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TIME-FREQUENCY COEFFICIENTS
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Inria, Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numériques
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ABSTRACT

Convolutional Dictionary Learning (CDL) is a dictionary learning
technique exploiting the translation invariance of elementary sig-
nals. In the time-frequency domain, the repetition of elementary
frequency patterns can be exploited through the "nonnegative ma-
trix factorization" (NMF) decompositions and extensions, such as
semi or complex-NMF, of the spectrogram. We study the links be-
tween these two approaches here, and we show in particular that a
signal which admits a Convolutive Sparse Coding decomposition ad-
mits time-frequency synthesis coefficients that can be decomposed
in semi-NMF or complex-NMF. The different approaches are then
compared experimentally on synthetic signals.

Index Terms— Convolutional Sparse Coding, Convolutional
Dictionary Learning, Time-Frequency synthesis, Non-negative Ma-
trix Factorization

1. INTRODUCTION

Sparse coding (SC) is a widely used unsupervised learning technique
for signal representation [1]. This method decomposes a signal into a
linear combination of a few elements, or atoms, of a pre-established
dictionary, where most of the coefficients are zero. Initially, dictio-
naries were based on waveforms such as wavelets or time-frequency
transforms [2]. However, using predefined dictionaries limits the
ability of the SC to model more complex signals.

One solution is to use union of dictionaries [3, 4]. For exam-
ple, time-frequency dictionaries with different window sizes can be
combined to model unknown temporal and spectral structures while
limiting Heisenberg’s uncertainty principle. This allows for an in-
crease in the diversity of dictionary elements and better represent
the underlying structures of the signals. Although [5] proposes to
learn the best possible combination of dictionaries, this method still
requires a manual selection of the base dictionaries and does not al-
low optimizing the dictionary elements directly automatically.

This problem can be solved by adopting a "data-driven" ap-
proach, which automatically optimizes the dictionary elements from
training data [6, 7]. However, dictionary learning with Sparse Cod-
ing requires a trade-off between representation quality and dictio-
nary complexity. Indeed, a too-small dictionary will not make it
possible to adequately represent the signals, while a too-large dictio-
nary can lead to overfitting the data. Therefore, finding an optimal
dictionary is an important problem in signal processing.

Convolutional Dictionary Learning (CDL), allied to Convolu-
tional Sparse Coding (CSC), is a dictionary learning method that has
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been proposed in the context of music audio signals [8]. This method
consists of learning a dictionary of (linear, time-invariant) filters.
CDL has been successfully applied in various applications, such as
automatic transcription [9] or biomedical signal analysis [10].

Another popular approach to signal analysis is non-negative ma-
trix factorization (NMF) [11]. In the context of temporal signals,
particularly music, the NMF approach consists of decomposing the
spectrogram into a linear combination of spectra (of amplitude or
power) and temporal profiles [12]. NMF is commonly used for au-
dio signal analysis [13] and source separation [14]. Since NMF
operates on the squared modulus of the spectrogram, various al-
ternatives have been suggested to handle the phase, such as semi-
NMF [15] or complex-NMF [16, 17], which directly operate in
the time-frequency domain. Another option is the Low-Rank Time-
Frequency Synthesis (LRTFS) [18], which utilizes Itakura-Saitao-
based NMF as a prior for the time-frequency coefficients, enabling
the direct synthesis of the signal in the time domain.

Contributions and organization of the article: After a brief
reminder of the CDL and the NMF factorization of the Short Time
Fourier transform (STFT) coefficients in Section 2, Theorem 1 estab-
lishes the equivalence, from a mathematical point of view, between
the CDL methods and the semi/complex-NMF of synthesis coeffi-
cients of a STFT at maximum redundancy in time in Section 3. More
particularly, we show that a signal constructed as the convolution of
atoms and a sparse mapping can always be synthesized from fac-
torizable time-frequency coefficients in the form of semi/complex-
NMF of rank 1. We then demonstrate the equivalence between the
optimization problems of the two approaches. Thus, we present the
methods of resolution of these problems. Section 4 presents the ex-
perimental results of applying the CSC and NMF methods on an
audio piano signal.

2. STATE OF THE ART

2.1. Convolutional Dictionnary Learning

Let x ∈ RTx , for all k ∈ J1,KK, dk ∈ RTd , zk ∈ RTz . The linear
convolutional model of order K of x writes [19]:

x =

K∑
k=1

dk ∗ zk + n, (1)

where n ∈ RTx is an assumed Gaussian white noise. The dictionary
{dk} comprises elementary atoms dk, which are activated at the
different positions encoded in zk. These positions are assumed to be
sparse, with each atom only appearing at a few locations. Thus, the



estimation of the dictionary {dk} and the coefficients {zk} can be
done using the CDL [20]:

min
{zk},{dk}

1

2
∥x−

K∑
k=1

dk ∗ zk∥2 + λ

K∑
k=1

∥zk∥1

s.t. ∥dk∥ ≤ 1 ∀k.

