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Abstract:

Gene duplication has a central role in evolution; still, little is known

on the fates of the duplicated copies, their relative frequency, and

on how environmental conditions affect them. Moreover, the lack of

rigorous definitions concerning the fate of duplicated genes hinders

the development of a global vision of this process. In this paper we

present a new framework aiming at characterizing and formally dif-

ferentiating the fate of duplicated genes. Our framework has been

tested via simulations, where the evolution of populations has been

simulated using aevol, an in silico experimental evolution platform.

1



2 1 INTRODUCTION

Our results show several patterns that confirm some of the conclu-

sions from previous studies, while also exhibiting new tendencies;

this may open up new avenues to better understand the role of du-

plications as a driver of evolution.

Keywords: Gene duplication, Duplication fates, Classification, Paralogy and

Simulation

1 Introduction

Gene duplication is largely responsible for boosting the innovation and func-

tion variation of genomes (Carvalho et al., 2010; Kuzmin et al., 2021; Vosseberg

et al., 2021), and plays a central role in the evolution of gene families (Demuth

and Hahn, 2009). Copies of genes arising from duplication can undergo multiple

evolutionary fates (Ohno, 2013). For instance, the copies may perform the same

role, share functions, or one of them could accumulate mutations while the other

maintains the original function (Ohno, 1999). The more commonly-studied

fates will be described in detail in the next section: pseudogenization (loss of

one gene), (double) neofunctionalization (divergence in function for both/one

gene), conservation (maintenance of the original functions for both genes), sub-

functionalization (division of the original functions between the two copies),

and specialization (division of the original functions along with the acquisition

of novel ones).

Little is known about whether certain fates occur more frequently than oth-

ers and how environmental conditions influence their relative occurrence. De-

termining the fate of paralogous genes is challenging due to two primary factors.

First, the functions of their common ancestor are often unknown, impeding the

ability to foresee the evolutionary development of each copy. Additionally, even

with knowledge of the ancestral functions, their evolution may not fit perfectly
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into one of the established classes. Several works have focused on understanding

the role of duplications (see e.g. (Ascencio et al., 2021)), but to our knowledge,

no rigorous framework has been developed to classify these roles. In this con-

text, our goal is to establish a comprehensive framework for formally describing

the possible fates of duplicated genes, allowing for their differentiation through

the analysis of phylogenetic data. Our method involves assessing the biological

functions of both the original gene and its duplicates, creating a spectrum that

captures the various possible fates along a continuum.

The majority of studies addressing this subject primarily focus on theoret-

ical aspects and put forth statistical fate models for predictive purposes. One

illustrative instance is the work by Lynch et al. (Lynch and Force, 2000; Lynch

et al., 2001), which conceptualizes genes as discrete sets of functions. The au-

thors introduce a population-based model of subfunctionalization, taking into

account mutation rates in regulatory regions. Notably, their findings indicate

that the likelihood of subfunctionalization diminishes towards 0 with larger pop-

ulation sizes. Using similar ideas, Walsh (Walsh, 2003) compares pseudogeniza-

tion against other fates, showing that predictions depend on mutation rates.

In (Stark et al., 2017), the authors also compare subfunctionalization and pseu-

dogenization using a mechanistic model based on Markov chains, which allows

for data fitting and improved characterizations of hazard rates of pseudoge-

nization. Markov chains were also used in (Diao et al., 2020) to predict the

evolution of gene families undergoing duplications, loss, and partial gain/loss

of function. Also, the theoretical impacts of neofunctionalization on orthology

prediction were discussed in (Lafond et al., 2018). Classification tools based on

gene-species reconciliation have also been proposed, e.g. for xenologs (Darby

et al., 2017), which are pairs of genes whose divergence includes a horizontal

gene transfer.
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In more practical settings, perhaps the closest work to ours is that of Assis

and Bachtrog (Assis and Bachtrog, 2013). Based on the ideas of (Otto and

Yong, 2002), they used Euclidean distances between gene expression profiles

to distinguish between neofunctionalization, subfunctionalization, conservation

and specialization. Utilizing data from Drosophila, they demonstrate that ne-

ofunctionalization prevails as the primary fate, followed by conservation and

specialization, with a limited occurrence of subfunctionalization. In (He and

Zhang, 2005), the authors use dN/dS ratios and expression data to distinguish

subfunctionalization and neofunctionalization. They assert that dichotomous

fate models fall short in elucidating the diverse functional patterns exhibited by

duplicate genes. This emphasizes the necessity for the development of classifi-

cation methods that take into consideration hybrid fates. Several works have

also focused on pseudogenization, based on sequence comparisons and homol-

ogy detection, showing that it is very likely in certain species (Jaillon et al.,

2004; Brunet et al., 2006). For instance in Zebrafish, it is estimated that up to

20% of duplicated genes are retained and the rest are non-functional (Woods

et al., 2005). Practical investigations have explored neofunctionalization, ob-

serving its occurrence through changes in both the biological processes and

transcriptional expression of a duplicate. The latter was argued to play an im-

portant role in evolution (Gu et al., 2004; Huminiecki and Wolfe, 2004; Gu et al.,

2005). Functional changes can occur at the enzymatic level (Conant and Wolfe,

2008) and, more recently, were shown to also occur at the post-translational

level (Nguyen Ba et al., 2014). This was accomplished by comparing the fate

of three species, identifying short regulatory motifs, and statistically correlating

them with observed post-translational changes. Our framework strives to gen-

eralize the methodologies established in these experimental investigations. To

test our framework, we use an in silico experimental evolution platform that
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enable to simulate the evolution of a population of individuals under the com-

bined effect of selection and variation (Hindré et al., 2012; Batut et al., 2013).

Specifically, we used the aevol platform (Knibbe, 2006), a computing platform

where populations of digital organisms can evolve under various conditions, en-

abling to experimentally study the effect of the different evolutionary forces on

genomes, gene repertoire and phenotypes. Aevol has already been used to study

the direct and indirect effect of segmental duplications/deletions, showing that

their mutational effect is likely to regulate the amount of non-coding sequences

due to robustness constraints (Knibbe et al., 2007a; Rutten et al., 2019). The

platform has also been used to show that genetic association can help maintain-

ing cooperative behaviour in bacterial populations (Frénoy et al., 2013). More

recently, aevol has been used to study the “complexity ratchet”, showing that

epistatic conflicts between genes duplication-divergence (i.e. neofunctionaliza-

tion or double-neofunctionalization fates) and local events (i.e. allelic variation

of a single gene) opens the route to biological complexity even in situations

where simple phenotypes would easily thrive (Liard et al., 2020). However,

although it as been shown that gene duplications is a rather frequent event

in aevol, (almost half of the gene families being created by a segmental event

(Knibbe, 2014)), the precise fate of gene duplicates has never been specifically

studied in the model.

