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Based on a tight-binding model for the electron system, we investigate the transfer of energy, momentum,
and angular momentum mediated by electromagnetic fields among buckminsterfullerene (C60) and graphene
nanostrips. Our nonequilibrium Green’s function approach enables calculations away from local thermal equi-
librium where the fluctuation-dissipation theorem breaks down. For example, the forces between C60 and
current-carrying nanostrips are predicted. It is found that the presence of current enhances the van der Waals
attractive forces. For two current-carrying graphene strips rotated at some angle, the fluctuational force and
torque are much stronger at the nanoscale compared to that of the static Biot-Savart law.
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I. INTRODUCTION

Energy transfer can be carried out in three forms—
conduction, convection, and radiation [1]. Radiation is special
in that we do not need a material medium for the transfer.
Energy can be transmitted in a vacuum. From the past half a
century of work, it has been established that energy transfers
are enhanced when objects are in the near field [2–4]. This
has been verified by many experiments [5–10] and theoretical
calculations [11–15]. Such near-field effects have also found
many applications [16].

A related transport phenomenon is the transfer of mo-
mentum. This is the origin of the van der Waals or London
attractive forces [17] at short distances and Casimir [18–21]
or Casimir-Polder forces [22,23] at a larger distance when the
finite speed of light is taken into account. An atom above a
dielectric surface is a classic problem that has been inves-
tigated extensively [22,24,25]. Progress has been made on
subtle effects of the temperatures of the bodies [26–30].

So far, even for the global nonequilibrium situations, most
of the theoretical developments have been based on the as-
sumption of local thermal equilibrium [4,19], where each
object still satisfies the fluctuation-dissipation theorem. Sys-
tems driven by the electric current can be modeled by a
Doppler shift of the equilibrium conductivities phenomeno-
logically [31–34]. The effect of the temperature gradient of
the objects has only been investigated recently [35–37]. These
investigations couple the heat radiation with the diffusion
equation or Boltzmann transport theory, still at a macroscopic
or mesoscopic level. Another approach to nonequilibrium
transport is to modify the Bose function with chemical po-
tential bias [38]. Our motivation here is to work at the
microscopic level, starting with a model of matter as electrons
hopping on some (lattice) sites. Thus the nonequilibrium as-
pect can be handled from first principles, using the Keldysh
nonequilibrium Green’s function (NEGF) formalism [39–42].

The drawback, of course, is computational complexity, which
limits the method to small systems at the nanoscale. Along this
line, a general photon transport theory for energy, momentum,
and angular momentum has been developed under the frame-
work of the nonequilibrium Green’s function formulation
[43–45]. It reduces to the usual fluctuational electrodynamics
[46–48] if a local thermal equilibrium is valid. The objects
can be put out of local thermal equilibrium by connecting to
two or more baths at different temperatures or chemical poten-
tials, causing the objects to have heat or electric current. An
out-of-equilibrium system breaks reciprocity even though the
Hamiltonian is still reciprocal in the sense HT = H ; here, H
is the single-particle Hamiltonian matrix, and the superscript
T denotes matrix transpose.

In this paper, we demonstrate the power of the NEGF for-
malism for fullerene systems consisting of the C60 molecules
and graphene strips in the armchair geometry. Specifically, we
consider the transfer of conserved quantities between C60 and
C60 molecules, C60 with a flat graphene strip, and between two
strips rotated at an angle (see Fig. 1).

In the following, we give a recipe for calculation.
The derivations of these formulas are already presented in
Refs. [43–45], except for more computational details. We
define the model considered, present the numerical results,
and discuss their significance. In the Appendices, we give a
quick derivation of the Meir-Wingreen formula and relate it to
the Casimir-Polder formula for van der Waals forces.

II. MODEL

We consider systems as objects described by a tight-
binding model of the form

∑
jk c†

j H
α
jkck of spinless free

electrons. Each object α is connected to a number of baths
or electron reservoirs so that the number of electrons on the
objects can fluctuate, and the reservoirs define their thermal
properties. The baths can also have chemical potential bias
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FIG. 1. Schematic configurations of carbon systems. (a) The
configuration of a C60 molecule with a center-to-center distance
d = 1 nm away from another C60. (b) C60 above a 13 × 8 armchair
graphene strip. The strip is approximately a square of length 1.5 nm.
The C60 is positioned at the center of the square. (c) Two strips
rotated by 30◦. Only parts of the bath sites and bonds in color are
shown explicitly.

so that the object may have an electric current. All this is
described by additional electron self-energies � due to the
baths so that the electron Green’s functions for the object α

are [49]

Gr
α (E ) =

(
E + iη − Hα −

∑
�r (E )

)−1
, (1)

G<,>
α (E ) = Gr

α (E )
∑

�<,>(E )Ga
α (E ), (2)

where the first line is the retarded Green’s function, and
the second line is the lesser (<) and greater (>) Green’s
functions which are given by the Keldysh equations. The
advanced Green’s function is obtained by the Hermitian
conjugate of the retarded one, Ga = (Gr )†, and the sum in-
dicates the possibility of many baths for each object. We
assume that each bath is in thermal equilibrium so that we
have the fluctuation-dissipation theorems for �<,>. That is,
�< = − f (�r − �a), �> = (1 − f )(�r − �a), where f =
1/(exp((E − μ)/(kBT )) + 1) is the Fermi function. Thus
each bath is characterized by two parameters: the temperature
T and the chemical potential μ. In particular, to be consistent,
the damping of the center, η, is also counted as one of the
baths. This central bath can be interpreted as the substrate or
gate applied to the system.

