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A B S T R A C T   

Landscape temporal dynamics are a crucial concern in ecology to understand current biodiversity. But historical 
environmental data are often not easily available. This study assesses for the first time the potential of historical 
orthophotographs to describe past landscape conditions and determine the temporal lag between landscape 
changes and biotic communities responses. 

This method utilizes Gray level Co-occurrence Matrix (GLCM) texture indices computed from black and white 
orthophotographs to construct continuous metrics of landscape composition. Metrics were first developed using 
present-day data, i.e. 2015, and calibrated with categorical land cover maps of the Strasbourg Eurometropolis, 
France. Subsequently, these metrics were applied to historical orthophotographs from 1966, 1976, 1986, and 
2000. Plant and bird data from research and citizen science programs were used to estimate the time delay in 
which these communities respond to evolutions in built areas and high vegetation. 

Obtained texture-based models reveal that built areas exhibit high contrast and homogeneity, depicted 
through a linear relation, and that high vegetation display low pixel brightness and high brightness diversity, 
better described via a nonlinear model. We successfully applied those findings to historical orthophotographs, 
and revealed dependencies on landscape composition up to 50 years ago for plants and up to 30 years ago for 
birds, with the time lag and the influence of built and high vegetation areas depending on the selected biodi
versity indices. 

These results demonstrate the utility of archive black and white orthophotographs’ texture indices for 
describing urban landscapes over the past five decades, making them valuable tools for ecological research. 
These indices are more accessible than categorical data like land cover maps for past years. They have the po
tential to greatly benefit future studies investigating time lags in landscape ecology, simplifying access to his
torical landscape features and contributing to sustainable urban planning efforts.   

1. Introduction 

Past environmental conditions, including landscape characteristics, 
disturbances, or climate, can have a lasting impact on present-day 
biodiversity due to temporal lags and legacy effects (Cuddington, 
2011; Haddou et al., 2022). These effects may explain the persistence of 
species under unsuitable conditions (i.e., extinction debt, Tilman et al., 
1994) and the absence of species in suitable locations due to slow 
demography or restrained dispersal (i.e., colonization credit, Cristofoli 
and Mahy, 2010). Such relaxation times in the biodiversity response can 
be explained by nonstationary ecosystems achieving a new equilibrium 
over variable times (Kuussaari et al., 2009; Jackson and Sax, 2010; 

Figueiredo et al., 2019). Quantifying such processes is challenging due 
to the complex interactions between environmental pressures that 
operate at different spatio-temporal scales. 

Long-term studies are essential for unraveling the relationships be
tween biodiversity and environmental changes, including landscape 
transformations (De Palma et al., 2018; Keten et al., 2020). However, 
there are limitations to long-term studies due to the availability and 
consistency of data describing past landscapes and biological patterns 
(Bürgi et al., 2017; Ridding et al., 2021). To overcome these limitations, 
researchers have frequently employed the ‘space for time’ substitution 
assumption (Pickett, 1989). This approach assumes that spatial patterns 
observed in different developmental stages (i.e., chronosequences, 
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Walker et al., 2010) can serve as proxies for temporal patterns. However, 
this substitution is inadequate when organisms respond slowly 
compared to their evolving environment (Damgaard, 2019), for 
instance, in complex contexts where cumulative historical effects shape 
biotic communities alongside their current environment (Cortina et al., 
2022; Alberti and Wang, 2022; Tappeiner et al., 2021). Therefore, there 
is a need for methodological frameworks that can facilitate the 
description of ecological habitats over temporal scales (De Palma et al., 
2018). The prediction of past landscape features can be used to assess 
the effect of historical landscapes on current biological communities, as 
explained in the “past habitat” method described by Ridding et al. 
(2021). Additionally, recent studies have emphasized the importance of 
coupling spatial with temporal dimensions when describing ecosystem 
dynamics (Ossola et al., 2021). 

The most common way of assessing landscape effects, including 
landscape temporal evolution, on biotic communities involves deriving 
landscape metrics from categorical land cover or land use maps 
composed of categories (forest, grassland, crops, etc.) (Luck and Jianguo 
(2002); Uuemaa et al., 2009; Walker et al., 2009; Morelli et al., 2016). 
First, these maps often lack accuracy and completeness when applied to 
past landscapes because of the failures of classification algorithms when 
using historical data (Adler and Jedicke, 2022; Poterek et al., 2020; 
Auffret et al. (2017); Herrault et al., 2013). For instance, aerial photo
graphs provide information at unprecedented spatial and temporal 
scales in Europe or North America but remain poorly exploited due to 
their heterogeneous specifications (scale, lens properties, spectral 
sensitivity, and film development) and quality (Aber et al., 2010). 
Consequently, they are mostly manually digitized and categorized into 
land cover classes, which is time consuming and may lead to misclas
sification errors. Second, categorical maps often provide discrete, 
simplistic representations of the environment, unrepresentative of 
ecological realities. 

A recently promoted solution uses continuous variables derived from 
pixel values to explain biodiversity patterns (Park and Guldmann, 2020; 
Wood et al., 2013). This approach may solve issues such as landscape 
representation or image classification accuracy (Adler and Jedicke, 
2022; Coops and Wulder, 2019). Among these metrics, Gray level Co- 
occurrence Matrix (GLCM) indices (Haralick et al., 1973) are texture- 
based metrics initially developed in computer vision. They were later 
used in image classification tasks and still serve to calibrate oriented- 
object approaches (Morin et al., 2022; Le Louarn et al., 2017). GLCM 
indices have been successfully applied in ecological studies to derive 
continuous variables, and used to characterize present-day vegetation 
and bird communities (Farwell et al., 2021; Wood et al., 2013; Culbert 
et al. 2012a; St-Louis et al., 2009). Park and Guldmann (2020) showed 
their potential as an alternative to classical composition and configu
ration landscape metrics from satellite images acquired above the urban 
tree canopy in Columbus (Ohio, United States of America). Farwell et al. 
(2021) extracted GLCM indices from Landsat data to describe habitat 
heterogeneity in the USA. Wood et al. (2013) used aerial infrared pho
tographs and Landsat data to calculate GLCM indices as a surrogate of 
vegetation structure in Wisconsin (USA). These authors found that 
texture-based indices had variable association levels following bird taxa, 
while information generated using 30 m resolution (Landsat data) was 
generally less successful than aerial photographs in predicting bird 
diversity. 