This paper fills this gap by employing aevol to simulate the progression of

individual populations. Subsequently, we utilize our framework to categorize

the duplications present in the simulated data. Our tests on aevol confirm

the experimental studies on drosophilia data (Assis and Bachtrog, 2013), which

showed that conservation/neofunctionalization were much more likely than sub-

functionalization/specialization, while at the same time exhibiting proportions

that differ from ours within these two groups of fates.
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2 Post-duplication fates

Several classes and sub-classes of post-duplication fates have been proposed in

the literature; here we recall the main ones that we model in our framework.

These fates have been chosen because they are generally agreed upon, as dis-

cussed in various surveys (see e.g. (Zhang, 2003; Hahn, 2009)); each class is

assigned an acronym that we shall use in the following of the paper.

Pseudogenization (P ): one copy retains its functions, while the other diverges

and becomes non-functional (Ohno, 2013). Pseudogenization is believed to be

very likely, since losing one copy can repair an “accidental” duplication. In this

study, we consider only a type of pseudogenization, called compensatory drift,

in which the expression level of at least one of the duplicated genes is too low

to supply the function (Birchler and Yang, 2022; Thompson et al., 2016). Note

that a gene could be lost by a deletion event or by a mutation that would, e.g.,

inactivate its promoter. However, these fates are not considered here as we focus

on gene duplication leading to observable paralogy in extant genomes.

Neofunctionalization (N): when one copy diverges as above, it may acquire

novel functions instead of pseudogeneizing (Force et al., 1999). This is often be-

lieved to be a major mechanism of function acquisition, as neofunctionalization

can use a copy of a functional gene as a template to favor adaptation (Lynch

and Conery, 2000).

Double-neofunctionalization (DN): both copies acquire distinct functions

that are different from the original gene (hence, the original function is not

performed by any of the two copies). To our knowledge, there is no established

name for this fate, although this phenomenon can occur in our experiments,

albeit rarely. Double-neofunctionalization can arise when a gene is not required

for survival, for instance when a copy of a duplicated gene undergoes a second

duplication. In this case, both sub-copies are free to develop new functions.
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Conservation (C): this process is such that neither of the duplicated copies

changes, both performing the same functions as the original gene, potentially

doubling its expression level. One could argue that this provides no advantage to

an adapted organism (it could even be harmful due to dosage effect). However,

conservation can also be advantageous when increased gene dosage is required

for adaptation (Panchy et al., 2016), or when one copy needs to be kept as a

“backup” (Birchler and Yang, 2022).

Subfunctionalization (SF ): the copies partition the original functions and

are thus complementary and necessary to perform them (Conrad and Antonarakis,

2007). This is sometimes called duplication-degeneration-complementation (DDC)

(Panchy et al., 2016). Subfunctionalization has also been associated with changes

in expression patterns (Birchler and Yang, 2022), especially in cases where the

copies become expressed less but, together, still produce the same amount of pro-

teins as before. The latter is sometimes distinguished as hypofunctionalization

(Veitia, 2017). In this paper, we consider both situations as mere subfunction-

alization.

Specialization (SP ): this fate occurs when the genes copies are able to perform

the original functions, but also both develop novel functions. This differs from

DN , since the original function is still performed, but also differs from SF

because of the novel functions. The term was introduced in (Otto and Yong,

2002) and described as a mix of SF and N . In this work, we consider that this

fate occurs as long as the original function exists (whether it is by SF or not)

and both copies acquire a significant amount of new functions.

3 Methods

We first describe our theoretical model of fate classification, and then proceed

to describe our experiments.
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We assume the existence of a set of possible biological functions that we

denote by F . We allow any representation of functions as a set and F can

be discrete or continuous (for instance, Gene Ontology terms, or coordinates

in a multidimensional functional universe). A gene g expresses some functions

of F to some degree. For this purpose, we model a gene as a (mathematical)

function g : F → R, where g(ζ) represents the activation level of function ζ ∈ F .

If g(ζ) = 0, then g does not contribute to performing function ζ. Importantly,

notice that g(ζ) can be negative, which models the fact that g inhibits function

ζ. These concepts are illustrated in Figure (1.a), which shows a gene whose

expression pattern has a Gaussian shape (note that this shape is merely for

illustration, as our model applies to any shape). This gene expresses functions

mainly in the range [0.25, 0.75], and the expression of each function ζ in this

range is the height of the shape at x-coordinate ζ (for instance in the figure on

the left, g(0.5) is approximately 0.9).

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

ζ

g
(ζ

)

(a) A gene g.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

ζ

g
(ζ

)

h
g

g+h

(b) Two genes g and h.

Figure 1: An illustration of genes expressing functions in a Gaussian pattern.
(a) shows the functions expressed by a gene. The x-axis represents the set of
functions [0, 1] and the y-axis the level of expression of each function. (b) shows
two genes g and h and their function addition.

We define the following comparative tools for two genes g and h:
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• [g+h] represents function addition, which can be seen as a gene described

by the functional landscape that g and h accomplish together (note that

they may cancel each other in case of inhibition). For each ζ ∈ F , it is

defined as

[g + h](ζ) = g(ζ) + h(ζ)

• [g ∩ h] represents function intersection and, for each ζ ∈ F , is defined as

[g ∩ h](ζ) =


min(g(ζ), h(ζ)) if g(ζ) ≥ 0, h(ζ) ≥ 0

max(g(ζ), h(ζ)) if g(ζ) < 0, h(ζ) < 0

0 otherwise

• for gene g, we define contrib(g) as the total functional contribution of the

gene, i.e. as the sum of absolute values of its expression levels. This is

analogous to the area of the functional landscape covered by g. If F is

discrete, we define contrib(g) =
∑
ζ∈F |g(ζ)|, and if F is continuous, we

define contrib(g) =
∫
F |g(ζ)|dζ.

• ig|h represents the function coverage of g by h, i.e. the proportion of

functions of g that can be performed by h. For contrib(g) > 0, it is

defined as

ig|h =
contrib([g ∩ h])

contrib(g)

For technical reasons, when contrib(g) = 0, we define ig|h = 1 for any

h. This corresponds to the idea that if g does nothing, any gene h can

perform an empty set of functions.
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We may write g+h and g∩h without brackets when no confusion can arise.

Note that [g + h] = [h + g] and [g ∩ h] = [h ∩ g], but ig|h differs from ih|g if

contrib(g) 6= contrib(h). These notions can be visualized in Figure (1.b): [g+h]

is the shape in grey that corresponds to the sum of the two Gaussians at each

point; [g∩h] can be seen as the set of points formed by the overlap of the g and h

shapes. Assuming that contrib(g) = contrib(h) = 0.2 and contrib([g∩h]) = 0.05,

we have ig|h = ih|g = 0.05/0.2 = 0.25.