The electron-field interaction is described in the scalar
potential φ = 0 gauge with the Peierls substitution Hamil-
tonian [50],

∑
jk c†

j Hjkck exp(−i e
h̄

∫ R j

Rk
A · dr). Here c†

j is the
creation operator of the electron at site j, ck is the annihi-
lation operator at site k, and A is the vector potential. The
electron-photon interaction matrices can be obtained from the
Hamiltonian and the locations of the sites, via the velocity
matrix:

Vα
jk = 1

ih̄
Hα

jk (R j − Rk ), (3)

where R j is the three-dimensional vector of the location of
site j. We introduce an Ml matrix so that a sum over site l
produces eVα , by

Mlμ
jk = 1

2 e(δl j + δlk )V α,μ

jk , μ = x, y, z, (4)

i.e., Ml is half of the lth row and lth column of the Vα

matrix times e, here e (>0) is the magnitude of the elementary
charge.

III. PHOTON SELF-ENERGIES
AND MEIR-WINGREEN FORMULAS

In the usual approach to fluctuational electrodynamics
[51,52], the material property for electromagnetic response
is given by a frequency-dependent local dielectric function.
Such a description would not be suitable when the system is at
the nanoscale, such as a C60 molecule. In the NEGF approach,
the dielectric function is replaced by nonlocal quantities
(matrices in site l and direction μ) that we call self-energies.
These are the self-energies for the photon interacting with the
electrons. It is a key step in the calculation. Under the random-
phase approximation, they are given by the current-current
correlations [45],

�<
lμ,l ′ν (ω)=−2i

∫ +∞

−∞

dE

2π
Tr[MlμG<(E )Ml ′νG>(E − h̄ω)],

(5)

�r
lμ,l ′ν (ω) = −2i

∫ +∞

−∞

dE

2π
Tr[MlμGr (E + h̄ω)Ml ′νG<(E )

+ MlμG<(E )Ml ′νGa(E − h̄ω)]. (6)

The greater version �> is obtained by swapping lesser with
greater for the electron Green’s functions. The Keldysh ver-
sion is defined as �K = �< + �>, and advanced version is
�a = (�r )†. Here, the dagger means taking complex con-
jugate and transposing in both the space and the direction
index, (l, μ). The extra factor of 2 is for the spin degeneracy.
The retarded self-energy is related to the conductivity in a
continuum description by σ = i�r/ω [53].

The self-energies, also known as polarizabilities, are the
critical inputs for the transport calculations. The numerical
accuracy of the energy integration needs to be maintained to
high standards. The broadening parameter η controls the inte-
gration spacings. We choose this spacing a few times smaller
than η, and look for convergence.

A. Diamagnetic term

The diamagnetic term is needed to correctly describe the
plasmon physics of the electrons. For the retarded �r , this
term has no imaginary part; thus, it is nondissipative, describ-
ing the motion of the electrons in response to the external
field.

If we expand the Peierls substitution term to second order
in the vector field, using the trapezoidal rule for the line
integral, the extra interaction responsible for the diamagnetic
term is

H ′ = − e2

8h̄2

∑
jkμν

c†
j Hjkck

(
Aμ

j + Aμ

k

)(
Rμ

j − Rμ

k

)
× (

Aν
j + Aν

k

)(
Rν

j − Rν
k

)
. (7)

The contribution to the Dyson expansion of the
contour ordered Green’s function Dαβ (r, τ ; r′, τ ′) =
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〈Tτ Aα (r, τ )Aβ (r′, τ ′)〉/(ih̄) due to this interaction is (at
the lowest order)(

1

ih̄

)2〈
Tτ Aα (r, τ )

∫
dτ ′′H ′(τ ′′)Aβ (r′, τ ′)

〉

= e2

8h̄4

∑
jkμν

∫
dτ ′′〈Tτ Aα (r, τ )

[
Aμ

j (τ ′′)Aν
j (τ

′′)

+ Aμ
j (τ ′′)Aν

k (τ ′′) + Aμ

k (τ ′′)Aν
j (τ

′′) + Aμ

k (τ ′′)Aν
k (τ ′′)

]
× Aβ (r′, τ ′)

〉
Hjk〈c†

j (τ
′′)ck (τ ′′)〉

× (
Rμ

j − Rμ

k

)(
Rν

j − Rν
k

)
. (8)

Here τ, τ ′, τ ′′ are Keldysh contour times and Tτ is the contour
order superoperator. To the lowest order, we can separate the
averages in photon space from that of electron space. The next
step is to apply Wick’s theorem for the A field and express the
field correlation by the photon Green’s function. To identify
the self-energy, we write the final expression in the form
D�D, as a convolution in contour times and space (as discrete
sums). The extra diamagnetic self-energy is

�dia
lμ,l ′ν (τ1, τ2) = ie2

2h̄
δ(τ1, τ2)

∑
jk

[δl jδl ′ j + δl jδl ′k

+ δlkδl ′ j + δlkδl ′k]
(
Rμ

j − Rμ

k

)
× (

Rν
j − Rν

k

)
HjkG<

k j (0). (9)

Here G<(t ) is the lesser Green’s function of the electron in the
time domain. A factor of 2 has been multiplied for the spin
degeneracy. The final result is proportional to a delta function
in contour time. This means that there is no contribution to
�< and �>. We only pick up a retarded component, �r =
�t − �<, which is a constant in the frequency domain, due
to the delta function δ(t1 − t2) in the time domain. Here �t is
the time-ordered version of the self-energy. On a continuum,
this diamagnetic term is −e2n/m; here, n is electron density.
It is also equal to the negative of current-current correlation
at zero frequency, −�r (ω = 0), from gauge invariance. On
a lattice, it is somewhat more complicated due to our use of
Peierls substitution Hamiltonian.