In this study, our objective was to explore the potential and relevance 
of GLCM texture indices in reconstructing past landscape changes using 
historical aerial photographs and examining their influence on current 
biodiversity. Focus was placed on the evolution of built and high 
vegetation areas. This choice was motivated by ecological and societal 
concerns since urban environments are fast evolving (Moll et al., 2019) 
and strongly affect species diversity and composition (Alberti and Wang, 
2022). To achieve this, a collection of panchromatic orthophotographs 
acquired on five dates by the National Mapping Agency (Institut national 
de l’information géographique et forestière, IGN) in the Strasbourg 

Eurometropolis, France, was used. 
Throughout this study, three central questions were addressed: (Q1) 

Can GLCM indices characterize present-time urban landscape composi
tion using grayscale aerial photographs? (Q2) Can GLCM indices depict 
past landscape composition from old panchromatic aerial photographs 
and derive consistent landscape changes over time? (Q3) Are GLCM 
indices relevant variables to explore time lags in the species-habitat 
modeling, i.e., to what extent do current species communities depend 
on past landscape features? 

2. Materials and methods 

2.1. Study area 

This study takes place in the Strasbourg Eurometropolis in north- 
eastern France, comprising 33 municipalities, 502,000 inhabitants 
with a population density of 1500 people/km2 (INSEE, 2019). The sur
vey area covers 250 km2 of the northern part of the Eurometropolis due 
to the availability of historical spatial data. It includes built areas (7 %), 
artificial non built areas (mainly roadways, parking, and bare soil, 16 
%), crops (31 %), low and herbaceous vegetation (16 %), high vegeta
tion (i.e., trees, 28 %), and open water (3 %) (Fig. 1, Sertit 2017). 

The study area extends over an entire urbanization gradient for 2015 
landscapes. This was necessary to feed our models with non-urbanized 
landscapes, so we can include urban sites that were not yet urbanized 
at the start of the historical period under consideration (1966). 

Strasbourg’s urbanization pattern follows a similar trajectory to 
other industrial cities in Western Europe. The city, first organized 
around a medieval city center, experienced rapid population growth 
alongside industrial development in the 19th century, simultaneously 
with the arrival of the German administration in 1870 (Igersheim, 
2011). By the late 1950 s, densely populated urban areas emerged near 
the initial urban core while post-World War II reconstructions occurred. 
The 1960–2000 decades witnessed urban expansion in the first and 
second rings, characterized by a discontinuous urban fabric, housing 
private residences, leisure facilities, and commercial and industrial ac
tivities. In the early 2000 s, densification policies aimed at curbing 
sprawl and promoting high-rise residential buildings appeared, marking 
a shift in peri-urban development (Héraud and Nonn, 2013). Overall, 
built areas increased from 400 ha in 1956 to 950 ha in 2017. Regarding 
Strasbourg’s tree heritage, the majority of the trees lining the city’s core 
and ornamental trees were planted in the late 20th century, influenced 
by the hygienic movement—an ideological and political trend imple
mented by Adolphe Alfand in Paris during that century. Later, after the 
end of World War II, considerable rebuilding took place in the city, 
accompanied by massive tree planting and green space creation. 
Throughout our study period (i.e., 1956–2017), the wooded areas 
doubled to 4100 ha in 2017, with a sharp increase recorded after 2008 
(+35 %, + 122 ha/yr). 

2.2. Orthophotographs 

Landscape evolution was reconstructed using panchromatic ortho
photomosaics (Giordano,Le Bris,and Mallet, 2017) covering the 250 
km2 of the study area for five dates: 1966, 1976, 1986, 2000, and 2015 
(Fig. S1). These images exhibited the highest conservation level while 
covering the most extensive geographical surface. The time perspective 
of approximately 60 years and regular time gaps of around 10–15 years 
between orthophotographs were crucial for reconstructing landscape 
dynamics over multiple decades (Fig. S1). First, this allows for the 
exploration of the continuous effects of profound modifications due to 
urban expansion in the first and second rings of the city. These changes 
partly led to transformations of agricultural areas towards different 
levels of urbanization with potential time lag effects on current biodi
versity. Second, a 10–15-year frequency allows for the observation of a 
large gradient of changes between two dates that texture metrics can 
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easily capture. The RGB image from 2015 was converted to grayscale 
using a luminosity method and the following equation: grayscale =
0.3*R + 0.59*G + 0.11*B (where R, G, and B are respectively the pixel 
values of red, green, and blue channels). Last, we performed two post- 
processing stages to increase consistency between dates: (1) all ortho
photomosaics’ spatial resolution were aligned on 1 m by down-sampling 
to calculate texture metrics on similar spatial grids over time, and (2) the 
histograms of pixel intensities of each orthophotomosaic were adjusted 
against the 2015 Gy levels histogram using histogram equalization (R 
package RSToolbox, function HistMatch). 

2.3. Land cover data 

The land cover evolution of high vegetation and built areas was 
reconstructed using digitalized maps of these two land cover classes 
from orthophotomosaics acquired in 1956, 1978, 1995, 2008, and 2017 
(Fig. S1). These historical data did not cover the entire study area for the 
5 years, eventually representing 145 km2 (Fig. 1). These two contrasted 
classes are easily recognizable in historical orthophotographs, no matter 
their quality or the acquisition date. Given the scarcity of historical land 
cover data, this offers the opportunity to produce it at reasonable spatio- 
temporal scales. 