3.1 Classifying the fates of paralogs

Suppose that a and b are two extant paralogs and that their least common ances-

tor is g. For each fate described in Section 2, i.e. for each fate X ∈ {P,N,DN,

C, SF, SP}, we quantify how much a and b appear to have undergone X, using

appropriate ig|h proportions as defined above. The main challenge in develop-

ing a continuum between fates is to ensure that each fate has a distinguishing

feature against the others. In our design, each pair of fates has a factor that

contributes conversely to the two fates (while also correctly modeling them, of

course). For example, N expects exactly one of ia|g or ib|g to be 1, whereas DN

expects both to be 0, and values in-between have opposite effects. It was also

necessary to include thresholds to model some of the fates properly, as follows:

• δτ (x) = max(0, x−τ1−τ ) is a generic threshold function with respect to a

parameter τ . It equals 0 for x ≤ τ , and then increases linearly from 0 to

1 in the interval x ∈ [τ, 1]. In particular, if x = 1, then δτ (x) = 1. This is

useful to model fates that require a threshold.

• ρ ∈ [0, 0.5] is a pseudogene threshold, used to determine how much func-

tionality a copied gene can preserve before starting to consider it as a

pseudogene. For example, if ρ = 0.2, a gene is not considered as a pseu-

dogene as long as it has not lost 4/5 of its functions, and from then the
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amount of P increases linearly the closer the proportion of retained func-

tions gets to 0. We assume that ρ ≤ 0.5 since losing half of the functions of

a gene can occur under subfunctionalization or specialization, and allowing

ρ > 0.5 could confound P with SF or SP .

• ν ∈ [0, 1] is a novelty threshold that determines how much a copy must

dedicate to the parental functions to be considered as “not too new”. For

instance if ν = 0.25, the fates C, SF require, among other conditions,

that the copied genes dedicate a quarter or more of their functions to

the parental functions, and otherwise they are immediately excluded as

possible fates. Conversely, 1 − ν could be interpreted as “new enough”,

and determines how much novelty is needed for SP .

The formulas for computing the proportion of each fate are detailed in Table 1.

Fate Formula

Pseudogenization (P )

Pa = ia|g · (1−
ig|a
ρ )

Pb = ib|g · (1−
ig|b
ρ )

P = max(0, Pa, Pb)

Neofunc. (N)

Na = (1− ia|g) · δν(ib|g) · ig|b
Nb = (1− ib|g) · δν(ia|g) · ig|a
N = max(Na, Nb) · (1− P )

Double-neo. (DN) DN = (1− ia|g)(1− ib|g)(1− ig|a+b)(1− P )

Conservation (C) C = δν(ia|g) · δν(ib|g) · ig|a+b · (1− δ0.5(ia+b|g)) · (1− P )

Subfunc. (SF ) SF = δν(ia|g) · δν(ib|g) · ig|a+b · δ0.5(ia+b|g) · (1− P )

Specialization (SP ) SP = ig|a+b · (1− δν(ia|g)) · (1− δν(ib|g)) · (1− P )

Table 1: The formulas used to compute the proportion of each fate.

Each fate is illustrated in Figure 2, using the example of Gaussian gene

functions. Note that P and N are the only fates to use a maximum of two

values. This is because there are two ways in which P can occur (either gene loses
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(a) Pseudo. (P )
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(b) Neofunc. (N)
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(c) Double-neo. (DN)
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(d) Conservation (C)
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(e) Subfunc. (SF )

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ig|a+b = 1

ia|g ∈ [0, 0.25] δν(ia|g) = 0

ib|g ∈ [0, 0.25] δν(ib|g) = 0

(f) Specialization. (SP )

Figure 2: The canonical fates using the Gaussian representation. Note that in
the case of SF and SP , ig|a+b is not exactly 1, but we assume that this is the
case for the sake of simplicity. We assume thresholds ρ = 0.2 (relevant for P )
and ν = 0.25 (mostly relevant for SP ). In (a), b has become a shape of height
0 and is considered as a pseudogene. In (e), SF can occur in two ways: a and b
retain the same functions as g, but split their expression levels (left), or a and
b split a portion of the functions of g (right).

functions), and in which N can occur (either gene diverges). In the other fates

(DN,C, SF, SP ), the two genes behave in a similar manner instead. Although

it is difficult to provide an entirely formal framework for fate classification, these

formulas were designed with the following two main criteria in mind:

Recognizability: when the gene copies have the exact behavior that is expected

from a given fate, then our formulas assign 1 to that fate. This requires that

each multiplicative factor present in a fate formula is 1.

Distinguishability: when one of the fates is clearly present and assigned 1, all
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the other fates are assigned 0. This requires the other fates to have at least

one multiplicative factor equal to 0.

For each fate, we recall the expected behavior and argue that both criteria

are met by the formulas in Table 1. We also explain the rationale behind our

usage of threshold functions.

• Pseudogenization. This fate occurs when at least one gene copy pseudo-

geneizes. Suppose, for instance, that b has become a pseudogene, in which

case Pb should be 1 (as in Figure 2.(a)). The expected behavior for b is that

it has not developed novel functions and has lost most of g’s functions.

Recognizability. When b does not perform novel functions outside of g, the

ib|g factor is 1 since b is covered by g (note that, by definition, this also holds

when contrib(b) = 0). Moreover, the factor (1 − ig|b
ρ ) is 1 when b does not

perform any function of g, that is when the expression level of b becomes 0

as in Figure 2.(a). Hence Pb = 1 when both behavior occur in b.

The same applies to a and Pa, and P is the maximum of 0, Pa and Pb,

indicating the the P fate is predicted when at least one gene pseudogeneizes.

Distinguishability. Notice that every other fate includes the factor (1 − P ).

This is because the more a gene has pseudogeneized, the less it should be

considered for other fates. Hence when P = 1 is predicted, the other fates

are assigned 0.

Although not strictly required for our criteria, note that the factor (1− ig|b
ρ )

decreases linearly as b realizes more of g, and becomes 0 or less when ig|b ≥ ρ.

Thus, when b performs at least a fraction of ρ of g, for example ρ = 20% of

the original functions, the pseudogeneization fate for b is entirely discarded.

• Neofunctionalization. Suppose that a has retained the functions of g and

that b has gained entirely novel functions, as in Figure 2.(b) (the case where
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a neofunctionalizes is symmetric). In this case Nb should be equal to 1.

Recognizability. Since b only has novelty, none of its functions are covered

by g and the factor 1 − ib|g is 1. Moreover, and since a performs the same

functions as g, they should be equal and the factors ia|g and ig|a are 1. This

in turn implies that the factor δν(ia|g) is also 1. Hence, Nb = 1 in this case.

Moreover, one can verify that ig|a = 1 and ib|g = 0 imply that P = 0, and

the (1− P ) factor is also 1. Hence, N = Nb · (1− P ) = 1, as desired.

Distinguishability. As already argued, P = 0. The fate DN is excluded

since it has the factor (1 − ia|g) whereas we assume ia|g = 1, and C, SF are

excluded since ib|g = 0 implies δν(ib|g) = 0. Finally, SP is excluded since

1− δν(ia|g) = 0.