B. Free-field photon Green’s function

The photon Green’s function D = −μ0G is the same as the
usual dyadic Green’s function G up to a numerical factor of
−μ0, which is the vacuum permeability. In a vacuum without
matter, we use the symbol v to denote the free photon Green’s
function, which is given explicitly by the formula [54,55]

vr (r, ω) = − ei ω
c r

4πε0c2r

{
(
↔
U −R̂R̂)

+
[

− 1

i ω
c r

+ 1(
i ω

c r
)2

]
(
↔
U −3R̂R̂)

}
. (10)

Here
↔
U is the identity dyadic, R̂ = r/r is the radial direction

unit vector.
To compute the force and torque, we also need the deriva-

tive of this expression with respect to space. We obtain in

component form a messy formula as

∂μvr
αβ = eX

4πε0c2r2

[(
2 − X − 3

X
+ 3

X 2

)
R̂μδαβ

+
(

−6 + X + 15

X
− 15

X 2

)
R̂μR̂αR̂β

+
(

1 − 3

X
+ 3

X 2

)
(δμαR̂β + δμβ R̂α )

]
, (11)

where X = iωr/c, and μ, α, or β takes the x, y, or z direction.
R̂μ is the component of the unit vector R̂ in the μ direction.

In computing the transported quantities with the Meir-
Wingreen formulas, we only need the values of D at the
electron sites. Hence, the free Green’s function is also eval-
uated at a discrete set of distances r = R j − Rk , where R j

and Rk are the tight-binding sites. The Dyson equation Dr =
vr + vr�rDr is a 3N × 3N matrix equation for N electron
sites. The extra factor of 3 is due to the x, y, and z directions
for each site. The two formulas, Eqs. (10) and (11), diverge
at r = 0, and thus cannot be used. The divergence is due
to our approximation of electrons to be pointlike. In reality,
the wave functions of the electrons are extended with sizes
of order angstrom. To deal with this divergence, we need
a cut-off distance rc = 2 Hartree atomic units (a.u.). When
r < rc, we reset r to be rc with R̂ = 0. This gives, follow-

ing Refs. [56,57], vr (0, ω) ≈ 1
4πε0ω2r3

c

↔
U, and ∇vr = 0. The

results are sensitive to the value rc as it reflects the screen-
ing in the dielectric matrix ε = 1 − vr�r . The value rc is
determined from the Coulomb energy of two overlapping p
orbitals. With the choice of rc = 2 a.u., it gives a reasonable
screening strength for carbon atoms with a static dielectric
constant close to 3 (as compared by the screened and bare
polarizability α of C60).

C. Dyson equation and Meir-Wingreen formulas

With these preparations, we solve the Dyson equation,

Dr = vr + vr
∑

α

�r
αDr, (12)

and calculate the derivatives by ∇Dr = ∇vr +
∇vr

∑
α �r

αDr .
We also need the Keldysh version for distribution, which is

obtained by DK = Dr
∑

α �K
α Da, and the advanced version by

Da = (Dr )†. In calculating the Keldysh equation, we have ig-
nored one term, the bath at infinity, �K

∞. This term represents
the dissipation of energy to infinity. When several objects are
close, the magnitudes of their energy transfer are much larger
than those transferred to infinity, so omitting it is justifiable.
We can have another formula for these emitted to infinity by
integrating the Poynting vector or Maxwell’s stress tensor on
a sphere. We note that conservation laws break down in our
approximation here.

Finally, the Meir-Wingreen formulas for the energy trans-
ferred out from object α, force and torque applied to object α,
are [45],

d〈Ô〉
dt

= Re
∫ ∞

0

dω

2π
Tr

[
Ô

(
Dr�K

α + DK�a
α

)]
, (13)
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where Ô is the operator −h̄ω for energy transfer, −ih̄∇
for force, and r × (−ih̄∇) + S for torque [58]. Here Sγ

μν =
(−ih̄)εμνγ is the spin angular momentum operator expressed
in the Levi-Civita symbol. These operators act on the first
argument of space and direction of the photon Green’s func-
tion D. The trace is a sum of the discrete site indices and the
directions.

We comment that if the system has an overall thermal
equilibrium in the sense �K = (2N + 1)(�r − �a) and sim-
ilarly for DK , we can transform the factor Dr�K

α + DK�a
α

to 2i(2N + 1)Im(Dr�r
α ) (for reciprocal systems). Here N =

1/(exp(h̄ω/(kBT )) − 1) is the Bose function. This will give
0 energy currents, but the force and torque are not zero. We
can further transform Im(Dr�r

α ) into the Matsubara frequen-
cies, ω → iωn, making a contact with the Liftshitz theory for
Casimir force [19,24,59,60]. The formulas should be numeri-
cally more stable in the imaginary frequencies as the functions
are not oscillatory. However, the drawback is that we can no
longer handle nonequilibrium problems. The Matsubara sum
form for the equilibrium system is then

d〈Ô〉
dt

= 2kBT

h̄

′∑
n�0

Tr
[
(iÔ)Dr (iωn)�r

α (iωn)
]
, (14)

where the prime means that the n = 0 term has a weight
of 1/2. The Matsubara frequencies take the values ωn =
2πnkBT/h̄.

Since the derivative of vr is antisymmetric, any symmet-
ric matrix multiplying it and taking trace is 0. Using this
property, for reciprocal systems, we can omit the ∇vr�r

α +
∇vr�r

αDr�r
α terms, and use only ∇vr

∑
β �=α �r

βDr�r
α [61].

The omitted terms, which constitute the self-interaction force,
are zero for equilibrium systems. This improves numerical
stability for the force calculation.

IV. C60–C60 VAN DER WAALS FORCE

We use the coordinates for C60 of Ref. [62], assuming a
nearest-neighbor hopping of t = 2.7 eV [63]. The molecule is
rotated 90◦ along the x direction so that the z axis becomes y
in our coordinate system, see Fig. 1.

