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SCALE-CONTROLLED SULCAL DEPTH ESTIMATION

M. Dieudonné, G. Auzias, J. Lefèvre

Aix-Marseille Université, CNRS, Institut de Neurosciences de la Timone, Marseilles, France

ABSTRACT

The complex brain morphology emerges from intricate
growth and folding processes during development. Sulcal
depth is a shape descriptor particularly relevant to charac-
terize brain development and variations, but the potential
influence of global brain size is not controlled in existing
estimation techniques. In this work, we address this issue
by introducing a theoretical framework allowing to explicitly
control for the influence of isometric scaling on sulcal depth
measured at each brain location. We provide both formal and
experimental demonstrations of the advantages compared to
the most popular method from the literature.

Index Terms— MRI, Brain, Cortex, surface, morphome-
try

1. INTRODUCTION

The human brain cortex has a labyrinthine geometry com-
posed of ridges and valleys at adult age. This geometry is
the result of complex biological processes [1]. The variations
in brain shape across individuals have been extensively de-
scribed in the literature [2], with the dissociation of two com-
ponents that are not independent: global size and degree of
gyrification. The potential influence of variations in global
brain size on morphometry descriptors computed locally is
however largely ignored.

One key descriptor of the morphology of the cortical sur-
face is sulcal depth. There is growing evidence that sulcal
depth is particularly relevant for characterizing brain devel-
opment. Sulcal depth has been used to describe the spatio-
temporal evolution of brain folding in human fetuses and
newborns [3], between birth and adulthood [4] as well as in
other gyrencephalic species [5]. Recent studies suggest that
sulcal depth measures in fetuses provides prognostic value of
later cognitive development [6], and is instrumental to detect
neuro-developmental malformations [7].

The most intuitive way to define the sulcal depth of each
point of the cortical surface is to compute the distance be-
tween the spatial location of the point of interest and the clos-
est point on the ’convex hull’ of the brain. But already with
this intuitive definition, two main ambiguities emerge when
moving from concept to implementation: First, computing
the ’convex hull’ that implicitly corresponds to the 0-level

(or reference-level) for the depth measure is not trivial. In-
deed, a mathematically correct definition of the convex hull
of the cortical surface would not follow closely most concave
regions such as the internal temporal region, resulting in a lo-
cal over estimation of the sulcal depth.The implementations
of this ’convex hull’ thus rely on a proxy consisting in apply-
ing a morphological closing of the volumetric segmentation
mask of the cortex, which is efficient but question the poten-
tial influence between the size of the closing operator and the
global size of the brain of interest. Second, there is no unique
way to compute the distance to the convex hull and several ap-
proaches have been proposed.We refer the readers interested
in a detailed comparison across these types of approaches to
[8] which provides both qualitative and quantitative compar-
isons.

Another strategy for estimating sulcal depth without con-
sidering the convex hull has been introduced in [9]. We refer
to this method as SULC in the following. SULC estimates
the sulcal depth as the distance between the initial mesh and
an inflated version of the considered mesh. The distance is
computed trough the iterative inflation process. A critical pa-
rameter here is the number of iterations allowing to inflate
the original brain. In the two available implementations of
SULC from the widely used freesurfer software 1 or the dHCP
pipeline 2, the number of iterations was set based on experi-
ments on adult brains only, without considering the size of the
brain.

Another approach introduced in [10] proposes to estimate
sulcal depth from the mean curvature of the surface: the depth
potential (DPF) is defined as the solution D of the following
regularized screened Poisson equation:

(−∆M + αI)D = K (1)

where ∆M is the Laplace-Beltrami operator of the surface M
(negative operator), I is the identity operator, K the mean
curvature of M and α a regularization parameter. The only
parameter α was set based on visual assessment.

To the best of our knowledge, all the sulcal depth esti-
mation techniques from the literature have been designed and
evaluated on adult brains only, without considering the poten-
tial influence of global brain size. The interaction between

1https://surfer.nmr.mgh.harvard.edu/
2https://github.com/BioMedIA/

dhcp-structural-pipeline



cortical global brain size and cortical folding magnitude is
never discussed explicitly. There is clear need to explicitly
investigate the crucial problem of the intricate variations in
global brain size and folding. In the present work, we address
this question by proposing a formalization of the problem,
introducing a scale-invariant sulcal depth estimation method,
and providing theoretical and experimental demonstration of
its advantages compared to the most widely used method.