2.4. Landscape descriptions 

2.4.1. Texture indices calculation 
To describe landscape features based on orthophotographs, texture 

metrics were calculated, for each year, from the gray level values in 400 
randomly distributed, non-overlapping landscape windows (300 m x 
300 m), accounting for 30 % of the study area (Fig. 1). This window size 

represents the best compromise for fitting the floristic and avian richness 
variations to the urban context (Muratet et al., 2008; Morelli et al., 2013; 
Keten et al., 2020). Two types of texture metrics were calculated on each 
landscape window discretized into 18 Gy levels: (1) the mean and 
Shannon diversity index of pixel brightness (i.e., gray levels) at the 
window level as first-order indices and (2) the contrast and homogeneity 
metrics as second-order indices (Fig. 3.). For this purpose, a 5x5 pixel (or 
m2) mobile square window was used within each landscape window (R 
package GLCM Textures) derived from the Gray level Co-occurrence 
Matrix (GLCM) (Haralick et al., 1973). Those indices reveal spatial 
patterns and neighborly relationships between pixels (Farwell et al., 
2021; Hall-Beyer, 2017) (Table 1, Fig. 2). Each window was analyzed for 
eight second-order indices, by calculating the minimum, maximum, 
mean, and standard deviation of contrast and homogeneity. This resul
ted in a total of ten texture metrics. The number of discretized gray 
levels and the size of the mobile square window were determined 
following a sensitivity analysis of the relationships between textural and 
landscape metrics (Fig. S2. 

Three main assumptions supported the selection of these texture 
metrics: (1) high vegetation exhibits dark, rough texture and should 
correlate with homogeneity and brightness (Park and Guldmann, 2020), 
(2) built areas display crisp edges (building footprint) and smooth sur
faces (rooftop), which would likely correlate with homogeneity and 
contrast, and (3) diversity of gray levels should reveal the diversity of 
ecological habitats as illustrated in the spectral diversity theory (Roc
chini and Neteler, 2012). 

2.4.2. Vectorial land cover metrics computing 
To evaluate the ability of texture-based metrics to describe landscape 

features, they were compared to three vectorial land cover metrics: 

Fig. 1. Study area and spatial organization of data: vectorial map of the Strasbourg Eurometropolis (6 land cover classes) and black and white historical ortho
photographs. Landscape windows used to assess the ability of texture in describing land covers, for present and past (Q1 & 2), are displayed in gray, while sites 
included in the ecological case studies (Q3) appear in red (birds) and blue (plants). The dotted white line highlights the spatial coverage of validation land cover data 
for the past. 
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ratios of (1) high vegetation and (2) built areas (in %) and (3) landscape 
diversity (Table 1) (R package landscapemetrics, Hesselbarth et al., 
2019). Landscape diversity was computed for the present (2015) across 
six land cover classes: low vegetation, high vegetation, built area, non 
built artificialized area, cropland, and water. However, due to the 
availability of only two land cover classes in the historical data, past 
landscape diversity indices for previous years could not be derived. 

Given the unavailability of categorized and continuous material (i.e., 
land cover maps and orthophotographs) for the same years, it was 
presumed that land cover metrics evolved approximately linearly be
tween two dates. To enable the comparison of past texture metrics with 
land cover metrics, texture metrics were linearly interpolated between 
the two closest years of land cover data. These estimations were then 
used to compute and evaluate the model’s performances. 

2.5. Study case 

2.5.1. Botanical data 
Plant data were collected on 35 herbaceous sites of the study area 

covering a range of urbanization levels, from densely built areas to semi- 
natural forests (Fig. 1). The mean site area was 0.6 ha (min = 0.1 ha, 
max = 3.3 ha), and local management varied from no action to 15 
mowings a year. Plants were surveyed between 2020 and 2022, during 
three consecutive years for 17 sites, two years for 15 sites, and one year 
for 3 sites, making up 84 site-year individuals. Vascular plants were 
systematically sampled in 15 quadrats (1 m x 1 m), distributed along 
three lines separated by 4 m, between June and July once a year. 

In each site-year, species and functional richness were computed 
using a set of seven relevant traits that represent various functions and 
performances (see Fig. S3). The dbFD function (package FD, Laliberté 
et al. (2014)) was used in this purpose. Additionally, the Biolflor ur
banity trait (Kühn and Klotz, 2006) was included to classify plant species 
into five urbanity categories and assess the weighted mean for each site. 
Site plant community uniqueness was evaluated by calculating its local 
contribution to beta diversity (LCBD) using the function beta.div 

(package adespatial, Legendre and De Cáceres, 2013). 

2.5.2. Bird data 
Opportunistic data from citizen observations of bird occurrences 

were compiled by the “Ligue pour la Protection des Oiseaux” and obtained 
via the ‘Odonat’ platform (Baouch and Gardet, 2022). Citizens reported 
species observations from various locations and times, resulting in large 
volumes of data. Only observations collected during the breeding sea
son, specifically from March 15th to June 15th, between 2015 and 2018, 
were selected. Each observation was georeferenced, and bird occur
rences were aggregated within a grid covering the study area. The grid 
displayed windows similar to the ones previously used to assess textural 
and land cover metrics (Fig. 1). This approach provided a unique list of 
bird observations for each window. To minimize observational biases, 
windows with insufficient data were excluded (less than ten days of 
accumulated observations and less than two years of data, n = 49 
remaining windows). The species richness was computed for each 
window based on the number of species detected. Similarly to the 
botanical data, the functional richness metric was computed using eight 
traits from the life history characteristics of European birds (Storchová 
and Hořák, 2018, Fig. S3). The functional richness was calculated using 
the function dbFD (package FD, Laliberté et al. (2014)). Additionally, the 
urbanity score of French species (Guetté et al., 2017) was included in 
this study as the abundance-weighted mean for each site. Finally, the 
local contribution to beta diversity (LCBD) was added using the same 
methodology as for plant data (Bennett et al., 2014). 