We mention in passing that the factor δν(ia|g) in the formula for Nb, which

says that a should preserve at least a fraction ν of g to even consider Nb,

could not be replaced by a plain ia|g. Indeed, in the scenario shown in Fig-

ure 2.(f), SP = 1 is achieved as desired. However, one can verify that using

ia|g instead of δν(ia|g) in the formula for N would yield N > 0, preventing

the distinguishability of SP .

• Double-neo. In this fate, the functions of a and b should be completely

novel with respect to g (although a and b could have functions in common).

Recognizability. When neither a nor b intersects with g, each of the factors

ia|g, ib|g, ig|a+b is 0. Therefore, 1 minus any of these quantities, as used in the

formula for DN , is 1. The factor (1− P ) is 1 because ia|g = ib|g = 0.

Distinguishability. The fate P is excluded since P = 0 as we just saw. The

fate N is excluded since ig|b = ig|a = 0 under DN , thereby putting Na =

Nb = N = 0. Every other fate uses ig|a+b, which is also 0.

• Conservation. Under this fate, both a and b should preserve the functions
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of g and, at the same time, should not have developed novelty.

Recognizability. The factors ia|g and ib|g are 1 because their functions are the

same as g and are thus covered by it. Therefore, δν(ia|g) and δν(ib|g) are also

1. The factor ig|a+b is 1 because g is realized by both a and b and thus also by

[a+b]. Since [a+b] doubles each of g’s functions, half of [a+b] must be covered

by g. The 1− δ0.5(ia+b|g) factor is therefore equal to 1 when at most half of

[a+ b] is covered by g (and decreases linearly in the interval ia+b|g ∈ [0.5, 1]).

One can check that the factor (1− P ) is 1 since ig|a = ig|b = 1.

Distinguishability. Since ia|g = ib|g = δν(ia|g) = δν(ib|g) = 1, the fate C can

be distinguished from N,DN,SP since those have a factor that is 1 minus

one of these values. Importantly, C is only distinguished from SF because

the latter has the factor δ0.5(ia+b|g), which is 0 when ia+b|g = 0.5.

• Subfunctionalization. In this fate, a and b must split the functions of g,

and perform exactly those functions together. Thus [a + b] should be equal

to g (as opposed to C where [a+ b] is the double of g). Note that the degree

of tolerable sharing is determined by ρ. For example, if ρ = 0.2, and a and b

perform 0.8 and 0.2 of g, respectively, then no pseudogeneization is detected.

However, if these proportions change to 0.99 and 0.01, then Pb = P will have

a much higher weight than SF (since the latter has the factor (1− P )).

Recognizability. When SF occurs, a, b are covered by g and g is covered by

[a + b], and thus the factors δν(ia|g), δν(ib|g), ig|a+b are 1, as in the C fate.

Also, ia+b|g = 1 under SF , which implies δ0.5(ia+b|g) = 1. Finally, assuming

that both a and b realize at least ρ of g, 1− P = 1 since ig|a/ρ = ig|b/ρ = 1.

Distinguishability. The fate SF is separated from N,DN,SP for the same

reasons as C, and is separated from C because of δ0.5(ia+b|g) = 1.

• Specialization: In this last fate, g should be performed by a and b together,
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but a and b should also both develop “enough” novel functions, which is

determined by the threshold ν.

Recognizability. The factor ig|a+b is 1 since a and b still realize g together.

The factor ia|g can be seen as the proportion of non-novel functions of a.

When this proportion is less than ν, a is considered to have enough novelty.

We have δν(ia|g) = 0 when ia|g ≤ ν, and therefore the factor 1 − δν(ia|g) is

1. The same holds for b. Finally, as in SF , assuming that a and b realize at

least ρ of g, 1− P = 1.

Distinguishability. We just argued that P = 0 and it is thus excluded. We

have DN = 0 because ig|a+b = 1 and, since we assume that δν(ia|g) = 0 and

δν(ib|g) = 0, the fates N , C, and SF will also be excluded.

If one considers our formulas as a probability distributions on fates, the sum

of values of each fate should sum to 1 (i.e. P +N +C + SF + SP +DN = 1).

However, the six categories presented here may not cover all the possible fates

of genes after a duplication. Indeed, in our experiments, we regularly observed

situations where P +N +C+SF +SP +DN < 1. Note however that we never

observed situations where the sum of fate values is larger than 1 (see Table 4).

Since we studied thousands of duplications, we conjecture that the sum of fate

values should be bounded by 1, leaving the proof as an open problem.

3.2 Examples of hybrid fates

As previously mentioned, our framework allows the quantification of hybrid

fates. Figure 3 illustrates two examples of such fates, which are similar to fates

encountered in our experiments described later on. In these examples, we model

genes as triangles, which makes the proportions easier to see and is the same

representation used in our experiments.

Figure 3.(a) illustrates a mix of SF and C. In the figure, a and b have both
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Figure 3: Two examples of hybrid fates. In (a) the hybrid fates are subfunction-
alization and conservation while (b) shows a combination of neofunctionalization
and specialization fates (see main text for details).

preserved a significant portion of g and have not developed new functions, which

is the behavior of conservation, but not entirely since they also lost a portion

of g. The copies also realize g together as in subfunctionalization, but this is

not exactly SF since a + b is much larger than g. Using threshold ν = 0.25

and assuming that ia+b|g = 0.75, we get δν(ia|g) = δν(ib|g) = ig|a+b = 1 and

δ0.5(ia+b|g) = 0.5. In this case, we get a hybrid fate with SF = 0.5 and C = 0.5.

Figure 3.(b) displays a mix of N and SP whose sum-of-fates is less than

1. This fate is close to N since gene a maintained most of the functions of g

whereas b mostly developed new functions. However, it is not purely N because

a has some new functions and b preserved some. In fact, it is also a mix of SP

since the functions of g are covered by [a+ b], but not exactly because a is not

novel enough. Plugging the numbers into our formulas using ν = 0.25 yields

N = Nb = 0.375 and SP = 1/3, whereas all other fates are 0.

3.3 Computing the fate between all paralogs in a gene tree

The previous section describes how to compute the fate of a gene g and two of its

paralogous descendants a and b. However, in the case of successive duplications,
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g may have multiple pairs of such paralogous descendants. In Algorithm 1, we

describe how to compute the fate proportions between all paralogs in a gene tree

G, in which leaves are extant genes and internal nodes are ancestral genes. For

the purposes of our algorithm, we assume that the functions of both extant and

ancestral genes are known. We also assume knowledge of a set of duplication

nodes D, which can be inferred through reconciliation (Chauve and El-Mabrouk,

2009; Jacox et al., 2016). Then for each gene g ∈ D affected by a duplication,

the algorithm looks at its two child copies g1 and g2. It then finds the extant

descendants a1, . . . , an of g1 (left leaves of g) and b1, . . . , bm of g2 (right leaves

of g), and calculates each fate for each triple of the form g, ai and bj . In our

results, we report the average proportion of each fate, taken over all pairs of

paralogs analyzed, as computed in Algorithm 1.