2. METHODS

2.1. Formal problem statement

Let M be any surface embedded in R3 and approximated by
a triangular mesh with p vertices. We consider a family of
scalar functions depending both of a surface M and parame-
ters χ. Formally

DM (·, χ) : p ∈ M ⊂ R3 −→ DM (p, χ) ∈ R (2)

This very general framework systematically involves pa-
rameters χ allowing to adapt the underlying algorithm e.g.
to the spatial discretisation of the ambiant space (size of the
voxels) or of the mesh (size of the triangles). Taking as an
example the sulcal depth for a given surface M , the collec-
tion of parametric functions χ → DM (·, χ) represents all
the possible settings to compute an estimation of the sulcal
depth on M . For instance, in the case of a method based on
the distance to the convex hull, χ consists of all possible set-
tings of the structuring elements in the morphological closing
of the volumetric segmentation of the brain used to compute
the convex hull. In the case of the SULC method (described
above), χ consists of all possible settings of the parameters
that control for the inflation of the mesh.

We now define the scaling between two surfaces M1 and
M2 as a linear transformation defined by the parameter s > 0
where coordinates of M2 correspond to the multiplication of
the coordinates of M1 by the factor s. In particular lengths
have been multiplied by s > 0. We note this scaling relation-
ship between the two surfaces as M2 := sM1. And we now
formalize the influence of the scaling of factor s on a family
of functions DM (·, χ).

Definition 1. We state that a family of functions DM (·, χ) is
scale invariant if, for s > 0 and M2 := sM1, there exists a
transformation in the space of parameters, f(s, χ) such as:

DM1
(·, χ) = DM2

(·, f(s, χ)) (3)

This formula makes it explicit that the parameters have
to be adapted when the scale of the surface changes. In
other words, it is expected that when considering functions
DM (·, χ) which were designed to estimate quantities that are
related to physical units, such as depth, thickness and even
brain activity (related to electro-magnetism or blood flow) the

invariance to scale is impossible without appropriate tuning
of its parameters χ.

Now, as mentioned in the introduction, scale invariance
is not a desired feature in applications to cortical surfaces.
Indeed, larger brains are also more folded, which induces that
most functions measuring a biological process defined on the
cortex are expected to be impacted by the size of the brain.
We therefore introduce the notion of control on the influence
of the scale as follows:

Definition 2. We state that a family of functions D, depending
on parameters χ is scale controlled if for any s > 0 one can
find f(s, χ) and d(s) such as 1

d(s)DsM (·, f(χ, s)) is scale
invariant. Which can be formulated, for a point p ∈ M , as:

1

d(s)︸︷︷︸
normalisation

DsM (p, f(s, χ)︸ ︷︷ ︸
adaptation

) =
1

d(1)
DM (p, f(1, χ))

(4)

This equation makes a formal link between the estima-
tions from two surfaces M and sM : for any method D sat-
isfying this equation, the estimation DsM on a scaled surface
is related to the estimation obtained on the original surface
through two factors: a multiplicative function of d(s) called
the normalization function and an adaptation function f
that corresponds to an adaptation of the parameters. The nor-
malization function corresponds to normalizing the range of
the values covered across the points of each surface.

2.2. DPF with formal control on the scale of the surface

We now consider the application of the formalism provided
above to a specific type of functions: sulcal depth. The sur-
face M corresponds to the interface between the gray and
white matter of the brain. The scaling factor between any
two brain s is estimated as the ratio of the cubic root of the
volumes considered, i.e. s = (V2/V1)

1/3.
We now consider more precisely the depth potential func-

tion (DPF) as our method of interest. As mentioned in the
introduction, the DPF has been defined in [10] as the solu-
tion D of Eq.1. Regarding our previous definitions, the DPF
is a family of functions with only one parameter α. In the
following we denote it as DM (·, α).

Theorem 1. The DPF is scale-controlled and we have the
explicit formula

f(s, α) = s−2α and d(s) = s (5)

Proof. We denote M2 the surface obtained by applying a scal-
ing of parameter s to the surface M1, i.e. M2 := sM1.

