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COVID-19 Bed Management Using a Two-Step
Process Mining and Discrete-Event Simulation

Approach
Jules Le Lay, Vincent Augusto, Edgar Alfonso-Lizarazo, Malek Masmoudi, Baptiste Gramont,

Xiaolan Xie, Fellow, IEEE, Bienvenu Bongue, and Thomas Celarier

Abstract—The sudden admission of many patients with similar
needs caused by the COVID-19 (SARS-CoV-2) pandemic forced
health care centers to temporarily transform units to respond to
the crisis. This process greatly impacted the daily activities of the
hospitals. In this paper, we propose a two-step approach based on
process mining and discrete-event simulation for sizing a recovery
unit dedicated to COVID-19 patients inside a hospital. A decision
aid framework is proposed to help hospital managers make cru-
cial decisions, such as hospitalization cancellation and resource
sizing, taking into account all units of the hospital. Three sources
of patients are considered: (i) planned admissions, (ii) emergent
admissions representing day-to-day activities, and (iii) COVID-19
admissions. Hospitalization pathways have been modeled using
process mining based on synthetic medico-administrative data,
and a generic model of bed transfers between units is proposed as
a basis to evaluate the impact of those moves using discrete-event
simulation. A practical case study in collaboration with a local
hospital is presented to assess the robustness of the approach.

Note to Practitioners: Abstract—In this paper we develop
and test a new decision-aid tool dedicated to bed management,
taking into account exceptional hospitalization pathways such as
COVID-19 patients. The tool enables the creation of a dedicated
COVID-19 intensive care unit with specific management rules
that are fine-tuned by considering the characteristics of the
pandemic. Health practitioners can automatically use medico-
administrative data extracted from the information system of the
hospital to feed the model. Two execution modes are proposed:
(i) fine-tuning of the staffed beds assignment policies through a
design of experiment and (ii) simulation of user-defined scenarios.
A practical case study in collaboration with a local hospital is
presented. The results show that our model was able to find the
strategy to minimize the number of transfers and the number of
cancellations while maximizing the number of COVID-19 patients
taken into care was to transfer beds to the COVID-19 ICU in
batches of 12 and to cancel appointed patients using ICU when
the department hit a 90% occupation rate.

Index Terms—Discrete Event Simulation, Healthcare Applica-
tions, Process Mining.
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I. INTRODUCTION

BED management is a crucial matter in health care centers,
and the occupancy ratio of medical units (MU) is an

important indicator of performance for hospital managers.
Keeping a small number of unoccupied beds is costly but
necessary to address emergency admissions and patient surges.
Resource sharing, through the creation of new MUs for
example, makes sense to take into care patients with special
requirements that do not fit in acute care and very specialized
units, such as patients with multimorbidity.

During spring and autumn 2020, SARS-CoV-2 (coronavirus
disease 2019, abbreviated as COVID-19) caused a massive
increase in recovery unit requirement, compelling hospital
managers to open new beds and convert others. To avoid
the contamination of patients and staff in health care centers,
dedicated units were created and isolated from the rest of the
facility. Simultaneously, to provide additional staff and beds
for this new COVID-19 pathway, other MUs had to cancel
their scheduled admissions. Operational research and indus-
trial engineering techniques, such as discrete-event simulation
(DES), are useful to size such new organizations and test
response strategies and their impact on the whole facility via
a systemic approach.

To apply a systemic approach for MU sizing, we need to ac-
curately model both COVID-19 and non-COVID-19 patients’
hospitalization pathways. Process mining (PM) techniques can
be used to analyze existing pathways based on available
medico-administrative data in a health care center and to
summarize the results into a graph. Such representation can be
used to generate patient pathways for the simulation model.

The objective of this work is to provide a decision-aid tool
for hospital managers and practitioners to help answer the
following questions, taking into account the sudden surge of
COVID-19 patients:

• How many and which planned patient hospitalizations
should be canceled?

• How many resources from which MUs should be trans-
ferred to dedicated COVID-19 units ?

The scientific contribution of this article is threefold:
1) A new methodology using PM to learn from hospital-

ization pathway data and generate new patient matching
with the population of interest is proposed. It auto-
matically generates patient replicas from cohorts using
medico-administrative data available in the hospital.
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2) A generic hospitalization meta-model allowing the simu-
lation of sequences of care within a hospital is designed.

3) A MU sizing approach combining patients’ hospitaliza-
tion pathways generated using our PM approach (1) and
our hospitalization meta-model (2) is developed. DES is
used to run test scenarios and manage the COVID-19
units.

The remainder of this article is organized as follows.
Section II presents insightful related works and provides the
positioning of this paper against the literature. Section IV
presents the PM approach used to generate patients that will
be used within DES. Section V details the modelling of the
COVID-19 epidemics. Section VI describes the application
of our method to the University Hospital of Saint-Étienne
(France) before analyzing the results. Section VII concludes
this paper and presents further research opportunities.