2.6. Statistical analyses 

2.6.1. Textural metrics’ organization 
To understand the organization and potential redundancy among 

texture metrics, a Principal Component Analysis (PCA) was conducted 
with the ten texture metrics as variables and the four hundred landscape 
windows as individuals (Fig. S4). The R package used was FactoMineR 
(Lê et al., 2008). 

Fig. 3. Schematic and conceptual representation of the materials and methods used in the article.  
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2.6.2. Present and past relationships between texture and land cover 
metrics 

Model selection on current data – For 2015, the power of texture 
metrics (Homogeneity, Contrast, Mean brightness and SHDI Brightness) 
to predict the three land cover metrics (High vegetation, Built area, 
Landscape diversity) was evaluated. We standardized all variables 
before analysis. Generalized linear models and nonlinear generalized 
additive models were run separately for each land cover metric, leading 
to six model selections in total. For this purpose, the package mgcv was 
used (Wood, 2017). Within each selection, to enhance interpretability 
and prevent overfitting, we included only one or two texture metrics and 
their interactions (n = 55 models each). These models were ranked using 
the corrected Akaike information criterion (AICc) and those with ΔAICc 
< 2 were retained (Fig. S5). 

Predictive power assessment – For each land cover metric, the pre
dictive power of the two best models (one linear and one nonlinear) was 
assessed by reporting R2, slope and intercept of the linear relationship 
between predicted values and observed values. We repeated this process 
100 times using 70 % of the images randomly selected (n = 280) as 

calibration data, while the remaining 30 % (n = 120) served as test data 
(Fig. S6). The texture-based model with the highest mean predictive 
power for each land cover metric was used for the rest of the study. 

Application to past data – The selected models were applied to analyze 
past years’ texture metrics, testing the consistency of the identified re
lationships with images from 1966, 1976, 1986 and 2000. The same 
bootstrapping method as described above was employed to obtain cor
responding predictive power scores (Fig. S6). 

2.6.3. Temporal trends in textural and land cover metrics 
Using present and historical metrics datasets, annual growth rates of 

predicted and observed land cover metrics were estimated over the 
study period (1966–2015) using linear models with the year as the 
explanatory variable. The consistency of these metrics through time was 
assessed by examining the correlation between predicted and observed 
trends of land cover metrics. 

2.6.4. Study case modeling 
We assessed the influence of predicted land cover metrics (built area 

and high vegetation) for 1966, 1976, 1986, 2000 and 2015 in combi
nation with site data (i.e. mowing frequency, sampling year for plants 
and sampling effort for birds) on four biodiversity metrics (species 
richness, functional richness, urbanity, and LCBD) for both plants and 
birds. 

Variable selection for each year and each biodiversity metric – We 
compared (1) the full model, which included the predicted built area 
and high vegetation metrics for a given year and, site data, (2) every 
partial model derived from the full one and (3) the null model. We 
ranked models by the corrected Akaike information criterion (AICc, 
delta AICc < 2) and retained the corresponding variables. 

Hierarchical partitioning – The selected variables for each year were 
included in a comprehensive cross-year model for each biodiversity 
metric. To avoid multicollinearity among explanatory variables, we 
performed a hierarchical partitioning using R package hier.part (Nally 
and Ralph, and Christopher J. Walsh. (2004)). This procedure assessed 
the independent and joint contributions of each explanatory variable. 
The statistical significance of the independent contribution was deter
mined by computing a pseudo Z-score with 200 randomizations (func
tion hp.rand, of package hier.part). To identify the direction of each 
effect– which is not provided by hierarchical partitioning – we modeled 
the relationship between each variable and the studied biodiversity 
metric in simple regression using linear models (Fig. S8). 

3. Results 

3.1. Texture metrics correlation 

The two first axes of Principal Component Analysis (PC1 and PC2) 
explained 69 % of texture metrics variance (Fig. S4). On the one hand, 
PC1 is mainly driven by contrast standard deviation and maximum 
(contribution = 19 % and 15 % respectively) and by brightness SHDI 
and mean (15 % and 12 % respectively). PC2, on the other hand, de
pends mainly on homogeneity mean and maximum (26 % and 19 % 
respectively) and is opposite to contrast minimum and mean (20 % and 
19 % respectively). When placing the landscape windows onto the PCA 
plan, they organize themselves according to the type of land cover, from 
agricultural to densely urbanized landscapes along PC1 and from forest 
to agricultural landscapes along PC2. 

3.2. Selection and performances of texture-based landscape metrics for 
year 2015 

The model selections consistently ranked in the highest positions 
models with two texture metrics and their interactions (Fig. 4 & Fig. S5). 
The models used for the rest of the study were selected by comparing the 
predictive performances (predictive R2) between the linear and 

Table 1 
Description and formulas of studied land cover and texture metrics calculated at 
the window level (300 m x 300 m).  

Type Metric/Index 
name 

Description Formula 

Vectorial 
Land 
cover 
Metrics 

Built area Percentage of 
Built area 

Built area
Total area

Â⋅100 

High 
vegetation 

Percentage of 
High 
vegetation 
area 

High vegetation area
Total area

Â⋅100 

Landscape 
diversity 

Shannon 
Diversity 
Index 

−
∑Nc

c=1pclog2(pc)

Continuous 
Texture 
Metrics 

Homogeneity 
(Mean, min, 
max, and sd) 

Describes 
image 
homogeneity 
and 
emphasizes 
the diagonal 
of the GLCM, 
which 
represents no 
change in gray 
levels 
between 
adjacent 
pixels. 