(2)

The CDL, therefore, amounts to solving a problem of convolutional
sparse coding (estimating activations {zk}) and estimating the dic-
tionary of filters {dk}. Several algorithms have been proposed, such
as FastCSC [21] or distributed algorithms [19].

2.2. Time-Frequency decomposition and NMF

2.2.1. Gabor transform

Let g ∈ RTg be a window. The STFT, or Gabor analysis coefficients,
of a signal x ∈ RTx is given for all τ ∈ J0, N − 1K, ν ∈ J0,M − 1K
by:

X[τ, ν] =

Tx∑
t=1

x[t]ḡ[t− aτ ]e−
i2πν(t−aτ)

M = ⟨x, φτ,ν⟩ (3)

with φτ,ν [t] = g[t − aτ ]e
i2πν(t−aτ)

M . The parameter a > 0 is the
size of the jump between two windows, such as aTg ≤ N , and M ≤
Tg is the number of points for the FFT. When the dictionary φτ,ν

forms a frame, there is an infinity of synthesis coefficients α[τ, ν]
such that:

x[t] =

N−1∑
τ=0

M−1∑
ν=0

α[τ, ν]φτ,ν [t] . (4)

We denote by Φ such a synthesis operator, that is, such that

x = Φ(α) , (5)

and we denote its adjoint the analysis operator Φ∗ such that

X = Φ∗(x) , with X[τ, ν] = ⟨x, φτ,ν⟩ . (6)

2.2.2. *-NMF

Decomposition techniques based on non-negative matrix factoriza-
tion (NMF) of time-frequency representations make it possible to
exploit particular signal structures by identifying which frequency
patterns are repeated over time. The first NMFs were applied to the
amplitude (p = 1) or power (p = 2) spectrogram of the signal, ie:

V [τ, ν] = |X[τ, ν]|p . (7)

NMF looks for a decomposition of the form:

V ≃ WZT , s.t. W ∈ RMK
+ ,Z ∈ RNK

+ (8)

To better take into account the phase of the Gabor transform, other
decompositions have been proposed, such as the semi-NMF [15]:

min
W∈CMK ,Z≥0

∥X−WZT ∥2 (9)

or, still with W ∈ CM,K and Z ≥ 0, the complex-NMF [16, 17]
decomposes the Gabor transform in the form:

X[τ, ν] =

K∑
k=1

W[ν, k]Z[τ, k]eiθk[τ,ν] . (10)

where θk[τ, ν] ∈] − π, π] is a global phase term. Finally, the
"Low-Rank Time-Frequency Synthesis" (LRTFS) [18] approach
makes it possible to use the NMF with Itakura-Saito divergence (IS-
NMF) [12] as a "prior" on the synthesis time-frequency coefficients:
the global phase is preserved to reconstruct the signal, although the
phase of each of the components is artificially reconstructed from
the global phase.

3. CDL AND TIME-FREQUENCY SYNTHESIS

This section shows that synthesizing a signal using sparse convolu-
tional dictionary learning or using NMF in the time-frequency do-
main is equivalent. The following theorem states this result for a
signal with a single convolutional component.

Theorem 1. Let x ∈ RTx . Let {φτ,ν}τ,ν be a Gabor dictionary as
defined in Section 2.2.1 with a = 1 and M ≥ Tg . Then, there is a
filter d ∈ RTd , supp(d) ⊂ supp(g), such that

x[t] = (d ∗ z)[t] , z ∈ RTz

iff
∀(τ, ν) α[τ, ν] = ŵ(ν)z(τ)

with

ŵ(ν) =

Tg−1∑
t=0

d[t]

g[t]
e−

i2πνt
M

Proof. We set w[t] = d[t]/g[t]. As supp(d) ⊂ supp(g), we have

x[t] = (z ∗ d)[t] =
Tz−1∑
τ=0

z[τ ]g[t− τ ]w[t− τ ] (11)

=

Tz−1∑
τ=0

z(τ)g[t− τ ]

M−1∑
ν=0

ŵ(ν)ei
2πν(t−τ)

M (12)

=

Tz−1∑
τ=0

M−1∑
ν=0

ŵ(ν)z[τ ]g[t− τ ]ei
2πν(t−τ)