II. RELATED WORK

A. Healthcare Simulation and discrete-event simulation

As explained in [1], DES is a stochastic method of sim-
ulation in which individual entities pass through a network
of queues and activities, and it is traditionally used at an
operational level [2]. DES has been extensively covered in the
literature, as [3] identifies DES as the second most commonly
used simulation technique in health care systems and in a wide
variety of scenarios. In a systematic review on DES articles
published between 1997 and 2017, [4] identifies 4 main areas
of use for DES: health and care systems operation, disease
progression modeling, screening modeling and health behavior
modeling. However, 65% of the 211 studies focus on system
operations, which enforces the idea that DES is mainly used
for tactical-level decision making. This category groups papers
covering problems such as staff or patient scheduling, capacity
management and evaluation of operational changes. A good
example of operation modeling can be found in [5], where 3
case studies illustrate the use of DES as a financial evaluation
tool or a decision tool for capacity planning. Similarly, [6]
studies the impact of integrating HIV patients and general
consultation in one department on waiting times and sets into
relief the causes of the observed increase in patient waiting
times.

DES studies in healthcare mainly focuses on the ED [4].
Indeed [7] identified 254 papers published on this subject
between 2000 and 2018, with a strong increase in the last
10 years reviewed. The main investigation area found was
the improvement of performance. Recently [8] used DES
to evaluate the impact of organizational changes (like the
addition of resources and caregivers) on performance metrics
in the emergency department (ED)s of two Toronto hospitals.
A generalizable DES framework for ED was presented by
[9], and implemented on an Australian ED. However, some
facility-specific processes must be explicitly represented in the
model.

After ED, [4] notes that a high interest is taken in intensive
care units (ICUs). Recently, [10] models an ICU department
subject to planned and unplanned admissions. The DES model
captures the patient flow in the ICU and assesses the capacities

needed to handle patients in the different specialties of the MU.
Departments like ICUs are deeply connected to other units, and
the solution for improving the patient flow can be found in the
patient’s pathway management. [11] test the effect of different
control policies on the performance of an ICU department. The
assessed policies are applied to the ED, MU and intermediate
care units. For instance, postponing planned surgeries is one
of the policies evaluated and considered as a viable option for
the short-term handling of the pandemic.

Global models are rarely designed but are becoming more
common [4]. ”Whole hospital” DES models tend to study
the main areas of the hospital, namely, emergency, medicine
and surgery, with different levels of detail. Based on previous
experience and an extensive literature review, [12] establish a
4-level classification of models, from generic to specific:

1) Broad ‘generic principle’ model, e.g., a generalized
theoretical queuing model;

2) Generic framework that can be developed into a toolkit;
3) Setting-specific generic model, where specificity is en-

sured by a change in the input data;
4) Setting-specific model, i.e., not necessarily transportable

to another provider of the same service.

[13] aims to provide a “macro level overview of the hospital
system”, where the main variable studied is the occupancy
of the emergency, medicine and surgery MUs. Two additional
units are modeled: the extended emergency care unit (designed
for monitoring patients from the ED before being discharged),
and the acute medical unit, an assessment unit for general
medical and acute care elderly patients. The model is validated
for daily operations and is intended to act as a decision aid
tool for implementing organizational changes. However, this
model does not take into account sudden increases in arrivals
that can create crowding in the hospital. [14] design a model
to evaluate such situations, called surges. The model focuses
on the emergency, medicine and surgery units and is designed
to test the impact of different policies on a set of variables
describing the hospital’s state. It designed in collaboration with
health care centers but is sufficiently generic to be applied in
other facilities, provided access to the required data. Since
most hospitals share the same concerns of optimizing the use
of available resources and managing patient pathways while
running near capacity, generic models allow developers to save
time by tailoring these pre-existing models to their needs.

The ongoing COVID-19 pandemic has caused a massive
influx of patients in hospitals, most requiring prolonged hos-
pitalizations in ICUs, thereby creating new challenges for
hospital managers. In this context, [15] identify several areas
where simulation modeling could support decision makers
during the pandemic. Eleven decisions that could be assisted
by simulation tools have been identified and mapped in terms
of their area of impact and appropriate techniques. For oper-
ational management in the ICU, [16] propose an adaptation
of their model to handle COVID and non-COVID patients
in the ICU. In particular, they study the impact of capacity
and arrival rates on the throughput of service to improve
patient flow management. [17] developed in the early stages
of the epidemics a DES model for decision-support on short-
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term planning of beds in Navarre, Spain, a work that was
extended in [18]. It calculates stochastically the number of
beds necessary to face the patients influx in hospitalization
and ICU beds. It does not take into account the operational
decisions needed to make the beds available, but gives decision
makers information on the likely hospital attendance on the
short term.

Other studies combine epidemiological models with DES to
study the COVID-19 epidemics and response scenarios. [19]
and [20] both used variation of the SIR (Susceptible - Infected
- Recovered) model to forecast the number of COVID patients
to care for. [19] represented geographic areas as a red of nodes,
each running a locally-tuned SEIR (Susceptible - Exposed
- Infected - Recovered) model. [20] used a more advanced
SEAIRD model (Susceptible - Exposed - Asymptomatic -
Infected - Recovered - Death) in combination with multi-
agent simulation to measure the effects of lockdown policies.
Reinforcement learning is then used to determine the best
lockdown resource allocation policy to adopt. The present
article focuses mainly on challenges 6 and 8 identified in [15],
i.e., hospital capacity and resource management, and aims to
optimize the organization of a regional hospital, using DES as
a decision tool.