∑Ngl − 1
i=0

∑Ngl − 1
j=0

1
1 + (i − j)2 Â⋅g(i, j)

Contrast 
(Mean, min, 
max, and sd) 

Describes the 
brutal 
changes in 
gray levels 
between 
adjacent 
pixels by 
emphasizing 
coefficients 
away from the 
diagonal of 
the GLCM. 

∑Ngl − 1
i=0

∑Ngl − 1
j=0 (i − j)2Â⋅g2(i, j)

Mean 
brightness 

Measures the 
average gray 
level value of 
the image 

∑Ngl − 1
i=0

∑Ngl − 1
j=0 iÂ⋅g(i, j)

SHDI 
brightness 

Diversity of 
represented 
gray levels 

−
∑Ngl

g=1pgÂ⋅log2

(
pg

)

With: Nc the number of classes in land cover data (here Nc = 6), Ngl the number 
of gray levels in discretized images (here Ngl = 18), pc or pg the proportion of 
class c or gray level g in the cell, g(i, j) the coefficient of the GLCM matrix of 
indices i and j. 
The size of the moving square window used in GLCM texture computation is 5 by 
5 pixels (Fig. S2). 
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nonlinear models. The linear relationship with mean homogeneity and 
mean contrast was the best to approach the built area (predictive R2 =

0.75, Table 2), both being positively correlated with it, as well as their 
interaction term. The more homogeneous and contrasted the landscape, 
the more built-up it should be. The best high vegetation model combined 
nonlinear relationships with mean brightness and brightness SHDI, 
respectively having a negative and a positive correlation (predictive R2 

= 0.85). The interaction term modulated the role of brightness diversity 
where the darker the landscape, the higher the positive role of bright
ness SHDI. Landscape windows with high brightness diversity but low 

mean pixel brightness values are more likely to be highly covered by 
high vegetation. The landscape diversity nonlinear model was the most 
efficient and was composed of two texture metrics from the previous 
models where mean homogeneity combined with brightness SHDI 
(predictive R2 = 0.74), with positive relations and an interaction effect 
not as high as in the previous models. 

Nonlinear effects modulated the impact of extreme values, except for 
the relation between the built area and homogeneity, where the model 
had a high effective degree of freedom (Table 2), producing a highly 
nonlinear relation. 

The mean predicted values obtained via the selected models were 
6.8 % for built areas with a confidence interval of [-3.7; 23.5 %] and 
27.1 % [CI = 0.9; 92.6 %] for high vegetation, while for landscape di
versity, the mean was 0.98 [CI: 0.11; 1.38]. For each land cover metric, 
the average values are in the same magnitude and range as for validation 
data. The intervals comprising 95 % of validation data are, for com
parison purposes, [0.0 %; 30.3 %] for the built area, [0.0 %; 99.3 %] for 
high vegetation and [0.04; 1.55] for landscape diversity. 

3.3. Application of the selected models over past years’ data 

When applying the selected models to past land cover metrics for the 
built area and high vegetation, the relationships between estimated and 
observed data followed the same patterns as for 2015 (R2 ≥ 0.5 for all 
years), except for 1966′s estimation of the built area (R2 = 0.49, Fig. S6). 
For all past years, the intercepts for the built area were consistently 
higher than 0 (min = 2 %, max = 6 %). In contrast, high vegetation 
intercepts showed negative values (Fig. S6) (min = -7.8 %, max = -4.5 
%). A similar pattern was observed for the variations of the slope coef
ficient throughout the years. When there was a significant difference 
with the value of 2015, the coefficient tended to be higher than 1 for the 
built area and lower than 1 for high vegetation. 

The linear regression between the temporal trends of actual and 
estimated land cover metrics returned an adjusted R-squared coefficient 
of 0.25 for high vegetation and 0.49 for the built area, with intercepts 
each time significantly different from 0 (0.17 ± 0.01 and − 0.03 ± 0.01 
respectively) and slope coefficients significantly different from 1 (0.39 

Fig. 2. Visual representation of landscape descriptions implemented in this study at window level. We represented raw images and landscape metrics (rows) across 
all years (columns) for one single landscape window (id point 1411; coordinates: 1046080, 6843312; Lbt93). Note that years of orthophotographs and vectorial land 
cover do not match. 

Fig. 4. Relationships between land cover and textural metrics issued from best 
selected models. Values for land cover and texture metrics were normalized. 
Represented slopes are for single variable models (or interaction only models). 
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± 0.03 and 0.65 ± 0.03). 

3.4. Ecological case study: Textural indices explaining plant and bird 
communities 

All models retained local and sampling data, and those variables 
were significant in seven of them (Fig. 5), explaining up to 18 % of plant 
metrics variations for mowing frequency, 10 % of plant metrics’ vari
ance for the sampling year, and 21 % of variance of bird metrics for 
sampling effort. The mowing frequency consistently negatively affected 
all plant metrics (Fig. S8) except urbanity, for which it was positive. The 
sampling effort positively affected bird species and functional diversity 
but negatively affected LCBD. 

Six out of eight models explaining current bird and plant commu
nities included estimated land cover metrics, with at least one playing a 
significant role in each case. The built area exhibited a better explana
tory power of plants and birds than high vegetation. The predicted built 
area for 2015 accounted for up to 31 % of the variance across all groups 
and biodiversity metrics (Fig. 5). The past built area significantly 
explained plants’ urbanity and birds’ functional richness, with an 
explained variance up to 24 %. In most cases, the effects of the built area 
were negative (Fig. S8), with a lesser impact in past years, except for 
urbanity measures, where the built area had a positive effect, which was 
more pronounced in 2000 and 1986. 