The density of states (DOS) and the calculated �r are
presented in Figs. 2 and 3. The C60 molecule has the sym-
metry group Ih; thus, the states are highly degenerate. Some
states near the Fermi energy μ = 0 eV are labeled by their
degeneracy and orbital symmetry. The lowest occupied and
highest unoccupied states have a gap of 2.04 eV. The DOS
is calculated according to −Im Tr Gr (E ). A damping of η =
27 meV in the electron Green’s function is used through-
out all the calculations in this paper. The corresponding
self-energy �r

tot (ω) = ∑
j,k,μ �r

jμ,kμ(ω) is the sum total, i.e.,
summed over the sites and traced over the direction. We ex-
pect �r (ω) ∼ ω2 for small frequency, and 3Ne2/m at ω →
∞. Here e is the elementary charge unit, m is the effective
mass of an electron, and N is the number of electrons. The
retarded susceptibility χ r = ∑

�r (1 − v�r )−1 is related to
the molecule’s dynamic polarizability, ᾱ(ω) = − 1

3χ r (ω)/ω2.
The induced dipole moment is related to the applied elec-
tric field by p = ᾱ(ω)E, which defines ᾱ(ω). The static
polarizability of a C60 molecule computed by fitting the ω2
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FIG. 2. The density of states of C60. Some of the peaks are
marked by the degeneracy and the orbital symmetry labels.

dependence of χ r for small ω gives ᾱ(0) ≈ 460 a.u. The value
is consistent with first principles and experimental results
[64–66].

As a check, we consider two identical C60 molecules with a
center-to-center distance d in thermal equilibrium. Ten baths
are weakly coupled to the C60 molecules with two of the
opposite side pentagons, each connected to independent one-
dimensional chains with a coupling strength � = −2Im �r =
0.4 eV to serve as baths. The result of the total van der Waals
force between the two C60 molecules is plotted in Fig. 4. The
result is calculated at 300 K. We compared with the result
from the sum of the Matsubara frequency method valid for
overall equilibrium systems. It is seen that the Matsubara
method is more accurate for large distances. We also checked
the temperature dependence. As expected, the force is insen-
sitive to temperature. From 30 K to 1000 K, the force changes
by only about 3%.

The value of the van der Waals coefficient C6 is found to
be 31.3 k hartree (bohr)6 (i.e., a.u.). This result is about 1/3
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FIG. 3. Sum total of the retarded photon self-energy �r (ω) in
atomic units. The solid line is for the real part, and the dashed
line is for the imaginary part. Some of the peaks are marked with
corresponding electron state transitions.
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FIG. 4. The force between two C60 molecules with center to cen-
ter distance d at 300 K. The solid line is by the NEGF method; circles
are from the Matsubara method. The dashed line is the asymptotic
force of 6C6/d7 with a fitted value of the coefficient C6 for a van der
Waals potential.

of the first principle calculations [66,67]. The smallness is
due to our model. In our tight-binding model, we have one
electron per carbon for the π orbitals, and the σ orbitals are
absent. Therefore, the transitions of these orbitals to delocal-
ized higher energy states are missing in our treatment. Thus
our force calculations are only qualitative. It appears that the
full dynamic polarizability is important to determine the van
der Waals force quantitatively. We have also considered other
orbitals still within the tight-binding models, the σ orbitals
as well as unoccupied d orbitals [68]. These are important but
very expensive to calculate, in order to bring our result to be in

agreement with density functional theory-based calculations.
Thus the π -orbital-only model does have a fundamental limi-
tation as far as van der Waals force is concerned.

V. ENERGY AND MOMENTUM TRANSFER BETWEEN C60

AND GRAPHENE STRIP

The graphene nanoribbon is modeled with a nearest-
neighbor hopping model with the same hopping parameter
t = 2.7 eV as for C60 on a part of a honeycomb lattice, with
a bond length a = 1.4 Å. Conceptually, we use an infinitely
long strip with an armchair edge. We cut a section of it
(see Fig. 1) as exposed and have electromagnetic interactions,
while the remaining two semi-infinite segments serve as baths.
The reason for using armchair edges instead of zigzag edges,
due to the existence of localized edge states in zigzag config-
uration, is numerical stability. The qualitative features are the
same as zigzag edges.

Figure 5 is an analogous plot as Fig. 3 for the 13 × 8
nanostrip. Compared to the C60 self-energy �r , it is smooth
instead of several sharp peaks. This is because the spectrum
of the electron of an infinitely long strip (due to the two semi-
infinite baths) has a continuum. The high peaks are caused
by transitions between the energy −t and +t states. At low
frequencies at μ = 0 eV (undoped graphene) the values of �r

are small, while at high chemical potential, it is in a metallic
regime, and the value is relatively high.

When each object is in local equilibrium, i.e., the
fluctuation-dissipation theorems are valid, the NEGF formula-
tion is equivalent to fluctuational electrodynamics. This means
that, in our model, each object is connected to baths that are
at the same temperatures and chemical potentials. Then we
have �K

α = (2Nα + 1)(�r
α − �a

α ). Together with reciprocity,

0 5 10
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-400
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200

Π
r to
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)
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FIG. 5. Sum total of the retarded photon self-energy �r (ω) in atomic units for the 13 × 8 armchair strip with baths. The black line is for
the real part, and the red line is for the imaginary part. (a) Chemical potential (a) μ = 0 and (b) 4 eV.
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FIG. 6. Force acting on C60 by graphene. (a) Force contribution from the first equilibrium term of Eq. (15). Pluses by NEGF and circles
from Matsubara method at 300 K. The overlap curves follow the color scheme in (b) for temperatures of the strip. (b) The nonequilibrium
contribution from the second term. The line color indicates strip temperatures.

HT = H , which implies (Gr,a,<,>)T = Gr,a,<,>, and (D<)T =
D<, and Da = (Dr )∗, we can write the force as a sum of an
overall equilibrium contribution and a correction due to the
nonequilibrium temperature effect, as

Fα =
∫ ∞

0

dω

π
Tr

[
h̄ Im

(∇Dr�r
α

)
(2Nα + 1)

]

+
∫ ∞

0

dω

π
Tr

⎡
⎣h̄ Im

(∑
β �=α

δNβ∇Dr (�r
β − �a

β )Da�a
α

)⎤
⎦,

(15)

where δNβ = Nβ − Nα . At short distances, it is dominated by
the first term as δNβ is small comparing to 2Nα + 1.

