provide a smoother reconstruction.
The quality of the reconstruction is mostly dependent on
the data term, and increasing the number of cluster images
generally improve the accuracy. In Fig. 6[b,c] and [e,f] we
show a comparison of the reconstruction obtained using all the
frames in the cluster vs. using only the two extreme frames in
the cluster. The data term is a simple two view stereo when
using two images, and the lack of data constraints can lead to
spurious local minimum in the variational problem. However,
the cost when using a cluster of many images taken from
different viewpoints generally produces a strongly constraint
problem with a strong global minimum. This directly increases
the chance that a good initial solution is found (cf. Sec.
(III-D4)).

5) Proposed System versus Dense SfM: We evaluated the
reconstruction accuracy and computation time with a state-
of-the-art dense SfM method [24]. We have performed this
evaluation on the ex-vivo liver 3 sequence. Figure 7[a,b] shows
the final reconstruction by [24] after the filtering/refinement
step. The RMSE was 0.6mm and 0.8mm w.r.t stereo methods
[37], [27], respectively.

(a) (b)

Fig. 7: Dense SfM [24].
The averaged rendered parallax was 12.4 degrees. The pro-

posed system and [24] yield similar accuracy and both render
higher monocular parallax than stereo methods, however the
proposed system is order of magnitude faster. The dense
reconstruction of [24] took ≈ 4.5 min and the subsequent
filtering step took ≈ 1.5 min.
C. Quantitative Evaluation Using CT Surface

To evaluate the global reconstruction of the proposed sys-
tem, we performed an ex-vivo porcine experiment with a intra-
operative CT acquisition. We used a monocular laparoscope
and recorded 2min ex-vivo exploratory sequence of the ab-
dominal viscera. A sample frame of the sequence is shown in
Fig. 8[a]. After the exploration is finished, a CT images was
then acquired during 10 seconds expiration breath-hold and is
manually segmented by an expert to generate a 3D volume
with 0.876mm x 0.876mm x 0.799mm voxel size and 12,012
vertices.

We aligned the monocular reconstruction to the CT surface
using a best-fitting similarity transform Sim(3). This was
found by manually selecting 3 landmarks to roughly estimate
Sim(3), using Horn’s algorithm [40]. Then Iterative Closest
Point (ICP) was run until convergence to refine the initial
alignment. RMSE was then measured by the Euclidean dis-
tance of each map point to its closest point on the CT sur-
face. Once alignment is finished, the reconstruction coverage,

which is the percentage of the reconstructed CT points that
were visible in the laparoscope images during exploration,
is computed as follows. Firstly, we identified the visible CT
surface in the estimated keyframe poses by our SLAM. The
CT point is marked as visible if it is projected within at least 5
SLAM keyframe images. Then the reconstruction percentage
is calculated as a ratio between number of visible CT points
that are reconstructed and total number of visible CT points.

Figure 8[b,c], shows our dense reconstruction and the
keyframe poses (blue frustums) estimated during the la-
parosope exploration. Fig. 8[e] shows the alignment between
our dense reconstruction and CT model in yellow. The RMSE
of our system is 1.1mm, and the width of the reconstruction
is 10.4cm (cyan line in Fig. 8[e]). We show in Fig. 8[d,g]
the distance error map and its cumulative distribution function
map, where it can be seen that ≈ 84% of the points with error
less than 1.5mm. Fig. 8[f] shows in green the visible CT points
in at least 5 keyframes images. The coverage percentage of our
reconstruction is 42% where our system only considers the
overlapping pixels in the frame clusters and this percentage
reduces with larger parallaxes for frame cluster selection. The
RMSE of LSD-SLAM is 2.5mm with 24% reconstruction
coverage. We process 80 frames of the evaluation sequence
using dense SfM [24] method, that took 25min to finish and
yielded the RMSE 1mm and 12% reconstruction coverage.
D. Qualitative Evaluation on In-vivo Human Liver

The visual textures of the human liver is lower than the
porcine one, which makes its 3D reconstruction more chal-
lenging. To our knowledge, no dense reconstruction results
have been reported on human liver with a monocular la-
parosocpe. We qualitatively tested the proposed system on a
short sequence corresponding to an in-vivo human abdominal
cavity exploration. The exploration has been done by a surgeon
who has no prior knowledge about SLAM, and included fast
laparoscope motion with different orientation changes. Figure
9[a] shows image sample of the patient sequence. Our sparse
SLAM system was able to locate few but good sparse points
to estimate laparoscope camera poses. Fig. 9[b,c] shows our
dense reconstruction results from different viewpoints, which
qualitatively look very promising and accurate.

(a) (b) (c)

Fig. 9: In-vivo human liver reconstruction.
E. Free Parameters

We detail in Table II all the free parameters which were
fixed during the experiments. The main sensitive parameter
is the overlap between the cluster frames, controlled by α1
and α2. We fix κ = 0.001 to meet a good balance between
the quality and computing time trade-off in the variational
minimization. Integral images were used to keep the running
time invariant to the ZNCC window size as proposed in [28].