The high vegetation metric appeared in three models. It consistently 
negatively impacted plant species richness, with the past explaining 
more variance than the present metric (i.e., up to 5 % of explained 
variance). High vegetation also negatively impacted the bird urbanity 
score; this effect was stable for 2015, 2000, and 1986 and was respon
sible for up to 18 % of the variance. Finally, past years’ high vegetation 
positively impacted plants’ LCBD, explaining 11 % of the variance 
(Fig. S8, Fig. 5). 

Urbanity relied on the past with higher explanatory factors than 
other biodiversity metrics, with plants’ urbanity score impacted by the 
built area of years 1976–1986 and birds’ urbanity score relying equally 
on high vegetation of years 1986–2015. 

4. Discussion 

In this study, we aimed to characterize present and past urban 
landscape composition (built and high vegetation areas) to measure the 
effects of historical landscapes and their temporal changes on current 
biodiversity. For this purpose, we used texture metrics derived from 
grayscale aerial photographs. Past texture metrics proved to be relevant 
variables to assess the effects of past landscapes on current plant and 
bird communities. However, we did not find temporal changes of texture 
metrics consistent with land cover changes across years, making them 
poor predictors of the landscape’s temporal trends over a long-term 
period. 

4.1. Texture characterization of urban landscapes 

Overall, relationships between land cover and texture metrics 
showed high predictive performances for linear and nonlinear models. 
Our results demonstrated the potential for black and white photographs 
to assess some basic landscape features composing the urban − non 
urban gradient. Meanwhile, continuous descriptions of landscapes 
usually use complex data derived from remote sensing, such as NDVI (St- 
Louis et al., 2009; Wood et al., 2013; Park and Guldmann, 2020), 
requiring multi-band material, that is not commonly available before the 
rise of satellite imagery. 

The selected models relied on brightness, mean homogeneity, and 
mean contrast, suggesting that other measures of texture indices (stan
dard deviation, min, and max) have less explanatory power at the 
landscape level over a 300 m x 300 m window. Following our hypoth
esis, we found that homogeneity and contrast were significantly posi
tively associated with built-up areas. Their combination may offer the 
advantage of reproducing spatial gradients of built areas in urban 
landscapes with their ability to characterize sharp differences among 
neighboring features and smooth surfaces. Our findings support the 
conclusion of a previous study exploring the potential of texture-based 
classification in urban landscapes using multispectral aerial photos 
(Mhangara and Odindi, 2013). The discrimination between high vege
tation and built areas was more effective using homogeneity, while 

Table 2 
Linear and nonlinear models selected to predict land cover metrics through texture metrics for 2015. The Landscape Shannon Diversity Index was computed over six 
land cover classes. For linear models (Generalized Linear Model − GLM), coefficient values are given with mean +/- standard deviation based on a single simulation 
run over the total plot sample and according to the model’s output. For nonlinear models, input models were Generalized Additive Models (GAM). edf stands for 
effective degree of freedom. The higher the edf value, the stronger the nonlinearity. The relationship was considered to be linear when edf ≤ 1.  

LINEAR SELECTED MODEL 
Vectorial Land cover Metric Continuous Textural Metrics Coefficients P-value AIC ΔAIC df Predictive R2 

% Built area Intercept 0.11 ± 0.03 <0.001 (***) 594 60 396 0.75[0.68 – 0.80] 
Mean Homogeneity 0.74 ± 0.04 <0.001 (***) 
Mean Contrast 1.21 ± 0.04 <0.001 (***) 
Mean homogeneity x Mean Contrast 0.16 ± 0.02 <0.001 (***) 

% High vegetation Intercept − 0.08 ± 0.03 <0.01 (**) 642 61 396 0.71[0.61 – 0.78] 
Mean Homogeneity − 0.33 ± 0.03 <0.001 (***) 
Mean Brightness − 0.46 ± 0.03 <0.001 (***) 
Mean Homogeneity x Mean Brightness 0.25 ± 0.03 <0.001 (***) 

Landscape diversity Intercept − 0.01 ± 0.03 0.86 623 39 396 0.72[0.66 – 0.78] 
Mean Homogeneity 0.28 ± 0.03 <0.001 (***) 
SHDI Brightness 0.82 ± 0.03 <0.001 (***) 
Mean Homogeneity x SHDI Brightness − 0.06 ± 0.03 <0.05 (*)  

NONLINEAR SELECTED MODEL  
Vectorial Land cover Metric Continuous Textural Metrics edf P-value AIC ΔAIC df Predictive R2 

% Built area S(Mean Homogeneity) 9 <0.001 (***) 487 132 393 0.73[0.42 – 0.85] 
S(Mean Contrast) 1 <0.001 (***) 
S(Mean Homogeneity, Mean Contrast) 17 <0.001 (***) 

% High vegetation S(SHDI Brightness) 1 <0.001 (***) 391 205 388 0.85[0.79 – 0.89] 
S(Mean Brightness) 1 <0.001 (***) 
S(SHDI Brightness, Mean Brightness) 16.43 <0.001 (***) 

Landscape diversity S(Mean Homogeneity) 1 <0.01 (**) 588 16 391 0.74[0.68 – 0.80] 
S(SHDI Brightness) 3.66 <0.001 (***) 
S(Mean Homogeneity, SHDI Brightness) 9.31 <0.001 (***)  
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contrast was the most efficient metric for separating buildings from grass 
areas. Homogeneity and brightness were strongly related to high vege
tation areas, as previously suggested by Park and Guldmann in 2020, 
and Herold et al. in 2003 already noted homogeneity’s generalized 
contribution to characterizing different land cover classes with similar 
spectral characteristics. In this study, the latter texture metric contrib
utes to separating all urban land use categories, underlying its essential 
role in characterizing the different elements of the urban matrix. In 
urban landscapes, high vegetation areas exhibit lower brightness values 
than others (except for water areas) (Avery and Berlin, 1992), making 
this texture metric effective for quantifying tree cover. Rough surfaces 
such as high vegetation cover were also well captured by homogeneity 
that quantifies the smoothness of an image with low values yielding high 
feature complexity. This is also consistent with previous studies, in 
addition to Mhangara and Odindi (2013) and Herold et al. (2003) cited 
above, that used homogeneity as a descriptor of vegetation complexity 
or heterogeneity (Farwell et al., 2021; Culbert et al., 2012). In Farwell et 
al (2021), homogeneity was the best metric for estimating total bird 
richness across forests, grasslands, and vegetation sites in the United 
States. Lastly, we found that landscape diversity was significantly 

associated with brightness SHDI, indicating that gray level diversity 
correctly reproduced land cover diversity in the orthophotographs. 