B. Process Mining for Trace Generation

PM is a relatively recent technique in business process
management that has become popular in the past 15 years [21].
It combines data science and business process techniques to
analyze operational processes from event data. The literature
often divides PM into 3 main areas: process discovery, con-
formance checking and process business enhancement [22].
Processes in health care are complex, and decisions taken
during a patient’s stay depend strongly on the current state of
the health care system and the patient’s characteristics. Thus,
PM can be seen as an opportunity to clearly identify processes
using a comprehensible technique and to understand the global
behavior of patients and underlying patterns. Overall, process
discovery is dominant in the health care literature [23], [24].
As noted in [23], there is an opportunity to use PM techniques
with multiple MUs or facilities, as it is most frequently applied
for discovering health care processes in a single unit. This
approach may be especially useful to identify macroscopic
pathways and recurrent relations between services. Simulation
is the most commonly used technique for process enhancement
according to [23]. In particular, DES has been successfully
used with PM on several occasions. In [25], event logs are
transformed into DES models. From the study of the clinical
pathway, [26] implement the resulting net of the PM approach
in a hybrid agent-based and DES simulation model. The net is
translated into an agent state-chart, and a simple DES model
is then used for medical decisions in each state.

In this paper, we use PM to learn from historical hospi-
talization pathways data using a discovered graph to generate
new patients matching the population of interest, taking into
account macroscopic pathways and relations among depart-
ments.

III. PROBLEM SETTING

A health care center is a complex system where patients,
health practitioners, and administrative personnel interact fre-
quently and use a great variety of supplies, such as med-
ications, equipment or numeric devices to access patients’
electronic files. Our objective is to provide practitioners a
decision-aid tool to assess the effect of organizational changes
on bed requirements in the hospital. Thus, we focus on a
macroscopic model of the care processes of the hospital.

A. Hospital Description

Since we focus on macroscopic care processes, we disregard
the treatment of patients themselves, such as the administration
of drugs, the nurse care episodes, and appointments with
doctors. Thus, the hospital is a set of entities (MUs) that
deliver care to patients.

A MU µ is a medical entity dedicated to the care of patients
with certain conditions. Each unit µ is characterized by its
identifier in the database id, its capacity c measured as the
number of beds available, its type a regarding the present
problem (see section V-C), and the length of stay distribution
D in this unit. We formally define this agent as follows:
µ = (id, c, a,D). Finally, H is the set of all MUs of the
hospital, H = {µi|i ∈ 1..N}, where N ∈ N is the number of
units in the hospital.

B. Patient Description

A patient is an entity receiving care in the studied hospital,
defined by the ordered sequence of stays in individual units.
Let π = {µij |i ∈ [[1 ;N ]], j ∈ [[1 ; J ]]} be the pathway of a
patient with J ∈ N stays, where i is the unit index and j is
the relative position of the stay in unit µi in pathway π. The
population of all patients is denoted as Π and is further divided
into two subsets, Πem and Πp, corresponding to (i) patients
admitted to the hospital after an ED visit and (ii) patients
directly admitted into MUs. This distinction is made to take
into account the difference in management of care between
an emergency admission, which cannot be anticipated by
the hospital, and planned stays, which are known before the
admission of the patient.

C. Hospitalization Pathway

Fig. 1 describes our generic hospitalization pathway us-
ing a Petri (or place/transition) net. It is a bipartite graph
representing places (nodes of the net) and transitions (links
between the places). Planned admissions are modeled using
source transition tp, while emergent admissions are modeled
using source transition te. Place p1 models the stay in the ED,
and place p2 models the stay in any unit µ of the hospital.
Transition tED shows the transfers from ED to other units,
while planned patients transit directly to p2. At this point,
depending on the trace of the patient, the patient loops through
a sequence of MUs (transitions t1, . . . , tNℓ

) until the discharge
(transition td), still represented by place p2.
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Fig. 1: Generic hospitalization pathway Petri net

D. COVID-19 units and COVID-19 patient pathway

In the present study, we aim to assess the effect of the
admission of COVID-19 patients in the ICU on the care routine
in the hospital. COVID-19 patients can be hospitalized in
a dedicated ICU (named COVID-19 ICU), short stay unit
(COVID-19 short stay), or in both unit in any possible order.
The admission in each unit as well as the transfer probabilities
between these units are calculated using the ScanCovid open
data [27] provided by the ATIH (Agency for Information on
Hospital Care). We also estimate the distribution of length of
stay using the same ScanCovid open data.

E. Summary

In this section, we defined a generic hospitalization pathway
using a formal Petri net model, which can be altered with
one or more exceptional hospitalization pathway, such as the
COVID-19 patient pathway.

IV. PATIENT HOSPITALIZATION PATHWAY GENERATION
USING PROCESS MINING

The methods and tools proposed in this article are intended
to be used with commonly available medico-administrative
data in a hospital. This section describes the method we pro-
pose to automatically turn a medico-administrative database
into data that can be used to populate our model.

To use PM techniques, we first need to format the data
information of all patients as event logs. The following section
details this formatting and the further transformation into a
graph. We also propose the trace generation process used in
the simulation.