We recall the intrinsic property of the Laplace-Beltrami
operator and mean curvature:

∆M2
= s−2∆M1

KM2
= s−1KM1

(6)



Equation 1 on M2 with a parameter α2 can be transformed
into an equation on M1:

−∆M2
DM2

+ α2DM2
= KM2

(7)

⇔−∆M1
DM2

+ α2s
2DM2

= sKM1
(8)

Calling α = α2s
2, the previous equation can be written

as

−∆M1

(
s−1DM2

)
+ α

(
s−1DM2

)
= KM1 (9)

The previous equation tells us that s−1DM2
(·, α2) is a so-

lution of the Poisson equation on M1 with parameter α. Since
Poisson equation admits a unique solution, we conclude that :

s−1DM2(·, s−2α) = DM1(·, α) (10)

So that Eq.4 is satisfied and we get that D is scale controlled.

We can now define a new sulcal depth estimation derived
from the DPF:

Definition 3. We consider a reference surface M0 and a pa-
rameter α > 0. We define s = (VM/V0)

1/3 where V0 and
VM are the volumes of surfaces M0 and M . We call DPF ∗

the scale invariant function satisfying:

DPF ∗
M (·, α) = s−1DPFM (·, αs−2) (11)

We can examine two situations:
a) In the ideal case where M is a scaled version of the
reference surface M0, DPF ∗

M will be identically equal to
DPF ∗

M0
.

b) In real world applications, two cortical surfaces M and M0

are never related by a simple scaling, but by a relationship
involving a global scaling but also complex local deforma-
tions. In that case, we get DPF ∗

M ̸= DPF ∗
M0

, but DPF ∗
M

can be considered as an approximation of DPF ∗
M0

in which
we compensate for the influence of global scaling.

2.3. Setting of the parameter α for the reference surface

We have shown above how to adapt the α parameter as a func-
tion of the sizes of a meshes M and M0. We now need to de-
fine its value so that it is adapted to the mesh M0. It has been
shown in [10] that solving the Poisson equation is equivalent
to a low-pass curvature filtering. The transfer function is ex-
pressed as:

Di =
1

α+ λi
Ki (12)

with Di and Ki the Fourier coefficients of the depth and
curvature expressed in the eigenvector basis of the Laplace-
Beltrami Operator. As described in [11], λi are the eigen-
values that we can interpret as spatial frequencies fi and

consequently with a spatial wavelength Li according to the
relations

fi =
1

Li
=

√
λi

2π
(13)

by setting α = 500 we obtain a frequency of mid-amplitude
of our transfer function fi =

√
500/(2π) or Li = 28 mm

which corresponds to the order of magnitude of the geodesic
width of a sulci on an average brain. We confirmed the rel-
evance of this setting by visual inspection of several brains
with different degree of folding and global size. Note that
contrary to SULC and other sulcal depth estimation methods,
the setting of α of DPF ∗ is thus appropriate for brains of
various size and not only for adult brains.

3. EXPERIMENTS AND RESULTS

In a first experiment, we provide empirical evidence that our
method is scale-controlled, and show quantitatively that it is
not the case for SULC. In the second experiment, we demon-
strate the practical relevance of our approach by exploring one
of the many potential applications: sulcal basins segmenta-
tion across a large population of brains with strong variations
in brain size and folding.

We aggregated a collection of cortical surfaces showing
strong variations in brain size and magnitude of cortical fold-
ing. To do so, we selected individual data from two publicly
available datasets: 1) The dHCP dataset consists of MRI data
from 783 newborn babies covering the ages from 26 to 45
weeks post-conception. The segmentation and surface extrac-
tion tools are detailed in [12]. 2) The KKI (Kennedy Krieger
Institute, [13]) dataset consists of high quality MRI data from
21 healthy adults. We downloaded the raw MRI data and used
the recon-all pipeline from freesurfer 6.0 to extract the corti-
cal surfaces.