In Fig. 6, we plot the separate contributions from the first
term and second term in the force formula above. The temper-
ature of C60 is set at 300 K, while the strip is at 100 (black),
1000 (red), and 104 K (green). The left figure (a) is the equilib-
rium term. Although we call it equilibrium, strictly speaking,
this is not so as the temperatures of the strips are different from
that of C60, but the results are insensitive to temperature due to
the 1 in 2Nα + 1. The self-energies of the two objects are only
weakly dependent on the temperatures. There is no correction
term if the strip is also at 300 K. The correction terms are
generally quite small unless the temperature is comparable to
the eV energy scale. The sign of the correction is practically
determined by δNβ ; it has the same sign as that of the first term
if the strip is at a higher temperature than C60, and opposite to
that of the first term when the strip is at a lower temperature.
Both terms decay with distance as d−7. We could not see the
effect of “optical pressure” at these distances.

In a nonequilibrium setting where the local fluctuation-
dissipation theorem breaks down, even when the Hamiltonian
is reciprocal, HT = H , the Green’s functions G>,< and self
energies �r are no longer reciprocal. This makes a numerical
evaluation of the transport quantities rather unstable. There
is a large cancellation effect between the first term Dr�K

α

and the second term DK�a
α in Eq. (13); they are not simply

related to cancel some of the terms, i.e., a Caroli form of the
type �β · · · �α does not exist. We make sure, numerically
to high precision, the known identities are satisfied, such as
Gr − Ga = G> − G<, �r − �a = �> − �<, and the optical
theorem Dr − Da = Dr (�r − �a)Da.

The results presented above in Fig. 6 are for the cases
where chemical potentials are kept at a constant μ = 0 eV
for all the baths. In Fig. 7, we show the situation when the
graphene experiences a symmetric bias (μL = −μR) of the
chemical potentials from the two ends of the graphene strip.
The energy transferred to C60 and the force applied to the
strip are plotted against the chemical potential of the left
bath μL normalized by the hopping parameter t ; the right
bath is set to have the equal and opposite value. Although
the temperatures of the two objects are at the same 300 K,
the chemical potential bias causes the transfer of energy,
which is a nonequilibrium effect. The current flow generates
radiation which is transferred to the molecule. The molecule
itself is in local thermal equilibrium. The force is of the van
der Waals repulsive type. Newton’s third law of the force is
valid at our level of approximation. The force applied to C60

is exactly equal and opposite to that of graphene plotted to
high precision. The value is the smallest (in fact, 0 for the
energy transfer) when there is no bias, and it is symmetric
about the bias and increases with high biases. At huge biases,
we see sharp peaks. These are caused by some resonance
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FIG. 7. Transport between 13 × 8 graphene strip of armchair edge with C60 molecule with a center distance d = 1 nm away from the
graphene at 300 K. The strip is symmetrically biased (μL = −μR). (a) Energy transferred to C60, and (b) force in z direction to graphene.

of the adsorption/emission. Granted, these values of bias are
unrealistic as the system will melt before that. The force in y
direction in the graphene plane, perpendicular to the current,
is very small (10−15 N) due to the structural symmetry. The
force in x direction, the direction of the driven current, is also
small (peaked at about 10−13 N), but it is an odd function of
μL, reflecting the directionality of the current.

Figure 8 is similar to Fig. 7 except now we fix the right
bath at μR = 4 eV and scan the value of μL. This is not sym-
metric about 0 or 4 eV. The general feature is the same, i.e.,
driven current causes a large energy transfer and forces. The
attractive force in z direction is still the largest, but now there
is a small force in x direction, the sign of which can change.
The force in the y direction is still negligibly small. It is clear

-3 -2 -1 0 1 2 3
μ

L
/t

10
-6

10
-5

10
-4

I 
(W

)

-3 -2 -1 0 1 2 3
μ

L
/t

0

4×10
-9

8×10
-9

F
 (

N
)

F
x

F
y

F
z

(a) (b)
μ

R
 = 4 eV

FIG. 8. Transport between 13 × 8 graphene strip of armchair edge with C60 molecule with a center distance d = 1 nm away from the
graphene at 300 K. The chemical potential of the right side is fixed at μR = 4 eV, while scanning the left chemical potential μL . (a) Energy
transferred to C60, and (b) force in x (red), y (dash), and z (solid black) directions to graphene.
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at μR = 4 eV, while scanning the left chemical potential μL . (a) Energy transferred to infinity and (b) force in x direction acted on the objects.

from the two parameter scans of the chemical potentials that
metallic systems give large contributions for both power and
force because we have a lot of electrons that can fluctuate, thus
inducing interactions.

The radiation of the conserved quantities from systems
such as benzene molecules [43], graphene strips [44], or
twisted bilayer graphene has been investigated [69]. We can
calculate the transported quantities to infinity using an approx-
imation D ≈ v and a multiple expansion of the distances for
the Green’s function. The resulting formulas are [43–45]

−I∞ =
∫ ∞

0
dω

−h̄ω2

6π2ε0c3
Im

∑
l,l ′,μ

�<
lμ,l ′μ(ω), (16)

Fμ
∞ =

∫ ∞

0
dω

h̄ω3

60π2ε0c5

∑
α,l,l ′

[
4 �<

lα,l ′α
(
Rμ

l − Rμ

l ′
)

− (
Rα

l − Rα
l ′
)
�<

lα,l ′μ − �<
lμ,l ′α

(
Rα

l − Rα
l ′
)]

. (17)

As expected, from Fig. 9, we see that the energy and force
scales are many orders of magnitudes smaller than the in-
terobject transfer. Due to the structural symmetry, we do not
have angular momentum emission, and the force only has an x
component. Large transfers are generated only at a large bias
comparable to the hopping parameter t = 2.7 eV. Note that
the direction of the force changes sign with the bias.

In our formula, Eq. (17), the mutual interaction between
C60 and graphene is ignored. Under this approximation, each
object contributes separately and symmetrically in the z di-
rection, thus, no force in z. In a more precise theory, taking
the system as a whole and considering the multiple reflections
between the objects, it should have a nonzero z component in
force due to structural asymmetry.