A. Process Mining

Definition 1 (Event): An event e = (l, θ) is a couple of a
label l, representing an activity, and the time of the event θ,
called a timestamp. Let Nℓ ∈ N be the number of possible
labels.

In this study, an event models a stay in a MU, the label
giving the name of the unit and the timestamp corresponding
to the date of admission to the unit.

Definition 2 (Trace): A trace σ =< e1, e2, . . . , ent >, nt ∈
N is a chronological sequence of events linked by a unique
identifier.

A trace represents the inpatient’s sequence of stays in
individual units that occurred between his or her admission
and discharge.

Definition 3: An event log L = {σ1, . . . , σ|L|} is the set of
all traces corresponding to the input data of the study, i.e., all
included hospital stays.

We use the fuzzy miner algorithm from [28] to build a
graphical representation of the process from the data stored
in L. This graphical representation can be described as an
oriented graph G = (V,C), with V being the set of nodes in
the graph and C being the set of oriented arcs. In addition, we
impose that (i) G should have only one source node and only
one sink node, (ii) G should be acyclic, and (iii) V contains
as many nodes as event labels from L.

Definition 4 (Frequency): The frequency f(n1, n2) asso-
ciated with an arc is the number of observations in L of
transitions between MU µ1 and µ2 represented by nodes n1

and n2.
Definition 5 (Hospitalization process map): A hospitaliza-

tion process map H = (V,C, P ) is an oriented acyclic graph
with

• V the set of nodes, |V | = Nℓ + 2,
• C the set of oriented arcs,
• P : V × V → Z the function returning the probabil-

ity to transit from one node to another, P (n1, n2) =

f(n1, n2)/
∑

k∈|V |\{n1}

f(n1, k).

A node of set V corresponds to a MU of the studied hospi-
tal, the label of our event. In addition, there are two particular
nodes: the source node nsource, which is the fictitious origin
point of all traces, and the sink node nsink, which is common
to all discharged patients. Thus, we have |V | = Nℓ + 2.

An oriented arc (n1, n2) ∈ V ×V represents possible trans-
fers of patients between MUs n1 and n2. From the data stored
in log L, we are able to calculate the frequency f(n1, n2)
of each transfer and the probability for a patient in MU
n1 ∈ V \{nsink} to be transferred to MU n2 ∈ V \{nsource}.

Example 1 (Event log and associated hospitalization process
map):

Fig. 2 is an example of the conversion of a simple event
log into a hospitalization process map. This example uses an
event log describing the cases of 2 patients in a process with
3 activities.

B. Trace Generation

Our hospitalization process map from Definition 5 obtained
using the PM algorithm is used during the simulation to
generate patients similar to the modeled cohort (e.g., sched-
uled, planned, or COVID-19 patient hospitalization pathways).
We use an automatic procedure detailed in Algorithm 1 to
determine the patient’s pathway σ = (n1, n2, ..., nsink) using
a hospitalization process map as input.

In Algorithm 1, we build an empty trace σ for the generated
patient. For the first step of the stay, i.e., the admission of
the patient to a MU, we build an ensemble χ0 that contains
all MUs directly following nsource in H and their associated
probabilities (see line 2). To complete the trace, we recursively
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Fig. 2: Simple Event Log and Associated PM Graph Generated
with Disco Software

Case ID Timestamp Activity
Patient 1 01/01/2021 A1
Patient 1 05/01/2021 A3
Patient 2 03/01/2021 A1
Patient 2 05/01/2021 A2

Algorithm 1 Trace generation
1: σ ← ∅ {Initialize σ}
2: χ0 ← {ecandidate = (ei,P(nsource, e))|e ∈

V,P(nsource, e) ̸= 0} {Build χ0}
3: Select n1 among elements ecandidate in χ0 following

probabilities P {Select the first element of σ}
4: σ ← {n1} {Assign to σ}
5: while ni+1 ̸= nsink do
6: i← card(σ)
7: Build χi = {ecandidate = (ei,P(ni, e))|e ∈

V,P(ni, e) ̸= 0} {Set of potential transfers}
8: Select ni+1 among elements ecandidate in χi following

probabilities P {Select the next stay in the trace}
9: σ ← {n1, n2, ..., ni+1} {Assign to σ}

10: end while {Repeat until discharge of patient}
11: Assign σ to the patient’s trace π

build the set of candidate stays χi using the last element (stay
in a MU) of the trace σ and select a new stay following the
transition probabilities. The algorithm stops when the selected
candidate element corresponds to the sink, i.e., when the
patient is discharged.

C. Summary

In this section, we provided an automatic procedure to
generate virtual patients similar to a cohort defined through an
event log. For a real case application, the procedure described
in table I could be applied by practitioners for all cohorts of
patients of interest.

Step Instructions
1 Extract medico-administrative data following inclusion criteria

defined by health practitioners (e.g., all adults admitted to the
hospital through the ED).

2 Execute a PM algorithm (such as fuzzy miner), adapted to the
needs of the particular study, to obtain a hospitalization process
map.

3 Execute Algorithm 1 to generate a virtual patient similar to the
set of patients of the cohort of interest.

TABLE I: Procedure to apply the PM framework in a simula-
tion study.