Experiment 1 : simulations
In this experiment, we investigate the influence of simulated
scaling on SULC and confirm empirically the invariance of
DPF ∗. The results from this experiments are reported on
Fig.1. We select a cortical mesh from a young subject from
the dHCP (29GW) and apply different scaling of coefficients
between 1 and 5 that results in 5 meshes with same folding
pattern but different sizes.We then compute the SULC and
DPF ∗ sulcal depth on these 5 surfaces. In order to character-
ize the influence of the scaling on the estimated sulcal depth,
we compute the linear regression across all the vertices of the
mesh between the depth estimated on the scaled surface and
the depth estimated on the original surface (scale=1). If the
method is scale invariant, the correlation coefficient should be
equal to 1 and the slope of the regression line should also be
equal to 1. This is what we observe for the DPF ∗, as ex-
pected from its formal definition. If the global scaling affects
the estimated sulcal depth, then the regression line might de-
viate from y = x, and/or the correlation coefficient might be
lower than 1. We observe such deviations for the SULC.



Fig. 1. A. Left: Sulcal depth estimation obtained using SULC
for the different scalings. When the scaling increases, the sul-
cal depth seems not biologically relevant in large concave re-
gions such as the frontal and temporal lobes (in red). Right:
Linear regressions for the different scalings. Both the slope
and the correlation values depend on the scaling factor. B.
The sulcal depth maps generated using the DPF ∗ method on
the scaled meshes are independent from the size of the mesh
and thus identical.

Experiment 2 : real data
In this experiment, we aim to compare the methods in a real
world application. As suggested in [14], the progressive fold-
ing of the brain during maturation can be quantified by com-
puting the proportion of sulci according to the whole brain
size. In this experiment, we assess whether the sulci can be
effectively segmented by simply applying a threshold to the
individual sulcal depth maps. To do so, we select 94 subjects
(73 from dHCP, 21 from KKI) covering the range of size of
the postnatal human brain development, with volumes vary-
ing from 50000mm3 to 300000mm3. We compute SULC
and DPF ∗ for each individual independently. We then dis-
sociate sulci from gyri by applying a common threshold to
all the suclcal depth estimation obtained from each of the two
methods. The threshold value was computed for each method
as the median across all the estimations from all the subjects.
We then compute for each brain the ratio of surface area cor-
responding to sulci and gyri and obtain the percentage of sur-
face corresponding to sulci. We also compute for each brain
the gyrification index which is defined as the ratio between
the area of the folded mesh and the area of its convex hull.
The gyrification index is thus a measure of the degree of fold-
ing of a brain. The results from this experiment are reported

Fig. 2. Top. Scatter plot of the percentage of sulci as a func-
tion of the level of gyrification. Bottom. Thresholded depth
maps obtained for 3 brains with different degree of folding.
With DPF ∗, the concave regions in blue correspond to sulci
across all brains. It is not the case for SULC.

on Fig.2. With the DPF ∗, we observe an increase of the per-
centage of sulci with higher gyrification index, as expected.
The confounding influence of global scale on SULC induces
an inverted relationship between the percentage of sulci and
gyrification index. In addition, contrary to DPF ∗ for which
the relationship between the two measures is continuous, we
observe two separated clusters with SULC. The percentage of
sulci obtained for adult brains (located in the ellipse) is lower
than for younger brains that are visually less folded. The es-
timated sulcal depth from SULC are not biologically relevant
in this experiment.

4. CONCLUSION

We introduce a new sulcal depth estimation technique with a
formal control on the influence of the global size of the brain.
Our experiments on simulations and real data show that our
technique addresses the limitations of the reference method
from the literature.



5. COMPLIANCE WITH ETHICAL STANDARDS

This research study was conducted retrospectively using
human subject data made available in open access by the
dHCP (http://www.developingconnectome.org) and the KKI
(Kennedy Krieger Institute, [13]). Both studies were ap-
proved by their respective institutional review board.

6. ACKNOWLEDGMENTS

Data were provided by the developing Human Connectome
Project, KCL-Imperial-Oxford Consortium funded by the Eu-
ropean Research Council under the European Union Seventh
Framework Programme (FP/2007-2013) / ERC Grant Agree-
ment no. [319456]. We thank the Agence National pour la
Recherche for supporting this study under the Sulcal Grid
project (ANR-19-CE45-0014) and the Eranet project (ANR-
21-NEU2-0005). The authors have no relevant financial or
non-financial interests to disclose.

7. REFERENCES
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