VI. POWER, FORCE, AND TORQUE BETWEEN TWO
IDENTICAL GRAPHENE STRIPS

Finally, in this last section, we present the results of energy,
momentum, and angular momentum transfer between two
structurally identical strips, except that the top layer is rotated
with respect to the bottom one by an angle θ . The two layers
are distanced with d = 1 nm. In Fig. 10, we plot the quantities
against the rotation angle. For the energy transfer, when both
strips are in local thermal equilibrium at the same temperature
of 300 K, there is no heat transfer (numerically, we get values
of the order 10−24 W, an indication of the numerical accuracy
of our method). When both layers are biased, the values are
still very small, of the order 10−13 W. The transfer is the
largest of the order 10−7 W for the case where one of them
is at local equilibrium, and the other is biased, as shown in
Fig. 10(a).

In Fig. 10(b), the fluctuational force is plotted. The forces
are the largest when the system is on top of each other at
angles 0◦ or 90◦. It is the smallest when it is 45◦. The torque
is 0 when it is a multiple of 45◦, and oscillating with a
period of 90◦. Curiously, whether the currents are parallel or
antiparallel, the sign of the force does not change and remains
attractive. We realized that there is another contribution to
the force, which is the explicit effect of the current by the
Biot-Savart law. This additional correction term is calculated;
see Fig. 10(d). At a distance of 1 nm, the static force, in fact,
is 4 orders of magnitude smaller, mainly because of the 1/c2

factor in the formula, see Eq. (A9).
The force between two rotated strips can become repulsive

for certain angles. This anomaly appears generically also for
other small structures, such as between two 2 × 4 armchair
ribbons without the leads. We will discuss this issue in the
summary section.
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FIG. 10. Transfer of the conserved quantities between two structurally identical 13 × 8 graphene nanoribbons at 300 K, plotted against
the rotation angle from 0◦ to 360◦. For all the subplots, black: μL = μR = 0 unbiased for both layers; red: unbiased for the bottom layer,
symmetrically biased to the top layer μL = −μR = −1 eV; green: both layers are biased by μL = −μR = −1 eV. The quantities all refer to
the bottom layer. (a) Energy transferred out of the bottom layer. (b) Fluctuational force. (c) Fluctuational torque. (d) Static force based on the
Biot-Savart law when both layers are symmetrically biased.

At a distance d = 1 nm between the graphene ribbons,
the fluctuational force dominates, but it decays much faster
as d−7, while the static force decays as d−2. We can give a
rough estimate of the crossover distance. We approximate the
van der Waals force by Ff = E0V 2/d7, where E0 is an energy
scale of order eV, while V = aL2 is roughly the volume of the
graphene (as the polarizability α is proportional to the volume
of the system). The electric current is about I = σ�μ/e.
We use the conductance σ = e2/h, h is the Planck constant.
So the force by Biot-Savart law is about Fb = (IL)2/(d2c2ε0).
The crossover distance is obtained by equating the two
forces, as

d ∼
(

E0V 24πε0c2 h̄2

e2L2�μ2

)1/5

. (18)

Using the values E0 ∼ 1 eV, L ∼ 1.5 nm, V ∼ 300 Å3, �μ ∼
2 eV, we find d ∼ 3 nm. This is comparable to the actual
crossover distance; see Fig. 11.

VII. SUMMARY

We have given a few applications of the general theory of
photon transport between carbon systems. They are the van
der Waals force between identical C60 molecules, or between
C60 and graphene flake, or between current-carrying graphene
strips. Some more technical details are given, such as the
diamagnetic self-energy term. We also relate the NEGF for-
malism with the fluctuational electrodynamics results when
the systems are in thermal equilibrium. The main strength
of our formalism is the application in nonequilibrium steady
states. In this work, we focus on the chemical potential

drive, but a nonequilibrium setting with two baths at different
temperatures is straightforward. Our numerical calculations
indicate that a current drive generally enhances the transfer
of energy and momentum. In addition to the attractive force,
the drive can produce extra force in the driven direction. When
both objects have direct currents, the additional static Lorentz
force is calculated. However, it turns out that this force is
about four orders of magnitude smaller at the nanometer scale.
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FIG. 11. The fluctuational force (black line) vs static force (red
line) based on the Biot-Savart law, as a function of the distance d . The
system is two identical 13 × 8 graphene strips both at a symmetric
bias with parallel currents. The chemical potentials are μL = −μR =
−1 eV, generating a current of 1.2 × 10−4 A. The temperature is at
300 K.
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Our systems are relatively small. In order to model larger
systems, we need to use shortcuts to reduce the computational
complexity. For example, we can approximate the self-energy
� as local, or model � by a Drude model. Another possi-
bility is to use periodicity to go into wavevector space when
one or both systems are infinitely large. The method can be
applied to many situations, e.g., systems that are magnetic
or in a magnetic field. We can also see drag effects due to
current if the electron Green’s functions are the interacting
ones with an additional electron-photon self-energy of GW
type. A periodically driving Floquet system is genuinely a
nonequilibrium situation for which our formalism is applied
with minor revision [70].