The following variables are necessary to execute this pro-
cedure:

• anonymous patient identifier,
• MU sequence to which the patient has been admitted,
• date of admission in each MU.
Our patient hospitalization pathway generation approach is

different from a frequentist analysis, as filtering performed on
the data modifies the transitions probabilities. In addition, the
use of our approach allows the standardization of the patient
generation process and simplifies its application to other
healthcare centers. Using a different PM algorithm allows to
capture different aspects of the pathway (the temporality of
the sequence for instance). Finally, the output of our approach
can be directly injected into the simulation module.

In our case-study, described in Section VI, we generate
virtual patients to simulate the day-to-day activities that are
disrupted by COVID-19 crisis. We extended this method in
[29]. We generated 33% of the traces from the original dataset,
using fuzzy miner, a 95% filter, 150 generated variants and no
more than 2 occurrences of the same activity, resulting in a
satisfying representation of the original dataset, as 21 variants
represented more than 90% of the traces.

In the following section, we define the generic hospitaliza-
tion model used for DES.

V. COVID-19 CAPACITY MANAGEMENT

The present article demonstrates how our simulation model
can be used as a decision-aid tool to elaborate a response to
the COVID-19 epidemics. This section is divided in four parts
that describe covid patient admissions, the potential healthcare
center’s response, the experiment plan for fine tuning response
policies, and the section’s conclusion.

A. COVID-19 arrival patterns

First we focused on the accurate modeling of COVID pa-
tients. In this paper, we vary the COVID-19 patients generation
pattern to test how it affects the system and the response
strategy. Two admission strategies were tested. Since the
ScanCovid data provide admission rates for the whole region,
we scaled down the numbers to match the studied hospital’s
population pool. We modeled the first wave of COVID-19,
that occurred in 2020 and the waves 2, 3 and the time interval
between the two successive waves, which is characterized
by a moderate admission rate. These arrival patterns model
two interesting situations for healthcare professionals: a first
scenario with a massive arrival of patients in a short timespan,
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with similar initial and final situations without COVID patient
admissions and a second scenario with two waves of admission
separated by a constant and intermediate admission rate period.

B. COVID-19 management rules

As explained in III-D the hospital response to the arrival of
COVID patients is the creation of a dedicated aisle, composed
of two units: the COVID ICU and short-stay units. To allow
care in this COVID-19 dedicated aisle, the hospital can activate
two drivers: transfer beds from other units and convert them
into ICU or short-stay beds, or cancel planned patients before
their arrival at the hospital. The first driver allows COVID
patients’ care, while the second reduces care activity in the
units affected by bed transfers.

For this purpose, we divide MUs into four distinct types:
T1 : units that cannot be affected by COVID-19 episodes.
T2 : units in which planned patients can be canceled to

make staff available.
T3 : units in which beds can be converted to COVID-19

ICU care.
T4 : units in which beds can be converted to COVID-19

short-stay care.
There are 4 T3 units: the ICU and the 3 different surgery

units. T4 units are all the hospitalization units with sufficient
baseline capacity to maintain an activity on usual patients after
COVID-19 requisitions.

1) Resource reassignment: The total number of beds that
can be transferred from each T3 and T4 unit is defined
upstream. We calculate the daily incoming and outgoing flow
of COVID patients and decide whether the COVID services
need more beds or if some beds can be redirected to their
original MUs. The number of beds transferred from each
MU is determined during the simulation depending on the
number of available beds in each MU, the maximum number
of transferable beds and the arrival and discharge of COVID
patients. This process is further described in table II.

We consider that the transfer of beds and associated staff
from T3 and T4 units takes 24 hours, which represents the
work needed to prepare the beds and organize the staff’s
work schedules. Available beds are set aside immediately for
transfer, the rest are transferred when a patient is discharged
from the unit. If the COVID service is full, the patients wait
in a queue and are discharged if not admitted in the first 48
hours. We consider that the hospital decides the transfer of
batches of beds instead of individual beds.

2) Planned hospitalization cancellation: The direct con-
sequence of dedicating beds to the treatment of COVID-
19 patients is the decrease in the number of beds available
for the care of other patients. Indeed, we have seen dur-
ing this pandemic that most hospitals had to delay planned
hospitalizations in conventional MUs and make more staff
available for COVID-19 units. We have modeled this by
enabling stays cancellation before their admission to the MU.
These cancellations only concern scheduled patients, as we
can not predict and cancel emergency patients. We define
two cancellation policies: (1) “By ICU”: the patient’s stay is
canceled if the patient is admitted in a T2 unit and has a stay in

TABLE II: Necessary conditions to trigger the transfer of beds
to or from the COVID-19 ICU.

Daily evolution a COVID ICU
Capacity

Occupation
Rate

Action

⩾ 2 0 - Add beds
̸= 0 ⩾ 95% Add beds

-1 ⩽ . ⩽ 1 b ̸= 0 = 100% Add beds
̸= 0 ⩽ 75% Remove beds

⩽ -2 ̸= 0 =100% Add beds
̸= 0 ⩽ 80% Remove beds

a Daily evolution is calculated as the difference between the number
of arrivals and the number of discharges over 24 hours.
b Beds are transferred if and only if the COVID situation stagnated
for 3 consecutive days to stabilize the situation.

the ICU in his pathway, and the ICU occupation rate exceeds a
percentage (that is an experiment plan parameter), or (2) “By
Block”: the first stay of the patient is in a T3 unit, and the
ICU occupation rate exceeds a percentage. These 2 solutions
are tested in our experiment plan described in Section V-C.