M (13)

=

Tz−1∑
τ=0

M−1∑
ν=0

α[τ, ν]g[t− τ ]ei
2πν(t−τ)

M (14)

As a consequence of this theorem, the following corollary shows
the equivalence between the CDL and the factorization of the Gabor
coefficients at the synthesis

Corollary 1. Let x ∈ RTx . Let {φτ,ν}τ,ν be a Gabor dictionary as
defined in Section 2.2.1 with a = 1 and M ≥ Tg . Let {dk}Kk=1 be
a dictionary of filters with, for all k, supp(dk) ⊂ supp(g). Then

min
dk∈RTd ,zk∈RTz

+

1

2
∥x−

∑
k

dk ∗ zk∥2 + λ
∑
k

∥zk∥1 =

min
α∈CM,N

1

2
∥x− Φ(α)∥2 + λ∥Z∥1 (15)

s.t.

α[τ, ν] =
K∑

k=1

W[ν, k]Z[k, τ ]eiθk[τ,ν]

W[ν, k],Z[k, τ ] ≥ 0, θk[τ, ν] ∈]− π, π]



Proof. It suffices to apply the Theorem 1 to the elementary signals
xk = dk ∗ zk, and to notice

xk[t] = (zk ∗ dk)[t] (16)

=

Tx−1∑
τ=0

M−1∑
ν=0

ŵk(ν)zk[τ ]g[t− τ ]ei
2πν(t−τ)

M (17)

=

Tx−1∑
τ=0

M−1∑
ν=0

eiθk[τ,ν]|ŵk(ν)||zk[τ ]|g[t− τ ]ei
2πν(t−τ)

M

(18)

and take θk[τ, ν] such that eiθk[τ,ν] = wk(ν)
|wk(ν)|

sgn(zk(τ))

In other words, a signal admits a CDL-type representation with
positive activations if and only if it admits synthesis time-frequency
coefficients that factorize in semi-NMF or complex-NMF. Moreover,
the positivity constraint on the coefficients zk and the activation ma-
trix Z in Eq. (15) can be relaxed to have real activations and recover
the classical CDL. When the jump between two windows is such that
a > 1, this constrains the activation coefficients zk[τ ] = 0 for all
the τ ̸= at, and thus forces the parsimony of the CDL.

The minimization of Eq. (15) can be done by a projected gradi-
ent descent, whose algorithm is given in Algorithm 1. The Algo-
rithm 1 uses a semi-NMF decomposition with a multiplicative algo-
rithm as proposed in [15], which has been adapted to complex matri-
ces to minimize Eq. (15). Although it is also possible to replace the
call to the semi-NMF by a complex-NMF, as proposed in [16, 17], to
minimize Eq. (15), we have limited ourselves here at the semi-NMF.

Algorithm 1: Minimization of Eq. (15) by projected gra-
dient descent and semi-NMF

Input: t = 0, α0 ∈ CMN , W0 ∈ CMK , Z ∈ RKN
+ ,

λ ≥ 0;
Output: α ∈ CMN , W ∈ CMN , Z ∈ RMN

+ ;
while not converged do

αt+1/2 = αt +Φ∗(x− Φ(αt);
Wt+1,Zt+1 = semi-NMF(αt+1/2);

αt+1 = Wt+1Zt+1T ;
t = t+ 1

end

4. NUMERICAL RESULTS

In this section, we will compare the numerical results obtained from
various NMF and CDL methods for two distinct sound types: a piano
sound and an artificial sound consisting of frequency chirps ( Fig. 1
and Fig. 2).

Fig. 1: piano partition

The piano sound showcases distinctive frequency motifs that
correspond to individual notes, making it an intriguing case for eval-
uating the performance of the methods in accurately capturing and
separating these specific frequency patterns. This piano song has

Fig. 2: Chirps signal spectrogram

already been used in several articles utilizing NMF decomposition,
as referenced in [12].The piano composition involves four different
notes initially played simultaneously, followed by each pair of notes
played separately. The duration of the piano sound is approximately
15 seconds, sampled at a rate of 22050 Hz (consisting of 355,000
data points). Given that CDL resolution involves alternating gradi-
ent descent in the Fourier domain, while NMF methods are utilized
in the Gabor domain, we aim to use small atom sizes (M = 2048)
to mitigate edge effects. For the NMF algorithm, we employ a small
Gabor window (M = 2048) and aim for a high overlap rate close to
100% (a = 8). In Fig. 3 we present the outcomes of the CDL and
semi-NMF methods. It can be observed that the CDL method accu-
rately identifies three of the four notes, although the fourth note is
somewhat obscured by artifacts. Conversely, the semi-NMF method
successfully captures all four notes, even though some of them may
be separated across multiple motifs. It is important to note that re-
ducing the overlap in the semi-NMF methods significantly compro-
mises the quality of the reconstruction. If there is a need to decrease
computational cost by reducing the overlap, employing the IS-NMF
method proves to be more robust to low time redundancy, as illus-
trated in Fig. 3 (with an overlap of 50%).