(a) (b) (c) (d)

(e) (f) (g)

Fig. 8: Evaluation with respect to CT surface. (a) Sample frame. (b,c) Our reconstruction from different direction. (d) Distance
error map. (e) Alignment with transparent CT volume of abdominal cavity from side view. (f) Visible CT points (green) in
estimated keyframe poses (blue frustum). (g) Distance error cumulative distribution function.

TABLE II: Parameters settings.

α1 α2 θ 1 κ θend λ ω W βmin βmax ξ ∈ τ

0.2 0.01 0.2 0.001 0.0005 0.5 0.01 19 0.8 5 51 0.001 30

F. Processing Time

We report in Table III the average execution time needed
by each step of the proposed system, for dense reconstruction,
and the average execution time of the two parallel threads from
ORB-SLAM (Sparse Tracking and Sparse Reconstruction) for
different image resolutions.

TABLE III: Average Processing Time (In Seconds).

Image
Resol.

Sparse
Tracking

Sparse
Reconst.

Dense Reconstruction

Cluster
selection

BA
Inverse
depth

Discretiz.

Cost
volume

Variational
minimiz.

Depth
maps

realignment

720x288 0.03 0.6 0.17 1.3 0.00036 3.4 6.2 0.38
960x260 0.04 0.69 0.21 2 0.0039 5.2 8.4 0.47

In the Dense Reconstruction thread for image resolution
720x288 of public dataset, the selection of the reference
keyframe and its frames cluster took ≈ 0.17s followed by
a Bundle Adjustment, that accurately estimates the poses of
frames in the cluster ≈ 1.3s. It is worth noting that most of this
time is spent computing the sparse matches between the frames
in the cluster, the BA stage just took ≈ 100ms. The ZNCC cost
volume construction took ≈ 3.4s implemented on the GPU and
the cluster size varied between 5-18 frames. The equivalent
time using CPU implementation varied between 18-25s. The
variational solver was implemented on the CPU, yielding a
computation time of ≈ 6.2s. Using a GPU implementation
as proposed in [6] could reduce this time significantly. The
depth maps re-alignment stage took ≈ 380ms on average. In
case of our new dataset that has 960x260 image resolution,
the processing time are slightly increased due to large number
of images features.

V. CONCLUSION AND FUTURE WORK

A novel real-time dense SLAM system has been presented
that is able to track the endoscope at frame-rate using image
features, and is able to produce in few seconds a high quality
dense reconstruction of the surgical scene. The proposed
system uses the sole input of monocular videos and does not
need any fiducials nor external trackers, thus can be integrated
smoothly into the current surgical workflow.

It has been validated and evaluated on real porcine laprop-
scope sequences from public and our new datasets and shows
a robustness to severe illumination changes and different scene
textures. It also shows a very promising dense reconstruction
of human liver. On one hand the accuracy of the dense recon-
struction has been evaluated with respect to gold-standard CT
surface and yielded 1.1mm of accuracy. On the other hand,
the evaluation with respect to the stereo methods provides
a similar measure of the accuracy in the laparoscope pose
estimation with respect to the surface because we only apply
a scale alignment, then it is mainly testing the accuracy of the
camera rotation and translation with respect to the estimated
surface.

Our experiments have also shown that when the camera
loops back to regions already included in the map, the SLAM
algorithm succeeded. The main effect of the subtle tissue
deformations is that new map points are created because the
old ones generate matching hypothesis that are rejected as
they fail to pass the rigidity test. The net effect in the overall
SLAM performance is very low. Our focus has been the fast
and accurate surface geometry reconstruction, thus, we have
neglected pixels with high uncertainties such as specularities
and pixels not observed in all the frames in the corresponding
cluster. Similarly, our algorithm uses the pixel intensities
for the dense surface representation, which is a basic one
unable to remove the artefacts in the reconstructed surface
textures caused by the differences in illumination between the
keyframes used for surface estimation. A nice venue for future



work would be to devise a better approach to interpolate the
reconstruction in the areas corresponding to high uncertainty
and to blend seamlessly the textures in the 3D surface as they
are relevant for high quality AR visualization.

The main limitations of the proposed system are: 1) It
cannot deal with very homogeneous soft-tissue surfaces that
completely lacks texture characteristics. 2) It cannot deal with
the strong deformations that exist during surgical manipula-
tion. However, it has proven a robustness for small deforma-
tions caused by respiration and can robustly provide the pre-
requisite template for non-rigid methods such as shape from
template [11], [41]. 3) It requires offline camera calibration
and any change in the calibration parameters can strongly
affects the system performance, and thus a technique for
detecting and handling these changes online is beneficial.
Future research directions may focus on a fusion with ad-
ditional visual cue such as shading, that explicitly models the
reflectance properties of the surface.
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