For policy (1) the program looks at the whole generated
trace of the patient and cancels his stay if the conditions are
met. For policy (2) the program looks at the first hospitaliza-
tion step only. These policies aim to cancel only scheduled
patients with a high risk of using the ICU facility, for instance
patients hospitalized in a service before a surgery.

C. COVID-19 policy tuning

As explained in V-B, to increase the capacity of ICU and
short-stay COVID-19 units, the hospital rely on two drivers:
using resources from other units and cancelling appointed
patients. We intend to use the simulation model to test these
policy parameters. We formalize here the elements of this
experiment.

1) Objectives: Our experiment plan aims at finding which
combination of values for the decision variables performs best
when considering the following objectives:
O1 Maximize the number of COVID-19 patients admission.
O2 Minimize the impact on day-to-day activities by closing

as few beds as possible in MUs.
O3 Minimize the number of time windows dedicated to bed

transfer that the hospital has to set up.
Objectives O1 and O2 ensure that the COVID situation is

handled while reducing its impact on the day-to-day activities
of the hospital. Objective O3 reflects the fact that transfers
are costly and arduous to implement, as they involve the
administrative and medical staff, as well as the supply chain
of the hospital to provide the additional furniture.

In the simulation we keep track of the following perfor-
mance indicators to evaluate how these three objectives are
reached:

1) the number of rejected COVID-19 patients,
2) the number of elective hospitalizations canceled during

the course of the simulation
3) the numbers of ICU and short-stay transfer windows.

These indicators are summed and normalized to establish a
score s, between 0 and 1, that reflects the relative performance
of the response scenario.
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2) Input variable: The input variable defining the problem
to solve is the COVID patient arrival pattern as defined in V-A.

3) Response variables: The drivers identified above are
represented in the simulation as a set of variables, that al-
together define the response of the healthcare center. The first
is the bed transfer batch size. As explained in subsection V-B1,
we transfer beds from T3 and T4 units in batches. We chose
for this variable the possible following values: 4, 6, 8, 10 or
12. This value is chosen independently for ICU and short-
stay transfers. The second and third response variables define
the cancellation policy. One is the policy choice as detailed
in Section V-B2. The other is the occupation rate of the
ICU beyond which we cancel patients. This value is therefore
refered as the ’cancellation cutoff point’. 4 possible values are
defined: 80%, 85%, 90% and 95%. They allow to either keep
more beds available for potential transfer, or dedicate more
beds to the care of usual patients.

Covid
Arrival
pattern

ICU
Bed
Batch
size

Short-
stay Bed
Batch
size

Cancel-
lation
policy

Cancel-
lation
cut-off
point

Nb of
experi-
ments

Wave 1,
Waves 2
& 3

4, 6, 8,
10, 12

4, 6, 8,
10, 12

By
ICU, By
Block

80%, 85%,
90%, 95%

400

TABLE III: Summary of explored valued for input and re-
sponse variables, and total of resulting experiments.

D. Summary

In this section, we detailed the settings of the COVID
epidemics as well as the possible response of the healthcare
center as used in the simulation. We formulated the main
elements of the problem: the objective through the normalized
score s, the input of the COVID arrival pattern, the mechanism
behind the bed transfers and behind the cancellation of planned
patients.

VI. CASE STUDY: COVID-19 CARE UNITS OF THE
SAINT-ÉTIENNE HOSPITAL

A. Background

Saint-Étienne’s University Hospital (CHUSE) is a university
hospital of 60 MUs at the head of a large health care network
named the Loire Hospital Group (GHT, Groupement Hospital-
ier de Territoire in French). CHUSE has 1,802 beds in total.
In 2020, CHUSE admitted 93,905 patients for hospitalization
and 78,400 patients were seen in its ED.

Regarding COVID-19 activity, CHUSE hosted 2,161
COVID-19-related stays, including 285 stays in ICUs. At the
peak of the crisis in November 2020, 365 beds (resp., 46 beds)
were dedicated to COVID-19 patients in MUs (resp., in ICUs).

B. Data

1) Patient Data: The patient data we used for the present
study were generated specifically for the purpose of this study
by mimicking adult patient pathways. It comprise a case mix
of rather simple pathways for each MU (direct admissions
with no transfers or emergency admissions with a transfer to

one unit) and complex stays (initial stay in a unit, transfer to
surgery and ICU, or random transfers between units). The data
use the format of the medico-administrative hospitalization
database (PMSI, Programme de Médicalisation des Systèmes
d’Information in French), to be easily applicable for other
studies. We generated the hospitalization process map from
this synthetic database and used it to populate our model with
“regular patients”.

Medico-administrative databases hold rich and useful in-
formation about health care pathways at an individual level:
visited units, received medical exams and treatments, length
of stay in each unit etc. In addition, historical data are readily
available for longitudinal analysis of care trajectories.

Accessing this data for all patient and linking it to the
pathway is technically complex. To address this situation, we
hypothesized that the pathway of each patient was represen-
tative of his or her personal situation.