Algorithm 1: Algorithm to classify duplication events. The input
is a gene tree G and the set of duplication nodes D. The function
ComputeFate[X](g, ai, bj) calculates the average proportion of each fate
for each triple g, ai and bj .

Fates← array of 6 values, initialized to 0;
NbParalogies← 0;
for each g ∈ D do

Let g1, g2 be two children of g in G;
Let A = {a1, a2, . . . , an} be extant descendants of g1;
Let B = {b1, b2, . . . , bm} be extant descendants of g2;
for each X ∈ {P,N,DN,C, SF, SP} do

for each ai ∈ A do
for each bj ∈ B do

Fates[X] + = ComputeFate[X](g, ai, bj);
NbParalogies + = 1;

end

end

end

end

for each X ∈ {P,N,DN,C, SF, SP} do Fates[X] = Fates[X]
NbParalogies ;
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3.4 Simulations

As already mentioned, to test our method, we used simulated data generated

using the aevol platform. Aevol is an in silico experimental evolution platform

that simulates the evolution of a population or digital organisms1. In aevol,

each organism owns a genome (a binary double-stranded circular sequence in-

spired from bacterial chromosome, see Figure 5, upper part) and a multi-steps

Genotype-to-Phenotype map simulates transcription and translation to identify

genes on the sequence, compute the phenotype that results from the interaction

of the proteins encoded by these genes and ultimately compute the fitness of the

organism (Figure 4). Importantly, this Genotype-to-Phenotype map is divided

in two parts. (i.) The localization of the genes is based on the identification of

signal subsequences on the genome that initiate translation (step 1 on Figure 4)

and identify the mRNAs sequences. Then, on each mRNA the model searches

for transcription initiation subsequences to identify the genes (step 2 on Figure

4). Hence, at the sequence level aevol mimics the structure of bacterial chromo-

somes, allowing for gene duplication. (ii.) At the functional levels (proteins and

phenotype), Aevol switches to an abstract mathematical world in which biolog-

ical traits are represented by a couple of values x, y with x ∈ [0, 1] identifying

the trait and y ∈ [−1, 1] representing its inhibition (if negative) or activation (if

positive) level. At this level, each gene is first transcribed into an amino-acid

sequence through a simplified genetic code (step 3) and this sequence is folded to

compute the mathematical function of the protein, i.e. the set of x values of this

protein and the associated y values corresponding to their inhibition/activation

(step 3’). For sake of simplicity, in the model all protein traits are represented

by a triangle functions (see Figure 5.c), hence enabling fast computation of the

protein functions from the amino-acid sequence. Finally, all triangle-proteins

1http://www.aevol.fr and http://https://gitlab.inria.fr/aevol/aevol

http://www.aevol.fr
http://https://gitlab.inria.fr/aevol/aevol
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are linearly combined to compute the phenotype (step 4; the phenotype is a

[0, 1]→ [0, 1] function representing all the biological traits x resulting from the

decoding of the genome – Figure 5.d). A population of such organisms replicate

through a Wright-Fisher scheme. At each generation, the fitnesses of all the

organisms are computed by comparing the phenotypic function with a target

function that indirectly represents the environment (step 5; see Figures 5.d and

6), the smaller the difference, the higher the fitness. Hence, the reproductive

success of an organism depends on the adequacy of its phenotype function and

the target function representing the environmental conditions. Finally, during

replication, organisms may undergo various kinds of sequence mutations, includ-

ing substitutions, Indels and chromosomal rearrangements (including inversions,

duplications and deletions). Organisms are thus embedded into an evolutionary

loop, enabling to study the relative effects of the different evolutionary forces

on genome structure, genome sequence and gene repertoire.

Figure 4: Overview of the Genotype-to-Phenotype map in aevol. Genomes are
decoded into a phenotype through a multi-step process that first decodes the
genome sequence to identify the genes (steps 1 and 2), then decodes the gene
sequence to compute the protein functions (step 3 and 3’), the phenotype (step
4) and ultimately the fitness of the organism (step 5). See main text for details.

As aevol has already been extensively described elsewhere (Knibbe, 2006;

Knibbe et al., 2007b; Batut et al., 2013; Rutten et al., 2019; Liard et al., 2020;

Banse et al., 2023), we will not describe it in more details here. Now, given

our objective, there are a number of advantages of using aevol. First, the plat-

form enables both variation of gene content and genes sequences, a mandatory
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property to study the fate of duplicated genes. Second, in the model two gene

copies have exactly the same set of x, y pairs. Hence, the duplication of a given

gene changes the phenotype through dosage effect (both copies contributing to

the final phenotype), unless the genes sequences of one or both copies mutate.

Finally, as each gene is decoded into a mathematical function, aevol enables a

formal characterisation of genes functions, hence of the different possible fates of

gene duplicates. Furthermore, the aevol platform has already – and successfully

– be used as a benchmark to test bioinformatics methods (Biller et al., 2016) –

and it has not been designed specifically to test our framework, hence providing

an independent test-bed.

We now discuss our simulation framework. As briefly described above, in

aevol the environment is represented by a [0, 1] → [0, 1] target function that

the phenotypes must fit. We considered four different environments shown in

Figure 6. We used environment (a) to generate “Wild-Type” genomes, that

is initial genomes to be used in our experiments2. To this aim, we let several

populations evolve independently for 1 million generations in this environment

and extracted a single Wild-Type genome from each of each of them3. In aevol

a specific parameter (0 < wmax ≤ 1) enables tuning the maximum pleiotropy

in the model (wmax sets the maximum range of functions to which proteins can

contribute – in graphical terms, wmax corresponds to the maximum half-width

of the base of protein triangle functions; see Figure 5.c). As pleiotropy level is

suspected to influence the fate of duplicated genes (Guillaume and Otto, 2012),

2All evolutionary simulations were conducted with a population size of 1024 individuals
and a mutation rate of 10−6 mutations per base pair per generation for each kind of mutational
event. Previous experiments with the model showed that this parameter set leads to genomic
structures akin to prokaryotic ones, though globally smaller (Knibbe et al., 2007a). For
instance, the wild-type presented on Figure 5 has a 10,541 bp-long genome carrying 118 genes
located on 50 mRNAs with a coding fraction of 77%.

3To choose this genome in the final population, we let the population evolve for further
100,000 generations. the wild-type genome is the genome from generation 1,000,000 that is the
ancestor of the whole population at generation 1,100,000. This procedure enables extracting
organisms that are well adapted to their environment (this “pre-evolution” step is required
since evolution is heavily random in naive populations).
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we generated wild-types with four different values of wmax ∈ {0.01, 0.1, 0.5, 1}

(wmax = 1 representing the maximum pleiotropy, where a gene can have an

effect on all functions) in environment (a). These four different wild-types enable

us to test whether the pleiotropy of an organism has an impact on duplication

fates. Figure 5 shows the sequence level (top) and functional level (bottom) of

a wild-type evolved for 1 million generations with a minimal pleiotropy level

(wmax = 0.01). Note the gene highlighted in red on the bottom-left figure.