The chirps signal consists in two non-stationary chirps each last-
ing 2 seconds. This choice of signal allowed us to assess the ability
of the methods to recover non-stationary atoms, highlighting their
effectiveness in capturing time-varying structures. The signal length
is about 15 s sampled at 22050 Hz. The frequency non-stationarity
of the motifs prompted the introduction of convolutive NMF as sug-
gested in [22] and [23] within the same type of signal. However, it is
worth noting that even with the introduction of convolutive NMF, the
classical NMF and semi-NMF methods can still successfully iden-
tify the motifs as long as the Gabor window size exceeds the dura-
tion of the motifs. We compared the results obtained by the CDL
approach (with a positive activation constraint) and the Algorithm 1.
We represented the spectrogram of the signal in Fig. 2. To satisfy
the assumptions of Theorem 1, we searched for atoms of size 2.5
seconds using the CDL approach. The algorithm in Algorithm 1 uti-
lized an STFT with a window size of 2.5 seconds and an 80% over-
lap. Fig. 4 depicts the spectrograms of the estimated components
obtained by each method. While the CDL approach provided better
separation between the two types of chirps, the semi-NMF method
is struggling to capture both types of elementary signals. This can
be attributed to the utilization of an overlap of 80% (i.e., a > 1).
It is important to note that the complex/semi-NMF methods exhibit
limited robustness in scenarios with low temporal redundancy. Since
Gabor windows are very large, stretching the overlap towards 100%
has a huge computational cost. As for the piano song, if one wants
to reduce the overlap in order to decrease computational cost, it can



(a) CDL

(b) Semi-NMF 99,6% overlap (a = 8)

(c) IS-NMF 50% overlap (a = M
2

)

Fig. 3: Comparison of the piano notes estimated by the CDL, the
Algorithm 1 and IS-NMF

be interesting to use the IS-NMF. It shows very good results with
only a 50% overlap ( Fig. 4) but still with a window size of 2.5 sec-
onds. One could say it could be interesting to see the impact of
a lower window size. In fact, as mentioned earlier in [22], [23], the
convolutive-NMF is presented as the alternative to the classical NMF
algorithm to reconstruct non-stationary elements. This statement is
understandable as regards Fig. 5, but we have shown that the clas-
sical NMF algorithm can still reconstruct this kind of signals well if
the window size is large enough. We also compared the results with
an LRTFS-type approach. In practice, LRTFS gives similar results
to CDL. Using an NMF in the LRTFS makes it more robust to phase
changes and, therefore, the loss of temporal resolution due to a lower
overlap.

5. CONCLUSION

We have demonstrated the theoretical equivalence between the
"CDL" type approach and the semi-NMF (or complex-NMF) type
decompositions of the time-frequency synthesis coefficients of a
signal. In practice, the LRTFS or IS-NMF type decompositions
give the best decompositions, although at the cost of a phase loss
of the estimated time-frequency coefficients and a loss of temporal

(a) CDL

(b) Algorithm 1

(c) IS-NMF 50% overlap (a = M
2

)

Fig. 4: Comparison of the spectrograms of the components esti-
mated by the CDL, Algorithm 1 and the IS-NMF

Fig. 5: Spectrograms of the components estimated by IS-NMF with
50 % overlap (a = M

2
) and a small window (M = 2048)

resolution compared to the CDL. Semi-NMF can be an alternative
to CDL when the time-frequency redundancy is high. We possess
experimental findings that lean towards confirming it. We will also
investigate in more detail the theoretical links between LRTFS and
CDL and the robustness of these approaches as a function of the
window size compared to convolutional atoms.



6. REFERENCES

[1] Ron Rubinstein, Alfred M Bruckstein, and Michael Elad, “Dic-
tionaries for sparse representation modeling,” Proceedings of
the IEEE, vol. 98, no. 6, pp. 1045–1057, 2010.

[2] Stéphane Mallat, A wavelet tour of signal processing, Elsevier,
1999.

[3] Laurent Daudet and Bruno Torrésani, “Hybrid representations
for audiophonic signal encoding,” Signal Processing, vol. 82,
no. 11, pp. 1595–1617, 2002.