Thus, the sequence of individual stays in the units and their
stay information is all the information required to model the
patients admitted. We generated the following elements for
each synthetic inpatient:

• anonymous patient identifier,
• MU sequence to which the patient has been admitted,
• date of admission in each MU,
• length of stay at each MU of the sequence,
• admission modalities and origin of the patient.
Only adult patients were modeled: outpatients (e.g., patients

coming to the hospital for chemotherapy or dialysis) and am-
bulatory visits were generally not considered, as we considered
ambulatory units outside the scope of this study, unless a
second stay was generated, to mimic the detection of critic
situation by ambulatory units staff.

2) Medical Units Data: The partner hospital provided us
with a detailed list of the MUs. Ideally, we would use the
exact staff and setting of all those units; however, those figures
are constantly evolving. The capacities c were defined using
the last reliable number of beds opened in each unit at the
beginning of the project. This was during the last consolidation
of numbers in December 2018. The length of stay distribution
D and types a of each MU were defined by our medical
experts.

C. Model implementation

The PM approach was implemented using Disco® software,
while the Petri net hospitalization models were implemented
using AnyLogic® simulation software.

Patients and MUs are implemented as agents. Each step of
the pathway is implemented using a delay block for which the
delay time is determined by a triangular distribution. We keep
track of the occupancy of each unit with the corresponding
variable when patients enter the process block. If a MU is full,
patients wait in a queue. In the case of a transfer from one
MU to another, the patient remains in his or her current unit
until a bed is available in the destination MU. [T2] and [T4]
are noted on the simulation model using boolean parameters,
while [T3] are directly identified and used in the bed transfer
functions.
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Urgent patients all go through the ED before following the
hospitalization pathway. This ED stay is represented by a delay
block with a delay time determined by a triangular distribution
between 0 and 6 hours with a mode of 3 hours. These patients
are then redirected to the main part of the hospital to complete
their stay.

Elective patients are directly routed toward the hospital’s
MU after the trace’s assignment.

For both categories of patients, we estimated the mean
number of arrivals for each day of the week with hospital
professionals. Those figures are uploaded to the model’s
database in the form of two schedule objects that are used
to set the arrival rates for the two sources of patients.

D. Experimental design

As explained in III-D, we implemented 2 different arrival
patterns based on the history of the COVID-19 epidemics. The
first pattern is based on the initial wave of COVID-19, that
occurred in April and May 2020. We limit the wave to 104
days between the first admissions and the end of the wave
(close to zero arrival rate). The second pattern mimics the
waves 2 and 3, that were separated by several week with a high
and almost constant admission rate at the hospital. It consists
in 2 epidemics spikes with a high arrival rate between them.
This second pattern is 320 days long. The simulation’s length
is set to 550 days to allow simulation warm-up, experiment
and return to initial situation. The hospital is initially empty.
The first 90 days are used as a warm-up period, at the end of
which we start to measure hospital status indicators, such as
the mean occupancy rate in the MUs and indicators about the
pandemic: length of stay in the MUs, number of non-admitted
patients, etc. The data was accessed for the entire AURA
region and scaled to the population pool of Saint-Étienne. Due
to confidentiality concerns, we accessed the weekly number of
admissions only.

Fig. 3 displays the number of COVID-19 patients cared for
in the dedicated units, the capacity of the COVID units and
the changes of capacity in the impacted non-COVID units for
the wave 1 scenario as described in Section VI-E.

The efficiency of the COVID-19 response scenario is
measured through the following figures that corresponds to
objectives described in III-D: (i) the number of COVID-
19 patients that could not be admitted, (ii) the number of
elective hospitalizations that were canceled and (iii) the mean
occupation ratio in the hospital. The global performance of the
scenario was assessed by normalizing these 3 values to make
them comparable, summing them and dividing the result by
3 to obtain a score between 0 and 1. We aim at minimizing
the obtained score. Indeed, our goal is to take into care as
many COVID patients as possible, while canceling as few
conventional hospitalizations as possible, and having as few
bed transfer windows as possible to relieve staff.

The input and response variables are described in V-C. The
400 experiments were assessed using the simulation model,
with a 100 replications to achieve a 95%-confidence interval.

E. Results
1) Generation of Patients Using Process Mining: We gen-

erated process maps to generate patients in the non-COVID
department of the hospital, both for the elective and emergency
admissions processes. The simplified process map that was
generated using the synthetic data for emergency admissions
is shown in Fig. 4a, and that for elective admissions is shown
in Fig. 4b.

The emergency patient process map was generated using
only the 90% most frequent cases to filter the most unusual
cases. This particular value was chosen to exclude unique and
non-representative interactions between units and only keep
in the process map links made by more than one patient.
This choice was driven by the relatively high proportion of
unique hospitalization pathways in the dataset. We display the
30% MUs and the 50% most frequent paths between MUs
for readability purposes. For the same reasons, the elective
process map displays only the 30% most frequent MUs.