Though not active enough to reach the target, it exists in three copies on the

genome, hence increasing its effect (red triangle on the bottom right). This

results from two successive duplication events with fate C.

We used each generated wild-type as an initial genome for further 1 million

generations of evolution in our four different environments. Note that, since

wild-types are already adapted to environment (a), we expect very few dupli-

cations to occur in this environment. The other three environments range from

mild, medium, and heavy change with respect to the original environment; the

intent of these simulations is to evaluate how individuals respond to different

degrees of changes in their environment. Therefore, we expect the genomes that

evolve under (d) to undergo more duplications. For each wild-type and each

environment, we then performed 20 independent simulations.

Finally, we collected the most fit individuals at the end of each simulation

(i.e. the individual which phenotype is the closest to the target function, hence

which fitness is the highest). The extant paralogs that we analyzed were those

found in their genome at the end of the process. As explained above, this

procedure does not consider genes lost after duplication (either through sequence

deletion or inactivation of transcription/translation initiation sequences). Thus,

the pseudogenization fate here only considers extant genes whose activity has

been strongly reduced. The source code is available at https://github.com/

https://github.com/r3zakalhor/Post-Duplication-Fate-Framework
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(a) Genome and mRNAs
(b) Genome and genes

(c) Protein functions (d) Phenotypic function

Figure 5: Overview of an aevol wild-type. Top: sequence level (genome, RNAs
and genes). The double-stranded genome is represented by a circle (thin line).
Black arcs represent mRNAs (a) and genes (b) on each strand (grey arcs repre-
sent non-coding RNAs and non-functional genes respectively). Note the pres-
ence of polycistronic sequences. Bottom: environmental target (red curve) and
functional levels (proteins and phenotype, in black) with one specific function
highlighted in red. (c) Each triangle corresponds to a protein function which pa-
rameters are decoded from the sequence of a gene. Note the presence of function-
activating/repressing proteins (positive/negative triangles respectively). (d) Or-
ganism’s phenotype resulting from the sum of all protein functions. To illustrate
the effect of gene duplication, one protein function has been highlighted in red
on panel (c). This protein is not active enough to fit the target. However, as
the corresponding gene exists in three copies on the genome, the overall effect is
amplified through dosage effect (red triangle on panel d), hence increasing the
contribution of this protein on the y axis without changing the set of functions
it contributes to on the x axis.

https://github.com/r3zakalhor/Post-Duplication-Fate-Framework
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r3zakalhor/Post-Duplication-Fate-Framework.
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Figure 6: The four different environments used in the simulations. On the x-
axis, we assume that the set of functions (biological processes) is the interval
[0, 1]. The y-axis depicts the target level which, for each function, indicates the
ideal amount of expression to survive in the environment.

4 Results

4.1 Fates of duplication

As explained above, starting from wild-types evolved in environment (a) with

different maximum pleiotropic levels wmax, we simulated the evolution of 20

populations in 4 environments (ordered by increased variation compared to the

environment of the wild-type) and for 1 million generations. We first verified

that our phylogenies contain enough fixed duplications to enable studying the

fate of duplicated genes with a reasonable precision. Table 2 shows the number

of duplications per million generations observed for each environment. Recall

that observed duplications are only those that result in at least one pair of

extant paralogs, i.e. we do not consider duplications in intergenic regions, or in

https://github.com/r3zakalhor/Post-Duplication-Fate-Framework
https://github.com/r3zakalhor/Post-Duplication-Fate-Framework
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which a copy is lost.

Env. (a) Env. (b) Env. (c) Env. (d)

Gene dup. rate 4.423 28.681 66.178 80.667

Table 2: Rate of observable gene duplications for each environment (number
of gene duplications fixed per million generations, averaged over every possible
wmax).

wmax =
0.01

wmax = 0.1 wmax = 0.5 wmax = 1

Gene dup. rate 77.414 31.953 18.932 18.109

Table 3: Rate of observable gene duplications for each pleiotropy level (number
of gene duplications fixed per million generations, averaged over every environ-
ment).

Not surprisingly, the rate of fixed duplications is minimum when the organ-

isms evolve in the constant environment (a) and it increases with the amount of

change in the environments. Since each dataset comprises a million generations,

the number of duplications is large enough to observe a large variety of fates.

Interestingly, the number of gene duplications not only depends on the amount

of environmental variation but also on the degree of pleiotropy. Indeed, Table 3

clearly shows that the lower the pleiotropy (i.e. the smaller wmax), the higher

the number of fixed gene duplications (hence the higher the number of paralogs

at the end of the simulation). One explanation is that a smaller wmax implies

that genes have a narrower function spectrum. Thus, having more genes may

increase the chance of adding new functions, thus improving fitness.

Table 4 show the proportions of the different fates estimated on the aevol

simulations (for each wild-type we simulated 4 environments× 20 parallel repeti-

tions evolved for 1 million generations4). The majority of the fates are classified

by our classification rules. The column “Total” reports the sum of proportions

for each row. The gap between these values and 1 can be interpreted as the

4We note here that for some wmax we were able to generate and summarize statistics
for several wild types: for wmax = 0.01 we have five wild types, for wmax = 0.1 one, for
wmax = 0.5 three and for wmax = 1 two, leading to a total of 880 experiments.
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wmax P N DN C SF SP Total Dup. rate

Environment (a)

0.01 0.147 0.318 0.003 0.227 0.032 0.007 0.733 4.703

0.1 0.333 0.181 0.000 0.093 0.004 0.045 0.658 1.875

0.5 0.433 0.135 0.005 0.146 0.022 0.0.19 0.760 4.143

1 0.304 0.212 0.002 0.156 0.019 0.024 0.717 3.844

Environment (b)

0.01 0.049 0.224 0.036 0.439 0.031 0.071 0.849 48.403

0.1 0.051 0.250 0.010 0.498 0.022 0.044 0.875 17.800

0.5 0.188 0.174 0.005 0.444 0.033 0.029 0.872 11.563

1 0.117 0.101 0.006 0.530 0.057 0.027 0.837 13.025

Environment (c)

0.01 0.038 0.261 0.034 0.420 0.027 0.083 0.862 113.428

0.1 0.031 0.252 0.007 0.421 0.016 0.055 0.782 35.700

0.5 0.088 0.156 0.008 0.607 0.034 0.016 0.909 26.33

1 0.080 0.143 0.000 0.547 0.075 0.017 0.863 24.900

Environment (d)

0.01 0.037 0.296 0.050 0.358 0.022 0.105 0.868 159.668

0.1 0.041 0.209 0.006 0.475 0.024 0.054 0.809 60.000

0.5 0.075 0.140 0.008 0.610 0.036 0.024 0.892 33.300

1 0.070 0.141 0.003 0.579 0.047 0.035 0.876 29.300

Table 4: Average fate proportions. Most frequent fates are boldfaced.

amount of fates that remained “unclassified”. It would be easy to turn our pre-

dictions into a probability distribution by normalizing them, but we prefer to

emphasize the fact that paralogs underwent fates that, on average, had between

10-25% of their behavior that did not fit any of the canonical fates. Notice that

environment (a) has the lowest classification rate. This might be explained by

the fact that in this setting, duplications are less likely to contribute to fitness

and may therefore undergo fates that are not as well-understood, in which case

they do not correspond directly to the ones expected from the literature.