Our numerical approach to the transport problems based on
nonequilibrium Green’s functions does pose certain difficul-
ties. First, the Meir-Wingreen formula, Eq. (13), contains two
terms, which are competing and canceling. It is an intrinsic
effect due to the nonequilibrium setting. For local equilibrium
systems, alternative equivalent forms, such as the Matsubara
frequency version, offer much better numerical stability. Thus
it is instructive to consider perturbative results analytically,
focusing on small deviations from the equilibrium result for
certain problems, such as small chemical potential bias. Sec-
ond, there is the divergence at zero distance in the photon
Green’s functions. In many situations, this divergent term can
be dropped; for example, the self-force of an object to itself in
equilibrium is zero, but it is not clear we can do such manip-
ulation for nonequilibrium systems. Our approach is to give a
cut-off to the distance so that zero distance is forbidden. This
regularizes the divergence. In fact, this cut-off has a physical
meaning, it is related to the screening of the electrons [57] and
to the electric field inside a body [56]. Finally, our random
phase approximation combined with the lowest order diamag-
netic term may not give correct local gauge invariance. This
breakdown of gauge invariance may be the reason we have
seen that for certain configurations, we get repulsive forces,
which is not correct. To overcome this difficulty, we may have
to use other gauges such as the multipolar gauge through
the Power-Zienau-Woolley transform [71,72]. Even though
we have numerical difficulties for some systems, we believe
NEGF is still the only offer to treat nonequilibrium systems
correctly from a fundamental point of view beyond fluctua-
tional electrodynamics.
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APPENDIX A: DERIVATION OF THE
MEIR-WINGREEN FORMULA

We give a quick and alternative derivation of the Meir-
Wingreen formula. By eliminating the charge due to the

continuity equation and integrating by parts under the integral
sign, we have the energy current, force, and torque, as

I = Tr〈Ȧj〉, (A1)

F = Tr〈∇Aj〉, (A2)

N = Tr〈(r × ∇ + ε)Aj〉, (A3)

here, the notation Tr means integration over the volume of
a focusing object (out of several well-separated objects) and
trace of the directions; Aj is interpreted as a dyadic formed
by the vector potential A and current j, ε is a vector tensor,
its ith component is the Levi-Civita symbol εiμν . The angular
brackets denote a steady-state average. We can write the three
formulas as a single formula Tr〈Ô/(−ih̄)Aj〉 with an appro-
priate definition of the operator Ô. The energy current is due
to the Joule heating, the force and torque are consequences of
the Lorentz force.

We can relate the current density to the vector field as j =
−v−1A = −Av−1. Here v−1 = −ε0(∂2/∂t2 + c2∇ × ∇ × ·)
is a differential operator. Since v is symmetric, acting from the
left or right to A is the same. Using the acting-from-right form,
we find Tr〈ÔAj〉 = −Tr Ô〈AA〉v−1. The thermal average
〈AA〉 is a short-hand notation for 〈Aμ(r, t )Aν (r′, t )〉. The field
correlation will be then interpreted as the symmetric version,
and can be expressed by 〈AA〉 = ih̄DK (0)/2. Here, the two
A’s are at different space locations r or orientations μ but at
the same time, so the Green’s function in the time domain is at
t = 0. By working in the Fourier space, we obtain DK (0) by
integrating over frequencies. It is sufficient to integrate over
the positive frequencies and multiply by 2 due to symmetry in
DK . So we can write the transported quantities as

d〈Ô〉
dt

= Re
∫ ∞

0

dω

2π
Tr(ÔDKv−1). (A4)

We eliminate the operator v−1 in favor of Green’s functions
of D and �, by the Dyson equation. Dr = v + v�rDr implies
v−1Dr = I + �rDr . Here I is the identity operator in (r, μ),
ω space. Taking the Hermitian conjugate, we get Dav−1 =
I + Da�a. Using the Keldysh equation DK = Dr�K Da, and
acting by v−1 from the right, we find

d〈Ô〉
dt

= Re
∫ ∞

0

dω

2π
Tr[Ô(Dr�K + DK�a)]. (A5)

Although the self-energy � here is for all objects, we note that
the integration is over only the focused object α; as a result,
we can replace � by �α in the above formula. This is the
Meir-Wingreen formula [44,45,73].

The above derivation is valid when 〈A〉 = 0. When it is
not zero, the Green’s function D appearing in the Dyson
equation is the centered one or connected one. We must also
take into account a time-independent static piece,

〈AA〉 = ih̄D + 〈A〉〈A〉. (A6)

This static term does not affect the energy transfer as Ô is a
time derivative to the first A. But it does have a contribution
to the force and torque, an explicit static Lorentz force effect.

To evaluate this static term, we go back to the current;
the extra contribution is − 1

ih̄ Tr(Ô〈A〉〈j〉). In our discrete
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representation, the current at site l integrated over a cell vol-
ume is −c†Ml c, where M has been defined by Eq. (4) in the
main texts by the velocity matrix. We use A = −vj. To the
lowest order in the electron-photon interaction, we calculate
the discrete current as a column vector Ī with component
(l, μ),

Ī l,μ = −2
∑

j,k

〈
c†

j M
lμ
jk ck

〉 = 2ih̄Tr(G<(0)Mlμ). (A7)

Then we can compute the extra static term to be

1

ih̄
Tr[Ôv(ω=0)Ī (Īα )T ]. (A8)

Here Ī is the current of all objects, while Īα is the contribution
from the focused object α. Note that if the object α does not
carry current, the correction term is 0. The meaning of trace is
changed to sum over site index and direction, as we are using
a discrete current located on each site.

Apparently, Eq. (A8) is divergent due to 1/ω and 1/ω2

terms in v(ω), see Eq. (11) in the main texts. The origin
of this divergence stems from the fact that the continuity
equation does not determine the static charge at ω → 0. As
a result, the relation 〈ρȦ〉 = −〈ρ̇A〉 breaks down in the static
limit. How much static charge we have has to be a separate
model assumption. Since the system must be neutral with the
explicit charge of the electrons and the ionic background, we
demand that 〈ρ〉 = 0. As a result, the electric field term ρE
cannot cancel the −(j · ∇)A term leading to Eq. (A2). When
this extra term is added, the divergent terms cancel, and we
obtain the Biot-Savart law of a pure magnetic field force,

FS
α = μ0

4π

∑
l,l ′

Īl
α × (Īl ′ × R̂)

R2
, (A9)

here R̂ = (Rl − Rl ′ )/R is the unit vector from the source
(primed quantities) to the observation point. The torque is
similarly calculated by Rl cross-product with each term in the
sum.