The elective patient process map is dominated by a direct
path: patients are admitted into their scheduled unit and are
discharged. Cardiac surgery is also a well represented unit.
This result was expected as our synthetic population was
composed of mainly one-unit stays and elective surgery path-
ways. The urgent patient population requires a wider variety
of MUs. Our synthetic population was targeted to consume
ICU and surgery resources in priority, while other pathways
were similar to elective patient pathways with an additional
step for post-emergency treatment.

Full maps were exported in XML format, and we applied
algorithm 1 to generate 100,000 patients from each map.

2) Sizing Experiments: Via simulation, we ran all the
scenarios induced by the variation of parameters described
in Section V-C. Notably, the number of COVID-19 patients
rejected is higher than the number of elective patients that
must be canceled. This can be explained by the relatively low
occupancy rate of the ICU (from 60 to 70 %), which allows
us to transfer beds without affecting the unit’s ability to host
elective patients.

Table IV displays the response scenario that is best suited
to each situation when considering the trade-off between the
number of elective stays canceled and the number of rejected
COVID-19 patients.

When taking a closer look at the results, we can observe that
the ‘By Block’ policy is almost always less effective than the
‘By ICU’ policy, mainly because it logically results in more
cancellation of elective stays. The best performing ‘By Block’
strategy for wave 1 scenario, 12 and 6 beds batches for ICU
and MCO transfers respectively, and a 0.95 cutoff point for
patient cancellation, has a score of 0.508, while the ‘By ICU’
cancellation strategy with the same parameters has a score of
0.468.

To conclude, the simulation model is intended to be used
by practitioners as a decision-aid tool. Depending on the
characteristics of the pandemic (COVID-19 arrival rate, time
frame, etc.) and of the hospital, the tool provides meaningful
insights to help practitioners make the best decisions regarding
cancellation policy and the quantity of resources to transfer to
COVID-19 units.
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Fig. 3: Occupation and capacity of the COVID ICU when using wave 1 arrival pattern.

VII. CONCLUSIONS AND PERSPECTIVES

The present research describes the development of a macro-
scopic simulation model of a health care center for the study
of patient pathways. Automated generation of pathways from a
graph proved to be a viable option for the simulation studies
and presents some advantages. First, using PM to generate
an agent’s pathway in the simulation increases the variety of
pathways included in the model, as simulation studies often
use a small number of pathways, usually the most prevalent
pathways, while our approach allows modelers to take into
account less frequent interactions. In addition, using PM could
simplify the development of such models. When implementing
the simulation in a new facility, applying a standardized PM
approach allows to fuel the model with a formatted and
comparable input. The impact of the different parameters used
for PM on the simulation must be investigated further to
determine the best settings of the simulation.

The application of the model when considering organiza-
tional changes is also interesting. For the example of the
management of the pandemic, this model could be used to help

the hospital decide whether opening a new MU in the next
weeks would be beneficial. For instance, simple admission
projections, like temporal series or polynomial functions based
on epidemiological data, could easily be implemented and
a close study using the model would provide the modeler
insights into how the resource allocation to the COVID-19
dedicated units will help absorb the sudden admission of
COVID-19 patients.

When using the present model, one should note that the
results described in Section VI-E are not to be seen as gold
standards when confronted with this type of situation. Each
set up should be carefully studied and implemented in the
simulation before being applied. We recommend using this
model by first implementing actual predictions about the
epidemic before proceeding in a two-step process: (i) create
an experiment with a possible response and (ii) adjust the im-
plemented response according to the results and the available
resources. This model should be updated on a regular basis
using the latest epidemiological data and observations from
the field.
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Fig. 4: Simplified Process Map Representing our Synthetic Data, Generated Using Disco® .

(a) Simplified Process Map of Emergency Patients.

(b) Simplified Process Map of Elective Patients.

The present article aims to demonstrate the potential of the
model when representing organizational problems. The exper-
iments were designed to do so, and some of the simplifying
assumptions are quite strong and not fully representative of
the situation in the hospital.

For instance, we did not take into account some patients and
MUs based on use, and we decided for the graph generation
to take into account patients such that the result would ac-
count for 90% of the pathway variability. These assumptions,
made to simplify the graph, may have hidden some marginal
interactions between MUs that could affect the hospital. In
addition, we chose a simple and widely used PM algorithm.
Using more specific algorithms should give better results
and better represent the sequence of stays inside the patient
journey, particularly regarding loops or recurrent sequences of
stays. The two cancellation policies are absolute scenarios, and
decision makers in the field will want to modify them. The
’By ICU’ policy assumes that we know in advance the entire
pathway of the patient, which is unrealistic. However, this
simplifying policy models the fact that healthcare professional

will cancel interventions that could result in the consumption
of ICU resources, as it was done at the peak of the pandemic.
Using different ruling based on the pathway, or advanced
machine learning technique could be useful.

In addition, we considered the beds in MUs to be equivalent,
so that a bed from a surgery unit could be transformed into an
ICU bed providing minor changes. We included these changes
in the form of a one-day delay before the transfer. However, for
many reasons, such as staff ability and availability of specific
resources, this assumption is not operationally realistic. For
use in real conditions, facility-specific adjustments might be
necessary. Specifically, we recommend using an ability matrix
to define the staff that needs to be re-assigned to the new unit
to calculate the additional beds that must be closed.
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of Jean Monnet University (Saint-Étienne, France) and Associate Professor
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