[4] J-L Starck, Y Moudden, J Bobin, M Elad, and DL Donoho,
“Morphological component analysis,” in Wavelets XI. SPIE,
2005, vol. 5914, pp. 209–223.

[5] Gabriel Peyré, Jalal Fadili, and Jean-Luc Starck, “Learning the
morphological diversity,” SIAM Journal on Imaging Sciences,
vol. 3, no. 3, pp. 646–669, 2010.

[6] Michal Aharon, Michael Elad, and Alfred Bruckstein, “K-
SVD: an algorithm for designing overcomplete dictionaries for
sparse representation,” IEEE Transactions on Signal Process-
ing, vol. 54, pp. 4311 – 4322, 2006.

[7] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo
Sapiro, “Online dictionary learning for sparse coding,” in
ICML, 2009, pp. 689–696.

[8] Roger Grosse, Rajat Raina, Helen Kwong, and Andrew Y Ng,
“Shift-invariant sparse coding for audio classification,” in Pro-
ceedings of the Twenty-Third Conference on Uncertainty in Ar-
tificial Intelligence, 2007, pp. 149–158.

[9] Andrea Cogliati, Zhiyao Duan, and Brendt Wohlberg,
“Context-dependent piano music transcription with convolu-
tional sparse coding,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 24, no. 12, pp. 2218–
2230, 2016.

[10] Mainak Jas, Tom Dupré la Tour, Umut Simsekli, and Alexan-
dre Gramfort, “Learning the morphology of brain signals using
alpha-stable convolutional sparse coding,” NeurIPS, vol. 30,
2017.

[11] Daniel D Lee and H Sebastian Seung, “Learning the parts of
objects by non-negative matrix factorization,” Nature, vol. 401,
no. 6755, pp. 788–791, 1999.

[12] Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu, “Non-
negative matrix factorization with the itakura-saito divergence:
With application to music analysis,” Neural computation, vol.
21, no. 3, pp. 793–830, 2009.

[13] Paris Smaragdis and Judith C Brown, “Non-negative matrix
factorization for polyphonic music transcription,” in WASPAA.
IEEE, 2003, pp. 177–180.

[14] Felix Weninger, Jonathan Le Roux, John R Hershey, and Shinji
Watanabe, “Discriminative NMF and its application to single-
channel source separation.,” in Interspeech, 2014, pp. 865–
869.

[15] Chris HQ Ding, Tao Li, and Michael I Jordan, “Convex and
semi-nonnegative matrix factorizations,” IEEE transactions on
pattern analysis and machine intelligence, vol. 32, no. 1, pp.
45–55, 2008.

[16] Hirokazu Kameoka, Nobutaka Ono, Kunio Kashino, and
Shigeki Sagayama, “Complex NMF: a new sparse represen-
tation for acoustic signals,” in ICASSP. IEEE, 2009, pp. 3437–
3440.

[17] Paul Magron and Tuomas Virtanen, “Complex ISNMF: a
phase-aware model for monaural audio source separation,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 27, no. 1, pp. 20–31, 2018.

[18] Cédric Févotte and Matthieu Kowalski, “Low-rank time-
frequency synthesis,” NeurIPS, vol. 27, 2014.

[19] Thomas Moreau and Alexandre Gramfort, “Dicodile: Dis-
tributed convolutional dictionary learning,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 44, no. 5,
pp. 2426–2437, 2020.

[20] Vardan Papyan, Jeremias Sulam, and Michael Elad, “Working
locally thinking globally: Theoretical guarantees for convolu-
tional sparse coding,” IEEE Transactions on Signal Process-
ing, vol. 65, no. 21, pp. 5687–5701, 2017.

[21] Hilton Bristow, Anders Eriksson, and Simon Lucey, “Fast con-
volutional sparse coding,” in CVPR, 2013, pp. 391–398.

[22] Paul D. O’Grady and Barak A. Pearlmutter, “Convolutive non-
negative matrix factorisation with a sparseness constraint,” in
2006 16th IEEE Signal Processing Society Workshop on Ma-
chine Learning for Signal Processing, 2006, pp. 427–432.

[23] Paris Smaragdis, “Convolutive speech bases and their applica-
tion to supervised speech separation,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 15, no. 1, pp.
1–12, 2007.


	 Introduction
	 State of the art
	 Convolutional Dictionnary Learning
	 Time-Frequency decomposition and NMF
	 Gabor transform
	 *-NMF


	 CDL and Time-Frequency synthesis
	 Numerical results
	 Conclusion
	 References