APPENDIX B: FROM MEIR-WINGREEN FORMULA
TO CASIMIR-POLDER FORMULA

In this Appendix, we present a derivation of the well-
known Casimir-Polder formula for the van der Waals coef-
ficient C6 from the Meir-Wingreen formula. Let us consider
two objects, calling them 1 and 2. The force on object 1 is

F1 = Re
∫ ∞

0

dω

2π
Tr

[
h̄

i
∇(

Dr�K
1 + DK�a

1

)]
. (B1)

Here the trace means summing over the sites and directions.
To derive the Casimir-Polder formula, we make some sim-
plifications. The first step is to solve the retarded Dyson
equation in block matrix form:(

D11 D12

D21 D22

)
=

(
v11 v12

v21 v22

)
+

(
v11 v12

v21 v22

)

×
(

�1 0
0 �2

)(
D11 D12

D21 D22

)
. (B2)

Here, the matrix � representing the material properties is
bock-diagonal. The solution can be explicitly found to be

D11 = ε−1
1 (1 − v12χ2v21χ1)−1(v11 + v12χ2v21), (B3)

D12 = ε−1
1 (1 − v12χ2v21χ1)−1v12

(
εT

2

)−1
, (B4)

where we define the dielectric matrix ε1 = 1 − v11�1, and the
susceptibility χα = �αε−1

α , α = 1, 2. The superscript T is the
matrix transpose (in site and direction space). We assume that
the distance between the two objects is large, so v12 and v21 are
small, but v11 and v22 are not small. They produce a screening
effect. In the limit of long distance, small χα , but vαα�α finite,
it is sufficient to keep

D11 = ε−1
1 v11 + ε−1

1 v12χ2v21
(
εT

1

)−1 + · · · , (B5)

D21 = ε−1
2 v21

(
εT

1

)−1 + · · · . (B6)

The derivative of the Green’s function is obtained by
taking the derivative of the Dyson equation, ′D = ′v + ′v�D,
where the prime means partial derivative with respect to space
of the first argument. To the same order of accuracy, we have,
for the derivatives of the photon Green’s function,

′D11 = [′v11(1 + χ1v12χ2v21) + ′v12χ2v21]
(
εT

1

)−1 + · · · ,

′D12 = (′v12 + ′v11χ1v12)
(
εT

2

)−1 + · · · . (B7)

Putting these expressions into the force formula, we find
two types of expressions, these involving only object 1; such
terms must be zero as a single object has no force on itself.
The terms which are a product of objects 1 and 2 in the
self-energies are contributions to the mutual interaction force.
We take the zero-temperature limit. Then �K

α = �<
α + �>

α =
�r

α − �a
α = 2i Im �r

α . Here, we assume reciprocity in the
sense (�r )T = �r . We can express the force then as

F1 = Im
∫ ∞

0

dω

π
Tr

[
h̄(∇v12)χ r

2v21χ
r
1

]
. (B8)

In deriving the above, we have used the identity
χ (ε−1)∗ − (εT )−1χ∗ = χ − χ∗. The two extra terms
′v11χ1 + ′v11χ1v12χ2v21χ1 are zero due to symmetry.
Such terms take the form ′v11F , here F T = F , vT

11 = v11,
v11(r, r′) = v11(r′, r), and ′v11 = −v′

11. Here ′v denotes
derivative to the first argument, and v′ is derivative to the
second argument. Using integration by parts (due to the trace
sign), we can move the space derivative around in two ways.
We find v11F ′ = −v11F ′, so it must be zero exactly. For
near distances, if we take into account multiple reflections,
the formula (B8) needs to be revised by a replacement
v21 �→ (1 − v21χ1v12χ2)−1v21 [47].

We take the nonretardation limit (that is, c → ∞). The free
field Green’s function simplifies to

v = vr = va ≈ 1

4πε0ω2r3
(
↔
U −3R̂R̂). (B9)

In this limit, v is real, representing the dipole interaction. We
assume the distance r between the two objects is much larger
than the sizes of the molecules, so in evaluating v, we can take
the second molecule all at the origin and the first molecule
all at (0, 0, r). As a result, v jk no longer depends on the site
indices. The summation over the sites is carried out only for
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the self-energies. We also assume that the site summed χ r
α is

isotropic and is proportional to the identity. We are able to
relate the “total” �rε−1 to the isotropic polarizability ᾱ. The
site summed χ r is the linear response to the volume integrated
current density,

∫
jμdV = −∑

l,l ′,ν χ r
lμ,l ′νAext

ν . We can write
the current as charge density times velocity, which in turn
can be written as the rate of change of dipole moment; thus,
(−iω)p = − 1

3χ r (ω)totA. Here, we define a scalar quantity

χ r
tot (ω) =

∑
l,l ′,μ

χ r
lμ,l ′μ(ω) = −3ω2ᾱ(ω). (B10)

The ω2 factor is due to d
dt p = ∫

j dV , E = −dA/dt , and in
the frequency domain, the time derivative is −iω. Replacing
χ r by the isotropic ᾱ, multiplying the matrices in the x, y, z
direction space, and taking the trace (which gives a factor of
6), we obtain

F z
1 = 3h̄

π

∫ ∞

0
dω

(
1

4πε0

)2

Im[ᾱ1(ω)ᾱ2(ω)]

(−6

r7

)
. (B11)

We can now identify the coefficient C6 as the factor in front
of (−6/r7). The final step is to make a Wick’s rotation by
integrating over the positive imaginary axis from 0 to i∞.
Since the retarded response function or product of retarded
Green’s functions are still retarded, the integrand is analytic
on the upper half-plane. This leads to the final Casimir-Polder
expression in the nonretarded limit as [22],

C6 = 3h̄

π

(
1

4πε0

)2 ∫ ∞

0
dω′ᾱ1(iω′)ᾱ2(iω′). (B12)

In doing this, taking the imaginary part becomes taking the
real part, as ω = iω′, but the analytically continued response
functions are real on the imaginary axis.

We have used Eq. (B11) of the real frequency formula to
compute C6 for the C60 with C60 interaction. The numerical
value is ∼3.07 × 104 a.u., in good agreement with a direct fit
to the distance dependence of the force.
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