Several notable results can be observed from this table. When the organisms

do not need to adapt in environment (a), P tends to be the dominant fate, even

if we only detect observable pseudogenes. This is not surprising, again because
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duplicated genes are unlikely to contribute to fitness. The fact that the N fate

dominates for wmax = 0.01 is likely because genes have limited individual effect,

hence allowing their maintenance and their neofunctionalization, as discussed

below. When the organisms must adapt to a new environment (b, c and d),

the most frequent fate of duplications is C, followed by N . The high level of

conservation may be attributed to the changes in the target levels in the fitness

curves, as the new environments require dosage adaptation for genes function

(see Figure 5 for an example of such effect). Indeed, one can see from Figure 6

that significant portions of the functional landscape require increased expression

levels. This suggests that the genes performing these functions were duplicated

and conserved for amplification, while other genes used neofunctionalization and

performed the remaining extra functions required. Overall, the fates C,N, P are

more frequent than SF, SP, and DN . This partially agrees with the findings

of Assis and Bachtrog (2013), who found that C,N > SF, SP on Drosophilia

datasets. However, they found more N than C, warranting further investigation.

Moreover, we observe that the rate of N decreases as pleiotroty increases,

which is not surprising. As wmax increases, the range of functions performed

by an individual gene increases, hence the probability that one duplicate loses

the ancestral function and acquires a new one decreases. A most striking result

is the very low percentage of SF . However, this result is coherent with the

theoretical predictions of (Lynch and Force, 2000) and the experimental results

of (Assis and Bachtrog, 2013), and probably results from the fact that SF

provides no fitness advantage (since the extant function is the same as the

ancestral one) but requires a transitory loss of fitness (when both copies have not

yet diverged). Notably, the proportion of SF tends to increase with wmax. This

may be explained by the fact that a higher pleiotropy level allows for alternative

adaptive pathways (by adapting either genes with a high/low pleiotropy) which
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can compensate each others. A similar reasoning applies to SP , which has low

frequency in general, but has the inverse relationship with wmax. Perhaps this

is because SF tends to take over the “sharing of functions” fates as pleiotropy

increases, for the reasons mentioned above. Finally, DN is by far the rarest

event, occurring in highest proportions when wmax = 0.01, which is expected

as small pleiotropy makes it easier to diverge.

4.2 Fates and time of duplication

We also evaluated the relationship between the fate of a duplication and the

time at which it occurs (in terms of number of generations). We formed bins

of 100,000 generations each and, for each duplication event across all simulated

wildtypes and environmental conditions, we put the duplication in the bin con-

taining the generation it occurred in (recall that generation 0 is the most ancient

and 1M the most recent). Then for each bin, we computed the average propor-

tion of each fate within the bin (sum of fate proportion divided by number of

duplications in the bin). Table 5 presents the number of duplications in each

bin, and Figure 7 illustrates the relationship between time and fate.

Env. \Bins 100K 200K 300K 400K 500K 600K 700K 800K 900K 1000K

(a) 164 67 41 45 79 119 68 60 61 50

(b) 2,207 127 145 99 94 73 67 66 209 129

(c) 5,529 218 410 97 94 110 94 77 74 246

(d) 6,570 213 90 85 92 81 107 63 49 62

Total 14,470 622 686 326 359 383 336 266 393 487

Table 5: Number of duplications per generation bin, for bins of size 100K, for
each environment. For instance, column 400K contains the number of duplica-
tions during generations 300K to 400K.

It is immediately apparent from Table 5 that almost all duplications occur

within the first 100K generations when the environment changes (env. (b), (c),

(d)). Although this may not appear as a surprise, recall that in aevol, dupli-

cations are only one of the many evolutionary mechanisms that affect genome
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Figure 7: Average proportion of each duplication fate per generation bin.

evolution (other events include substitutions, InDels, transpositions, inversions

and segmental deletions). The fact that duplications are so prevalent early on

therefore shows how important it is during phases of adaptation. A detailed

comparison of the adaptation power of duplications against other evolutionary

mechanisms is out of the scope of the current paper, but it will be interesting

to perform these analyses in the future (Banse et al., 2023). In any case, there

appears to be no trend in the number of duplications after 100K or 200K gener-

ations. One may arguably view the early duplications as necessary for selection,

and the later ones as duplications becoming fixed by chance.

As for Figure 7, the fates C, N , and P remain largely dominant through

most generations, which is to be expected from the results of the previous sec-

tion. Notably, P is rare in the early generations since duplicates tend to be

preserved for adaptation, but quickly sees a sharp increase as duplications start

to introduce redundancy. Interestingly, the last 200K generations introduce sig-

nificant variations in the fate proportions. First, there is a sharp increase in

the amount of Conservation towards the end, going from 0.2 in the 800K bin to
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0.55 in the 1000K bin, which is in line with the intuition that time is needed for

divergence (and hence there may not be enough time for the duplicated genes

to become P or N). Since all the predicted fates in our experiments sum to at

most 1, the other fates see a decrease in these last 200K generations, which also

explains why C appears to be inversely correlated with P and N .

4.3 Fates and successive duplications

We also checked whether rounds of successive duplications could affect fates.

When a gene duplicates and one or both copy also duplicate later on, it is

possible that a bias towards certain fates is introduced. Therefore, for each

duplication g, we looked at the number of descendants of g in its gene tree

(see Algorithm 1), where here the number of descendants is the number of

leaves under the duplication node. For instance, g having two descendants

means that no copy duplicated further, having three descendants means that

one copy also duplicated, and so on. The second column of Table 6 reports

the number of duplication events encountered for each number of descendants.

The vast majority of duplications have only two descendants and, across all the

simulations, the maximum number of descendants of a duplication is 16. The

other columns report the average proportion of fates, for the pair of paralogs

whose common ancestor has the number of descendant for the row.