Interactions between texture metrics were key variables for pre
dicting spatial gradients of high vegetation, built-up areas, and land
scape diversity in urban landscapes. Models with interactions 
systematically outperformed models with individual texture metrics. For 
instance, we found that homogeneity mitigated the effect of contrast on 
the percentage of built area. Although contrast may be sufficient to 
capture built-up areas, homogeneity may offer the advantage of better 
fitting specific built-up area types. We hypothesize that for similar levels 
of contrast, different levels of homogeneity featuring building rooftops 
may correspond to other classes, such as residential areas (moderate 
homogeneity) or industrial/commercial areas (high homogeneity). 
Following the same reasoning, in the linear model, the interaction be
tween homogeneity and brightness was strongly related to the per
centage of high vegetation. This may reflect that for high vegetation 
areas (low homogeneity), the interaction with brightness contributes to 
better capturing the tree composition by describing different vegetation 
types (e.g., species or management regime). In the nonlinear model 
predicting high vegetation areas, brightness SHDI, in combination with 

Fig. 5. Result of hierarchical partition for plants and birds. Each taxon was represented through four biodiversity metrics and included only the variables identified 
through the model selections for each year. The colored bars correspond to the relative influence of landscape variables on the assessed biodiversity metrics. Blue 
stands for independent contribution, while green represents the joint contribution. The model selection for birds’ site originality only returned sampling effort and 
did not include any landscape variable. Asterisks and darker colors mean a variable has a significant independent contribution (200 repetitions via hp.rand). Striped 
parts represent a negative joint contribution. 
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mean brightness, replaced homogeneity. Brightness SHDI was decisive 
in discriminating dark and uniform plots, corresponding to agricultural 
landscape windows, from dark and diversified ones, related to high 
vegetation cover. Lastly, besides the role of metrics’ interactions, our 
results also showed that the nonlinear effects in the models allowed us to 
capture more complex features with texture metrics. We found flat
tening yield relationships between texture and land cover metrics for 
extreme values (Fig. 4). This suggests that nonlinear models can 
correctly adjust orthophotographs saturation problems for very low or 
high values of land cover metrics. 

Our results promote the interest of rethinking processes using spatial 
archives to reconstruct ecological habitat dynamics (Coops and Wulder, 
2019) over a long period. Indeed, our texture-based modeling frame
work was successful in predicting past landscapes. We propose an 
alternative to the paradigm of producing discrete maps to calculate past 
land cover metrics to include a historical perspective in ecology studies. 
The texture-based approach greatly facilitates past landscape charac
terization by offering the opportunity to maximize the potential of long- 
time spatial archives. The proposed methodology paves the way for 
studying possible time lags of biodiversity in response to habitat 
disturbances. 

We, however, found a decline in the performance of texture models 
over time, indicating substantial impacts of decreasing quality in 
orthophotographs on landscape description. On the one hand, this is 
particularly true for built-up areas. Crisp edges of buildings tend to be 
less clearly defined over time due to blurring effects and conservation 
levels in orthophotographs. It could negatively impact the computation 
of texture metrics, such as contrast featuring sharp transitions among 
pixels. On the other hand, brightness mean and diversity were more 
performant in capturing high vegetation areas due to the higher 
robustness of brightness derived variables to noisy black and white 
photographs. Given the sensitivity of texture metrics, we suggest that 
aerial missions should be carefully chosen to ensure a minimum quality 
threshold before applying the developed approach. 

Applying the present texture-based models to past years showed a 
reverse trend in error estimates of built-up and high vegetation areas. 
Texture metrics generally overestimated built areas due to a positive 
systematic error corresponding to the intercept difference with 2015′s 
model (Fig. S6.a). Also, the slopes of past coefficients were higher than 
2015′s, meaning that this overestimation was even greater for high 
percentages of built-up areas. In addition to radiometric quality issues, 
profound modifications in the global aspect of built-up areas through the 
years may explain the difficulties of the present texture-based models to 
perform in past years. Secondly, the high vegetation area was under
estimated (Fig. S6.b). Seasonal differences between the present and past 
aerial missions may help understand this error. Compared to most recent 
orthophotographs taken in spring, the two oldest orthophotographs 
were acquired in winter, when most trees had no leaves, which could 
explain the underestimation. We also hypothesize that temporal mis
matches existing between validation databases and the selected aerial 
missions may partly explain the differences. Although we had performed 
linear interpolation of land cover metrics between dates to match 
orthophotographs’ years, changes occurring during these periods may 
be nonlinear. 

Past land cover estimates based on texture metrics allow the repro
duction of relevant spatial gradients at each date. However, error 
propagation through the years makes it challenging to assess landscape 
changes. The intercept of linear regression between texture-based and 
land cover based change coefficients did not equal zero for built-up or 
high vegetation areas. Uncertainty in the direction of changes made 
temporal trends from estimated land covers unreliable. It reduced its 
potential for understanding the role of land use history on biodiversity 
and ecological systems (i.e., legacy effect, Yang et al., 2017). However, 
we could evaluate which years were most involved in shaping present 
biotic communities (i.e., a time lag assessment, Kuussaari et al., 2009). 

4.2. Ecological case studies 

We validated our hypothesis that texture-based land cover estimates, 
for both present and past, significantly affected birds and plant com
munities. This demonstrates that texture-based metrics effectively 
describe urban landscapes which themselves shape composition and 
diversity of species communities. Although our estimated metrics for the 
present had a higher explicative power than past ones on communities, 
we still identified an impact of urban landscape history on current 
biodiversity patterns. Time lags were longer for plants than for birds (e. 
g., 50 year versus 30 year time lags on plant and bird species richness 
respectively). This discrepancy in time lag differences was already evi
denced in previous works, between 25 and 90 years for plants (Ridding 
et al., 2021; Cortina et al., 2022; Yang et al., 2017; Lindborg, 2007) and 
between 10 and 15 years for birds (Gaüzère and Devictor, 2021; Haddou 
et al., 2022). We however improved precision of temporal lag estimation 
by using five different years instead of one, two or three dates in the 
other studies. 

Our results demonstrate that community responses to current and 
past landscapes vary according to the community indices. We recorded a 
longer time lag for the urbanity score than for the functional richness for 
birds and plants, suggesting functional metrics to be more dynamic and 
quicker to adapt than urbanity. This latter metric’s dependency on the 
past implies that some species with a high urban score, while preferring 
highly built landscapes, may need those landscapes to have experienced 
several decades since urbanization to benefit from them. This also in
dicates that land cover changes affect ecological communities with 
variable time dynamics, depending on the facet of the community 
considered. 

The effect of texture-based landscape description on each biodiver
sity metric (Fig. S8) were consistent with the findings of numerous 
previous studies. Increasing built areas reduced the species number and 
the functional richness of bird assemblages. It also decreased the species 
richness and the β-diversity of plants. These patterns are likely due to the 
loss of ecological niches available for plants and birds in the most ur
banized environments (see Keten et al., 2020; Padilla and Sutherland 
(2021) for birds and Ruas et al., 2022 for plants). We found that the 
urbanity score increased with built area (for plants) and decreased with 
high vegetation cover (for birds) (Guetté et al., 2017). We speculate that 
these different responses of the urbanity score between taxa may be due 
to the sensibility of forest birds to areas covered by high vegetation, 
whereas herbaceous plants are adapted to urban areas in our studied 
sites and mainly affected by the building’s density. For birds, we did not 
find any landscape influence on birds’ β-diversity, while we could have 
expected a positive effect of high vegetation (Bennett et al., 2014). 
Finally, we did not find any link between landscape composition and 
plants’ functional richness. We however found a strong effect of mowing 
frequency on this metric, which may exceed landscape effect as plants’ 
functional richness has been shown to be very sensitive to management 
intensity (Gros et al., 2023; Hall et al., 2020). All effects were consistent 
over the years – i.e., we did not find opposed effects for different years of 
the same landscape metric. 

4.3. Perspectives and areas for improvement 

Our work provides new insights into continuous metrics in biodi
versity study as an alternative to more often used categorical metrics, 
but it is not without limitations. First, we limited our study to compo
sitional metrics, focusing on two highly contrasted land use classes, the 
high vegetation, and the built areas, and did not investigate the potential 
to predict less distinctive ones, such as crops, low vegetation or water 
areas, which can appear similar on black and white aerial orthophoto
graphs (Herold et al., 2003). Second, we did not explore the potential of 
texture metrics to predict landscape configuration (e.g., shape and mean 
patch size or connectivity), which is at least as important for biodiversity 
as compositional metrics (Moore et al., 2022; Lindborg, 2007). This 
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limitation is due to the lack of historical data on other land cover classes 
not studied here and needed for validating configurational texture 
metrics. In addition, the data was unsuitable for inter-annual compari
sons as the historic orthophotographs presented many differences be
tween years. This made it challenging to disentangle the interyear 
variations due to each year’s specificities from the differences attributed 
to actual landscape changes. We look forward to updates on the treat
ment of this material, for which this is a common pitfall (Kataev et al., 
2021), as such advancement could allow future studies to include 
continuous temporal gradients. 

Finally, as we worked in a city undergoing some patterns in its spatial 
and temporal dynamics of landscapes, the sites included in our case 
studies only represented a subset of the conceivable landscape compo
sitions and temporal evolution. For instance, we did not have any 
example of sites where the built area decreased with time, which pre
vented us from exploring the potential effects of this scenario on 
biodiversity. Furthermore, as Strasbourg has had a consistent history at 
the city level, the sites displayed a high level of multicollinearity in their 
present and historical landscapes. 

5. Conclusion 

In conclusion, we reiterate the interest and novelty of this study, 
which tackles the challenge of using historical orthophotographs, often 
overlooked in ecological studies, as source material. Its unique approach 
highlights the potential of texture metrics to describe current and past 
urban landscapes. We insist on the interest of using non-linearity and 
interaction terms in our statistical approach, as those two additions 
significantly improved the predictive performance of our models. 

Our results provide new evidence of the lasting impact of landscape 
trajectories on biotic communities − up to several decades time-lag −
that combine with effects of current landscapes and management prac
tices on communities. Further studies should also consider biodiversity 
temporal dynamics and assess how they are inflected by spatio-temporal 
patterns of urbanization and urban densification as human-induced 
unbalance in biodiversity is a dynamic process unfolding through 
space and time. 
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la Biodiversité, OFB), and the General Directorate for Development, 
Housing and Nature (Direction générale de l’Aménagement, du Logement et 
de la Nature, DGALN), an office of the French Ministry of Ecological 
Transition, in the framework of the program for biodiversity, urban 
planning and morphology (Biodiversité, aménagement urbain et morpho
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