Generally speaking, the numbers shown in Table 6 are distributed in a similar

manner across the rows, and are also similar to the fate proportions reported

in the previous section. It is worth noting that C decreases as the number of

descendants increases. This is likely because when an ancestral gene produces

several pairs of paralogs, only a few of them may preserve the original function,

as otherwise this would create overly high dosage effects. Therefore, even though

a few pairs of paralogs may preserve the function, the number of paralogous pairs
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that do not tend to bring the proportion of C down. Also, DN seems to increase

with the number of descendants (until 10, afterwards we do not have enough

statistical power), probably because the successive duplications produce copies

that are free to develop new functions. In the future, it might be beneficial

to classify the fate of a duplication more “locally”, that is, by looking at its

descending genes until a certain point, as going too far down the gene tree may

introduce interference in our analysis.

Nb descendants Nb dups Subfunc Neo Cons Pseudo Spec Dblneo Total

2 14,044 0.0029 0.218 0.498 0.053 0.054 0.017 0.868

3 2,659 0.028 0.261 0.422 0.048 0.080 0.031 0.869

4 876 0.026 0.282 0.370 0.049 0.098 0.040 0.865

5 349 0.027 0.293 0.291 0.055 0.119 0.063 0.849

6 172 0.029 0.281 0.281 0.045 0.132 0.092 0.860

7 88 0.033 0.289 0.287 0.035 0.128 0.078 0.851

8 44 0.021 0.227 0.240 0.073 0.168 0.098 0.825

9 30 0.028 0.256 0.232 0.065 0.120 0.143 0.844

10 13 0.032 0.259 0.256 0.034 0.098 0.134 0.813

11 6 0.009 0.212 0.235 0.006 0.045 0.027 0.534

12 2 0.009 0.559 0.230 0.000 0.150 0.000 0.948

13 3 0.000 0.265 0.156 0.000 0.165 0.009 0.595

14 2 0.013 0.164 0.079 0.141 0.000 0.000 0.397

15 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

16 1 0.000 0.303 0.188 0.333 0.119 0.026 0.970

Table 6: Average proportion of fates per number of descendants. The second
column reports the number of duplication events for each number of descen-
dants, and the last column the sum of fate proporitions for each row.

5 Discussion

In this manuscript, we introduced a formal methodology for categorizing the

fates of gene duplications based on the functions of existing paralogs and the

ancestral gene. The aim is to offer the scientific community precise definitions

and a mathematical toolkit for distinguishing between various fates. Indeed,

without a comprehensive toolkit, the comparison of experimental and/or theo-
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retical studies becomes extremely challenging, thereby restricting the potential

for understanding gene duplication—a mechanism widely regarded as pivotal

in molecular evolution. Our framework underwent thorough testing using sim-

ulated data from aevol, an independently developed platform. Our tests con-

firmed several, but not all, tendencies reported in the literature (Guillaume and

Otto, 2012; Assis and Bachtrog, 2013), showing the relevance of our classifica-

tion. Further work will permit to study a broader set of parameters, both for

the simulations and for the classification thresholds, to confirm these trends.

Incidentally, our results also confirm the interest of using aevol as benchmark

to test bioinformatics tools.

Our research opens several fields of research, spanning comparative genomics,

phylogenetics, simulation, and, notably, evolutionary biology. While a substan-

tial proportion of gene duplicates is classified (> 0.70 in all scenarios), indicating

progress, it underscores the necessity for additional investigation into the un-

classified fates. Furthermore, although not detailed in this report, we have

identified a minor fraction of “hybrid fates” that warrant dedicated scrutiny.

Lastly, it is important to acknowledge that our methodology, centered on ex-

tant paralog analysis, falls short of encompassing the complete spectrum of

pseudogeneization fates. Indeed, in our results P is always lower than 20% (ex-

cept in constant environment – see Table 4), which is much lower than the 80%

observed in the Zebrafish (Otto and Yong, 2002). We conjecture that the varia-

tion stems from the specific approach in choosing gene duplicates in this study.

An exciting avenue for research involves expanding the P class to encompass

the entire spectrum of pseudogeneization fates. Finally, we could use real data

available in published datasets such as (Gaudet et al., 2011) to further test our

approach. While aevol simulations enabled testing the continuous version of

our framework, other datasets could enable testing the discrete version, e.g. by
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classifying paralogs annotated with Gene Ontology (Zhao et al., 2020).

In this study, we employed aevol to evaluate our framework, demonstrating

its ability to produce data resembling real-world observations. This encourages

us to delve deeper into the exploration of gene duplications within the simula-

tor. Notably, aevol not only provides the end results of organisms but also sup-

plies information about past individuals and the precise gene phylogeny. This

enables us to discern the precise trajectory of each gene along every branch, en-

compassing instances of gene loss. We used this information to refine our study

and tested how the fate of duplicated genes evolves in time after the founding

duplication event, a question that is almost impossible to study in vivo. We

showed that although, on the long term, Conservation, Neofunctionalization

and Pseudogenization are the most probable fates, immediately after the du-

plication events, the dominant fate is Conservation. Let us also note that it is

likely that this dominance depends on the type of environmental variation as, in

our experiments, the variation favors gene amplification. Further studies could

reveal which fates are more likely to open the path to others, an information

that could be used to predict the evolution of specific gene branches following

recent duplications. The model also enables “in silico genetic engineering”. We

intend to create a set of mutants by manually duplicating genes and allowing

them to evolve. This approach will pave the way for a systematic examination

of gene duplication within the model. We could also observe the fate of du-

plicates in more specific settings, such as after a Whole Genome Duplication

(WGD), and check whether it depends on the characteristics of the ancestral

gene (e.g., on essentiality, pleiotropy or transcription level...). In aevol, WGD

can easily be simulated by evolving wild-types with low-y target functions and

then propagating these wild-types in a new environment where the target func-

tion is multiplied by two. Using this procedure, we can observe the fate of the
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duplicated genes immediately after the WGD but also after thousands or even

millions of generations. We plan to test this exciting prospect in a near future.

Another interesting avenue of research would be delving into the influence of

regulation on the frequency of fates, particularly in relation to subfunctionaliza-

tion. Although the current iteration of aevol does not incorporate regulation,

there is an ongoing development of an extension to encompass the evolution of

transcription factors. This extension aims to provide insights into how regula-

tion might affect these aspects.

Finally, it would also be interesting to study how specific biological dupli-

cation mechanisms, for instance unequal crossing over, tandem duplication or

retrotransposition (Reams et al., 2012), are associated with fates. Such investi-

gations would probably require to analyse not only gene functions but also gene

genealogies.

Applying our framework to real data would require as input a set of genes

and the knowledge of their functions and gene expressions. With the sequences

at hand, we would need to align them and reconstruct a phylogeny from the gene

family alignment, and infer duplication events via reconciliation tools (Jacox

et al., 2016, for example). Then, using as input the gene phylogeny and the

functions of the extant genes, the functions of ancestral genes could be predicted

using tools such as PAINT (Gaudet et al., 2011) or PANTHER (Mi et al., 2017).

Finally, ancestral gene expressions could be reconstructed by inferring ancestral

transcriptomes, similarly to what done in (Mika et al., 2022). This would enable

us to analyse real data, which we leave for future work.
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